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ABSTRACT:

Path planning for a measuring vehicle requires solving two popular problems from computer science, namely the search for the
optimal tour and the search for the optimal viewpoint. Combining both problems results in a new variation of the Traveling Salesman
Problem, which we refer to as the Explorational Traveling Salesman Problem. The solution to this problem is the optimal tour with
a minimum of observations. In this paper, we formulate the basic problem, discuss it in context of the existing literature and present
an iterative solution algorithm. We demonstrate how the method can be applied directly to LiDAR data using an occupancy grid.
The ability of our algorithm to generate suitably efficient tours is verified based on two synthetic benchmark datasets, utilizing a
ground truth determined by an exhaustive search.

1. INTRODUCTION

Much of the literature on change detection deals with finding
changes between two or more already recorded epochs. How-
ever, if the change detection takes place at scale of an entire
city, which must be recorded again in the future, then it is be-
neficial to focus on the points where changes are most likely
to happen. Such points can be determined, for example, by
examining historical measurements using conventional change
detection methods and then checking for clusters and hotspots.
This procedure saves time and resources and, due to its predict-
ive component, could also be referred to as predictive change
detection. This results in a large amount of areas of interest,
which must be visited by a measuring vehicle for the purpose
of re-recording said locations.

Recording an urban environment efficiently with a measure-
ment vehicle is a non-trivial task. This can be demonstrated on
the overview of a small town district shown in Figure 1. There is
no route to visit all green location markers without some streets
being visited twice, which causes redundant measurements. For
points that are close together, it may be possible that they can be
measured at the same time from a certain location. Such points
are symbolized by the red location markers. If such places are
taken into account, then finding a tour that allows it to measure
all green location markers is reduced to visiting the minimum
subset of green and red markers. This leads to the blue route.
The fields of research associated with both involved problems
are referred to as Traveling Salesman and Next Best View.

Planning a measurement ride efficiently by hand in an area such
as the one shown in Figure 1 is a cumbersome and time consum-
ing task that most likely doesn’t result in an efficient vehicle
path. The example mentioned above is only a small area and
efficient path planning is already almost impossible here, which
leads to the conclusion that an algorithmic solution to the prob-
lem at hand is necessary. In this work, we propose a new class
∗ Corresponding author

Figure 1. A point cloud projected onto the ground plane, which
gives an overview of a district in the city of Ettlingen, Germany.

Green markers are points of interest, red markers stand for
indirect viewpoints. The blue line is a route that allows to

measure all points of interest.

of theoretical problem resulting from the combination of the
Next Best View and Traveling Salesman Problem referred to
as Explorational Traveling Salesman Problem. We propose
a solution to the problem in form of an iterative, heuristic al-
gorithm. Furthermore, we demonstrate how to bridge the gap
between the theoretical problem and LiDAR measurements.

The structure of the paper is as follows. Section 2 provides
an overview of the literature on the subjects of Next Best View
and the Traveling Salesman problem. A theoretical analysis of
the novel Explorational Traveling Salesman Problem as well as
an explanation of the algorithm we developed for solving it is
presented in Section 3. Section 4 includes the method’s func-
tional verification and its evaluation, the results are discussed
in Section 5. Information about future work can be found in
Section 6.
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2. RELATED WORK

2.1 Next Best View

2.1.1 About Topics such as environment modeling,
autonomous exploration as well as object inspection, recog-
nition and reconstruction require solving a common problem
known as the View Planning Problem (VPP) or more com-
monly as Next Best View (NBV). An extensive overview of the
topic is given by Scott et al. (Scott et al., 2003). The task itself
requires finding a sequence of viewpoints, which usually have
six or more degrees of freedom. These include three degrees of
freedom each for rotation and translation, but also additional
ones for sensor parameters such as zoom or exposure time.

The problem in general includes reasoning about the state of
the environment, the possible viewpoints and the imaging space
(Scott et al., 2003). It seems to be a simple, yet computation-
ally complex task that has shown to be NP-complete (Tarbox
and Gottschlich, 1995). Different definitions of the problem ex-
ist, where the following informal definition by Scott et al. is a
good fit for this work. “For a given environment, find a suitably
short view plan satisfying the specific observation goals and
achieve this within an acceptable computational time” (Scott
et al., 2003).

2.1.2 Model-based approaches Scott et al. distinguish
between model-based and non-model-based approaches for
solving NBV. The former ones utilize a priori knowledge of the
environment at some level of fidelity to compute a view plan.
Methods of this kind can be categorized by the representation
used for the knowledge embedded in the model (Scott et al.,
2003).

Set theory methods, such as the one presented by Tarbox and
Gottschlich, utilizes a visibility matrix describing the visibil-
ity of discrete points-of-interest from each point in a quant-
ized viewpoint space (Tarbox and Gottschlich, 1995). The au-
thors argue that finding the shortest possible view plan is NP-
complete and therefore suggest heuristic methods to find good,
but not necessarily optimal solutions.

Another category of methods is based on graph theory. An
aspect graph represents the neighborhood between different as-
pects of a region or object. Each node in the graph summarizes
a set of viewpoints that all share the same view in a qualitative
manner, the arcs represent adjacency in viewpoint space (Tar-
box and Gottschlich, 1995, Bowyer and Dyer, 1990). Although
it is an interesting concept, there are practical difficulties, since
aspect graphs for even moderately complex objects quickly be-
come huge, as does the required computational complexity.

The art gallery problem is a well known problem from the
category of computational geometry. It deals with the question
of how many guards are required to monitor all walls of an art
gallery, the latter being represented by a 2D polygon (J. Kahn,
1980). Solutions are usually of a geometric nature. There are
numerous extensions of the problem, including some that deal
with three dimensions.

2.1.3 Non-model-based approaches The category of non-
model-based view planning algorithms requires minimal to no
prior knowledge. Since these algorithms are not of importance
for this work, only a short overview over non-model-based tech-
niques is given. Scott et al. suggested to categorize non-model-
based approaches by the domain of reasoning about viewpoints
(Scott et al., 2003).

Volumetric methods favor those viewpoint that will extract
the greatest amount of unknown scene information (Banta and
Abidi, 1996). Both workspace and object are represented
by a voxel grid, ray tracing is applied for visibility analysis.
Surface-based techniques can further be categorized in oc-
clusion edge methods (Maver and Bajcsy, 1990), contour fol-
lowing (Pudney, 1994) and parametric surface representations
(Whaite and Ferrie, 1991). Global view planning methods
derive viewpoints from global rather than local characteristics
(Yuan, 1995).

2.2 Traveling Salesman Problem

2.2.1 About The Traveling Salesman Problem (TSP) is a
well-known problem from graph theory that is assumed to be
NP-hard. A comprehensive overview over the topic is given by
Matai et al. (Matai et al., 2010). Johnson and McGeoch provide
an in-depth analysis of multiple solution approaches (Johnson
and McGeoch, 2007). The problem can be described as finding
a tour of N cities, with the following conditions:

1. visit every city just once

2. return to the starting point

3. the tour must be of minimum distance

According to (A. J. Hoffman, 1985), the TSP was first men-
tioned in a handbook for traveling salesmen from 1832. The
problem was studied in the 18th century by the Irish mathem-
atician Sir William Rowan Hamilton and by the British math-
ematician Thomas Penyngton Kirkman (Biggs et al., 1986). It
applies to a variety of real-world problems, such as the drilling
of printed circuit boards, X-ray crystallography and the order-
picking problem in warehouses (Matai et al., 2010).

2.2.2 Symmetric and asymmetric TSP There are two
main categories, namely the symmetric and the asymmetric
TSP. In case of the former one, the travel costs between two
cities are the same in both directions. This means that the prob-
lem can be described using an undirected graph. The latter
one is represented by a directed graph, since the travel costs
are not the same in both directions. This case is more general,
but less extensively explored (Matai et al., 2010, Johnson and
McGeoch, 2007).

2.2.3 Evaluation of solution strategies Since the problem
is at least NP-hard, heuristics are applied to find approximate
solutions. To provide a metric for the performance of a new
proposed algorithm for solving the TSP, the Held-Karp lower
bound has been established (Valenzuela and Jones, 1997). It
provides a lower bound for a graph’s optimal TSP tour. The
lower bound is calculated using an iterative algorithm with
a gradient descend method. Said algorithm generates gradu-
ally higher-cost minimum 1-trees, the cost and shape of which
grows closer and closer to that of the optimal tour.

2.2.4 Tour construction Tour construction algorithms are
heuristics for solving the TSP. They terminate once a solution
is found and do not improve it further, which in turn is the task
of tour improvement. Approximate algorithms do not generate
the exact solution. Their performance can be measured using
the Held-Karp lower bound mentioned above. A comprehens-
ive comparison of various approaches using multiple bench-
marks has been done by Johnson and McGeoch (Johnson and
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McGeoch, 2007). The structure of this section reflects in part
their way of classifying the approaches they examined.

There are heuristics such as Strip (Beardwood et al., 1959),
Spacefilling Curve (Bentley, 1992) and Fast Recursion Parti-
tioning (Bentley, 1992) that focus more on speed, less on tour
quality. They construct the tour one edge at a time and their
results are within 31-35 % of the Held-Karp lower bound. It
can clearly be seen that the results are biased by the way the al-
gorithms work. The complexity of the approaches depends on
the implementation decisions made. In case of the first two it
depends on the search algorithm used, in case of the last one it
may be similar to the one of a k-d tree.

Augmentation based approaches construct tours by adding one
edge at a time. The simplest and most straightforward approach
in this category is Nearest Neighbors. It can also be used to
solve the asymmetric TSP (Johnson et al., 2007). Starting from
a randomly picked city, the closest city is added to the tour.
The result is generally within 23 % of the Held-Karp lower
bound. The complexity of the approach is O(N2), but using
a k-d tree can reduce this to something like O(N log(N)) in
practice (Johnson and McGeoch, 2007). The Greedy heuristic
gradually constructs a tour by repeatedly adding the shortest
edge to the tour. This does not happen in relation to any particu-
lar node as in the Nearest Neighbors method, but globally in the
graph. This must not lead to more than two edges per node or to
a circle less than the number of all cities N . The complexity is
O(N2 log(N)) and the result is within 14 % of the Held-Karp
lower bound (Johnson and McGeoch, 2007). In the variations
dubbed Boruvka and Quick Boruvka devised by Applegate,
Bixby, Chvátal and Cook in an analogy to the classic minimum
spanning tree of Borůvka (Borůvka, 1926), the priority queue
is replaced by sorting or no sorting is used at all. It is not evid-
ent whether Greedy or Boruvka generates the better tours, but
Quick Boruvka is presumed to trade tour quality for speed.
Their Held-Karp lower bound is similar to the one of Greedy
(Johnson and McGeoch, 2007). Savings is another Greedy-like
heuristic proposed by Clarke and Wright (Clarke and Wright,
1964). The basic idea is to combine several smaller tours into
one. It works in the same way as Greedy, but with a surrogate
distance function and is considered to be 12 % above the Held-
Karp lower bound (Johnson and McGeoch, 2007). In many
practical cases, it is considered to dominate other approaches
(Johnson and McGeoch, 2007).

2.2.5 Tour improvement The refinement of an already ex-
isting tour is referred to as tour improvement. Since this topic
is only mentioned for the sake of completeness, the overview
is kept brief. There are several solutions for tour improvement,
the most common ones are the 2-opt and 3-opt local searches
(David S. Johnson, 1995). A generalized variant of this is called
k-opt. Lin and Kernighan proposed an algorithm that allows to
get within 2 % of the Held-Karp lower bound. It’s a variation of
the k-opt algorithm and decides which k is the most suitable at
each iteration step. The complexity is approximately O(N2.2).
An in-depth study of improvements of the algorithm can be
found in (Helsgaun, 2000). There are other well researched
solutions such as Tabu search, simulated annealing and ge-
netic algorithms. Further information can be found in (David
S. Johnson, 1995).

3. FINDING A SUITABLY SHORT PATH THAT VISITS
ALL AREAS OF INTEREST

3.1 Problem description

The problem dealt with in this work can be summarized as fol-
lows. Given a 3D scan of an area, a measurement vehicle is
supposed to determine a path that allows observing a previ-
ously defined set of points of interest and then return back to
its starting point. For two reasons, simple path planning is not
sufficient for this. First, the subset of all possible viewpoints
required to observe all areas of interest in an efficient way is
unknown. This problem category is also known as Next Best
View. As mentioned in Section 2.1, it is presumed to be NP-
complete. Second, the order in which said viewpoints are to
be visited is unknown. This is called the Traveling Salesman
Problem, which is presumed to be NP-hard (cf. Section 2.2).

Finding the solution of the problem at hand is challenging,
since there is a circular dependency between the solution of
both partial problems. The best subset of viewpoints depends
on the chosen tour. Choosing the tour depends on the subset
of viewpoints. In other words, it is a version of the classical
chicken-egg-problem. There are additional conditions that are
more practical in nature. The vehicle may only move on nav-
igable surfaces and also must avoid collisions. The path pro-
posed by the solution must be supported by the kinematics of
the vehicle. We demonstrate how to handle these practical chal-
lenges in Section 3.8. In order to address all those problems as
well as the ones related to visibility calculations required by
Next Best View, we decided to apply a framework used for spa-
tial representation developed in earlier works (Gehrung et al.,
2019). Within this framework, arbitrary spatial information is
represented as a three-dimensional distribution called a density
function. Such functions can easily be used to derive new in-
formation such as visibility or be combined with other density
functions. The functions themselves are represented by octrees,
as this is an efficient data structure for spatial data.

3.2 Combining NBV and TSP

The first step in solving the TSP is to map the problem onto
a graph. For the case at hand that means creating a node for
each available viewpoint. However, one of the basic reasons
for solving the Next Best View problem is that not all possible
viewpoints have to be visited. Regarding the graph, this means
that not all nodes are part of the solution. The best way to ex-
plain this is to look at the problem from an iterative perspect-
ive. Whenever a partial solution is expanded by adding another
node to the tour, then some of the nodes become irrelevant and
are dropped from the set of nodes to be considered.

Due to the nature of the problem, the arc costs are also based on
the solution of the TSP. This is because the exact path between
two viewpoints depends on the orientation of the vehicle and
therefore on its previous path. Every partial solution of the TSP
is therefore a function of the previous partial solution.

Since both the subset of valid nodes as well as the arc costs have
a certain dynamic, we call the problem that arises the Dynamic
Graph Traveling Salesman Problem or, to emphasize its prac-
tical application, the Explorational Traveling Salesman Prob-
lem. We consider it to be a special category of the TSP, such as
for example the Vehicle Loading Problem proposed by (Clarke
and Wright, 1964).
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3.3 Symmetric or asymmetric TSP?

The dynamic graph formulation of the problem leaves the ques-
tion whether or not the problem is rooted in the symmetric or
asymmetric TSP. This information is highly relevant in order to
choose a suitable heuristic for solving the problem. The authors
believe that in principle it can be both, but it cannot be decided
definitively. The reason for this is as follows.

The path driven from tour point A to B may be identical to the
one between B and A, but it not has to be. If a vehicle drives
from A to B, switches to reverse and drives the same way back,
both ways are equal. If the car turns before making its way
back, the way between B and A is longer. In the first case the
graph would be symmetric, in the second case asymmetric.

Whether or not it is a symmetric or asymmetric graph depends
on the graph’s arcs, these in turn are based on the solution. The
solution is largely determined by the vehicle kinematics. The
reason why this cannot be decided definitively is that once an
arc has been added to a partial solution and therefore is fixed,
the inverse arc cannot be evaluated without violating the condi-
tions for a valid tour and therefore invalidate the solution. One
may argue that it is possible to evaluate an arc without it being
part of the solution, but adding the corresponding arc in the in-
verse direction would cause a tour point to be part of the same
tour twice, which would invalidate the tour. So since there is no
possibility to check the reverse arc, it is not possible to classify
the underlying graph as symmetric or asymmetric.

3.4 Proposed solution

Based on the reasoning in the section above, we decided to build
our algorithm for solving the Explorational Traveling Sales-
man Problem based on a method that is able to handle both
the symmetric and asymmetric TSP. The Nearest Neighbor al-
gorithm was chosen, because it leads to reasonable good results
in terms of the Held-Karp lower bound, has a lower complex-
ity than most of the other approaches and works in an iterative
manner, which simplifies designing a solution strategy for the
problem at hand. Our algorithm is outlined in Algorithm 1. A
brief overview is given below, the individual parts of the al-
gorithm are explained in more detail in the following sections.

Our algorithm works based on a virtual, fully connected graph
generated by connecting all potential viewpoints. Arc costs
are initialized with the Euclidean distance. Starting from the
vehicle position and orientation, the next node is determined
based on a cost-benefit factor that includes the usefulness of the
node as well as the distance to the current position. This is real-
ized by a priority queue. Since the actual distance may be larger
than the Euclidean distance, path planning based on a variation
of hybrid A-Star (Kurzer, 2016) is applied to verify that there is
actually a path and, if that is the case, to determine its length.
If the determined path still has the best cost-benefit factor, then
the node is added to the tour. If not, the new best candidate is
taken into consideration. Once a new tour point is added to the
tour, the usefulness of the other nodes in the graph is decreased
accordingly. Once a valid tour has been found, it is improved
using the 2-opt algorithm.

3.5 Graph construction

The nodes of the graph correspond to all possible points that
can be visited by the vehicle. These can, for example, be a pre-
defined list of points of interest or the position of all hotspots

in a density function representing multiple areas of interest. We
have chosen the latter one, since a density function allows the
combination of multiple information sources, such as manually
defined points and results of a change detection algorithm. A
detailed explanation of density functions and the possibilities
they offer can be found in (Gehrung et al., 2019). For the sake of
simplicity, we define that the measuring vehicle must be close
to the point of interest in order to measure it. Of course, any
number of sophisticated heuristics are possible to determine ar-
bitrary viewpoints, but the one mentioned should be considered
sufficient for demonstrating the method. Due to the use of these
points of interest, we name them direct viewpoints.

Additional nodes referred to as indirect viewpoints are also
taken into consideration. These allow more than one point of
interest to be observed at once. In order to determine the indir-
ect viewpoints, the visibility density functions of all points of
interest are determined and added. It describes the space that
can be seen from said points of interest. Clustering and a hot-
spot search are applied on all elements of the density function
that are in the intersection of at least two viewports. Mixing dir-
ect and indirect viewpoints leads to a set of graph nodes where
some nodes are more useful than others in terms of the points
of interest they allow to observe.

Based on this set of nodes, only the arcs need to be specified
to obtain a valid graph. Creating a fully connected graph that
represents the actual arcs, as well as their costs is not feasible.
This is because each arc corresponds to the actual path between
two locations, which in turn is based on the vehicle orientation,
which is influenced by previous driving maneuvers. One may
argue that it is viable to create a graph with a reasonable large
subset of all possible vehicle orientations, but for larger prob-
lems this is highly inefficient. Determining an arc requires path
planning in 3D, which is a rather expensive operation, consider-
ing that the number of nodes expanded in the hybrid A-Star al-
gorithm grows exponential with the depth of the solution (Kur-
zer, 2016).

For the reasons listed above, we have chosen a naive approx-
imation of the fully connected graph. The graph itself is not
generated explicitly. Instead, only the parts that are required are
generated at runtime. The arc costs are then initialized with the
Euclidean distance between the nodes, since this corresponds to
the minimum path length. In the case of large graphs, it would
also be possible to only connect nodes within a certain local
neighborhood. As already mentioned, no explicit instantiation
of the arcs is necessary, since they can be created on the fly if
required.

3.6 Solving NBV

Our approach used to solve the Next Best View problem is
loosely based on the one by Tarbox and Gottschlich, since we
also use a visibility matrix (Tarbox and Gottschlich, 1995).
The visibility matrix is a two-dimensional matrix, the columns
of which correspond to the points of interest and the rows to
the viewpoints. If a point of interest is able to be seen by a
viewpoint, then the corresponding element of the matrix is set
to one, otherwise to zero. The viewpoint weights vector is a
vector that corresponds to the sum of the rows of the visibility
matrix. In other words, it contains the number of points of in-
terest seen from a viewpoint. The purpose of this is to describe
the usefulness of each viewpoint. If there is a viewpoint that is
able to observe three points of interest, than it is more useful
than another one that can only see one point of interest.
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(a) (b) (c) (d)

Figure 2. Example scenario illustrating our solution for tour planning. The visibility matrix (a) is used to derive the viewpoint weights
vector (left side of b,c,d). In the first iteration (b), point E is chosen, since it is the nearest one with the highest score. The second
iteration (c) leads to the choice of point G, after which the algorithm terminated, since the viewpoint weights vector is zero and all

points have been observed (d).

Algorithm 1: Nearest neighbor based solving of the Dynamic
Graph Traveling Salesman Problem.
Data: Occupancy density docc, start point s.
Result: The path between all chosen tour points.

Function solve(docc, s):
nodes← determineViewpoints(docc)
vm← calculateVisibilityMatrix(nodes, docc)
weights← calculateWeigths(vm)

tour ← {s}
paths← {}
while weights.sum() > 0 do

l← tour.lastElement()

// Add tour end neighbors to queue.

queue← {}
for n : getNeighbors(nodes, l) do

n.score← weights[n]
‖n−l‖

queue.insert(n)

// Find next tour point.

while ¬queue.empty() do
c← queue.pop()

// Only the Euclidean distance between

nodes is known.

if ¬paths[l, c] then
paths[l, c]← calculatePath(l,c)
if ¬paths[l, c] then

continue
else

c.score← weights[c]
paths[l,c].length()

queue.insert(c)

// Path between nodes known.

else
tour.append(c)
weights.update(vm, c)
break

// Tour finding failed?

if queue.empty() then
return {}

tour.append(s)

return constructFullPath(tour, paths)

Algorithm 2: Update of the viewpoint weights vector.
Data: The visibility matrix vm, the viewpoint weights vector

weights, the chosen viewpoint n.
Result: The updated viewpoint weights vector weights.

Function update(vm, weights, n):
for c : weights.columns() do

if vm[n][c] > 0 then
for r : weights.rows() do

weights[r]← max(0, weights[r]− vm[r][c])

return weights

The selection of the next viewpoint is based on the score func-
tion described in the next section. When the next viewpoint
has been chosen, the viewpoint weight vector is updated. The
update procedure is described in Algorithm 2. The principle be-
hind it is simple. The usefulness of every viewpoint that sees the
same points of interest as the chosen viewpoint is downgraded.
This is done by subtracting the visibility matrix columns of all
seen points of interest from the weight vector.

3.7 Finding the next tour point

Finding the next tour point is done by selecting the one with
the best cost-benefit factor. In this case, the benefit is meas-
ured by the number of points of interest that can be seen from
a viewpoint. This information can be derived from the view-
point weights vector. Costs are defined as the distance that the
vehicle has to cover. The former one is taken from the view-
point weight vector, the latter one equals the arc cost between
two nodes. The score is defined as

score =
weight

distance
. (1)

Note that the score for all tour points that are already part of
the tour is automatically zero. A priority queue is used to effi-
ciently determine the arc with the highest score. It is initialized
with all arcs between the current tour node and all other nodes
that are not part of the tour. The score is calculated based on
the estimated arc cost, i.e. the Euclidean distance. Whenever it
happens that a path between the current node and the top ele-
ment of the queue is not known, it is calculated by means of
the hybrid A-Star path planning algorithm (Kurzer, 2016). The
score is then updated and the corresponding node is reinserted
into the queue. If the path is already known, which happens
only after the node has been reinserted into the queue, than the
next tour point has been found. This process is repeated until all
points of interest have been observed, which is the case when
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the sum of the viewpoint weight vector elements is zero. If the
queue is empty, but the next tour point has not been found, than
the problem cannot be solved. This is the case when no valid
path between the latest tour point and all other non-tour points
can be found, at least not given the current vehicle orientation.
If this happens, then one possible reason is that a driving man-
euver is required that can’t be performed by the vehicle. It may
also be the case that a possible path is too narrow for the vehicle
or that the area has not been sufficiently explored. An example
illustrating how the algorithm works is given in Figure 2.

3.8 Density based path planning

Path planning is done using a rudimentary implementation of
the hybrid A-Star algorithm, which allows to apply A-Star
within a continuous space (Kurzer, 2016). The algorithm can
simulate the driving behavior of a vehicle and is able to gener-
ate solutions that are considered to be almost optimal. Our im-
plementation of the algorithm is rather fast, however, this leads
to long runtimes if no path is possible.

In order to prevent the vehicle from colliding with obstacles,
we sample an occupancy representation in form of an occu-
pancy density function, generated from LiDAR range meas-
urements. Samples are created in regular intervals using the
vehicle’s oriented bounding box. If a certain threshold in the
accumulated evidence for occupancy is exceeded, a collision is
assumed and the corresponding vehicle pose is pruned from the
search space. To keep the vehicle on navigable surfaces, first all
navigable surfaces are determined and then shifted upwards by
the distance from the center of the vehicle to the ground. The
navigable areas density derived in this way is sampled at the
vehicle center point. The same threshold based test as before is
applied to sort out invalid vehicle positions.

In order to encourage a smooth driving behavior, driving back-
ward or not straight ahead is weighted with a higher cost. Since
the density functions can be combined with each other, it is
possible to make some areas more or less important than others
by multiplying them with an appropriate density function. This
can be used to keep the vehicle away from certain regions or
to encourage it to give preference to these. This all is achieved
using the g-score update of the A-Star algorithm:

g(n+ 1) = g(n) + dist(n, n+ 1) ∗ penalty (2)

The new g-score g(n + 1) is calculated by adding the distance
covered since the last step dist(n, n+1) to the previous g-score
g(n). The behavior mentioned above is achieved by multiply-
ing the distance with a penalty factor:

penalty = fd ∗ fo ∗ (2.0− utility(a)) (3)

The direction factor fd is larger than one whenever the vehicle
moves backwards. The orientation factor fo is one whenever
the vehicle drives straight ahead and larger than one, if not. The
last part including the expected utility utility(a) is larger than
one whenever the density function associates something else
than a full intensity with the sampled location a. It can be used
to implement the behavior described above.

4. EXPERIMENTS

4.1 Challenges

Evaluating our approach is challenging, since it is a novel vari-
ation of the Traveling Salesman Problem. The solution in gen-
eral cannot be verified in polynomial time, no benchmarks exist
and it is not straight forward to compare our approach to the
Held-Karp lower bound, since a problem solution contains only
a subset of all available graph nodes. The authors belief that
the problem is still NP-hard, since it is based on the Traveling
Salesman Problem and Next Best View is merely used as a sup-
plemental in order to reduce the set of graph nodes contained
in the solution. Since a discussion from the perspective of the-
oretical computer science would go beyond the scope of this
paper, we decided to generate a benchmark in order to demon-
strate both the validity of the algorithm for finding suitably short
paths as well as the interaction with a LiDAR data set.

4.2 Benchmark datasets

We created two synthetic datasets for the evaluation of our ap-
proach. The associated 3D models were created using the 3D
modeling software Blender. Cloud Compare was used in order
to generate point clouds from the 3D model.

The first synthetic dataset (A) is a room that contains two walls
placed in such a way that they resemble a cross. Four points
are placed in the corners of said structure so that there is no
visual contact between them. The starting point of the vehicle
is behind another structure shielding the vehicle from the points
(cf. Figure 3(a)). The second synthetic dataset (B) is another
room that is divided into nine sections by walls (cf. Figure 3(c)).
These walls do not extend to the outer walls so that a vehicle can
pass between them. Points of interest are distributed among all
sections except the central one. All walls except the northern
one are modeled so that there are locations that allow to observe
two points of interest at once.

The first dataset has been chosen because it is possible to de-
termine the optimal result in a short time using an exhaust-
ive search. The second data set is significantly more complex.
Again, the result is easy to verify, at least for a person. From
a computational point of view, the result can be determined in
reasonable time, even if the effort is much higher than for the
first dataset.

4.3 Examined properties

In order to evaluate the ability of our approach to solve the
Explorational Traveling Salesman Problem, we use the bench-
mark datasets described above and compare the results of our
approach to the ground truth. We gained these by applying an
exhaustive search that checks all valid tours. We discuss the
tour proposed by our approach with respect of both the tour
optimality and quality. We also examine the impact of determ-
ining graph arcs on demand versus determining full graph con-
nectivity in advance. Finally, we comment on the runtimes of
our approach.

5. RESULTS AND DISCUSSION

5.0.1 Tour length The tour length of both our approach and
the exhaustive search providing the ground truth is shown in
Table 1. In order to generate the ground truth, 300 tours for
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(a) (b) (c)

(d) (e)

Figure 3. The optimal tour for the first dataset, determined by the exhaustive search (a) and the tour generated by our method (b). Both
the optimal tour and the tour generated by our method for the second dataset (c). The start point is blue, points of interest are green
and indirect viewpoints are red. The length of all tours examined by the exhaustive search for both datasets (e-f), the red lines show

the tours determined by our method.

dataset A and 18354 tours for dataset B have been checked.
Figure 3(a)-3(c) illustrate the tours generated by our approach
as well as the corresponding ground truth. The length of all pos-
sible tours for both datasets can be seen in Figure 3(d) and 3(e),
as well as the red line marking the length of the tour provided
by our algorithm. In case of the first dataset, our approach
determined a tour close to the optimal route, with a length of
47.73 units in comparison to 43.49 units. However, it can be ar-
gued that said route is more like the route one would actually
take, since it includes more straight forward driving maneuvers.
In case of the second dataset, the optimal tour with a length of
151.67 units was found. It should be noted that tour optimiz-
ation swapped the last two points in the tour in order to get
said result. This shows that the heuristic used by our approach
does not work in all conceivable cases, but this doesn’t differ
from many other procedures in the literature. As a side note it
should be mentioned that there are two outstanding routes, one
clockwise and one counter-clockwise. Due to the vehicle ori-
entation at the start, however, the latter one is actually shorter,
since turning the vehicle adds additional length to the path.

The benchmark used here is only intended to prove the func-
tionality of the algorithm, since evaluating a solver for the Trav-
eling Salesman problem is not a trivial task. As stated in (John-
son and McGeoch, 2007), there is no such thing as an optimal
benchmark. For a more detailed answer regarding the optim-

Dataset Our approach Ground truth
A 47.73 units (4 points) 43.49 units (4 points)
B 151.67 units (6 points) 151.67 units (6 points)

Table 1. The tour length of both our approach and the ground
truth generated by brute forcing all valid paths.

ality of the tours generated by our approach, a detailed study
of the theoretical properties are required, which is outside the
scope of this paper.

5.0.2 Tour quality As can be seen in Figure 3, the tour
quality is appropriate with regard to the path planning method
used. Both paths are relatively smooth, despite the naive path
planning algorithm applied. The vehicle also only drives back-
wards if it is really necessary, because this behavior is penal-
ized. The paths chosen are not very organic, but that can eas-
ily be corrected by applying postprocessing steps such as the
ones proposed in (Kurzer, 2016). Collisions are avoided due to
checking the collision model.

5.0.3 Impact of path planning on demand The number of
arcs in a fully connected graph is n(n − 1)/2, where n is the
number of nodes. In case of the second synthetic dataset with 15
nodes, there are 105 arcs. Starting from an average duration of
74 seconds required for determining the path along two nodes,
a total time span of about 130 minutes would be required. Our
approach required to calculate 20 paths in order to solve the
problem, with an accumulated duration of 24 minutes. Even
with a relatively small graph like this one, our method already
saves more than 80 % of runtime. And here it has not yet been
taken into account that paths would have to be calculated mul-
tiple times due to variations in vehicle orientation.

Dataset Our approach Ground truth
A 3 min 71 min
B 27 min 12509 min (∼208 h)

Table 2. The runtimes of both our approach and the ground truth
generated by an exhaustive search of all valid paths.
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5.0.4 Runtimes The runtimes for both our approach and the
one using an exhaustive search can be found in Table 2. Path
planning is the most decisive factor with regard to runtime. This
is especially the case if there is no route and the hybrid A-star
algorithm has to do an exhaustive search of its search space.
There are methods that are able to carry out path planning in
real time (Frazzoli et al., 2002). From the authors’ point of
view, this is the area in which the most runtime can be saved. If
one looks beyond the effort required for the path planning, the
runtime for the iterative approach can be compared with that
from the literature (Johnson and McGeoch, 2007). Other oper-
ations such as selecting the Next Best View and sampling the
density functions are neglectable. Visibility calculations also
require noticeable runtimes, since they are computationally ex-
pensive due to the use of raycasting.

6. CONCLUSION AND FUTURE WORK

In this paper, we proposed a new variation of a well-known
problem from computer science we refer to as the Explora-
tional Traveling Salesman Problem. We have shown how this
theoretical problem can be solved in order to find a suitably
short path for a measuring vehicle. In doing so, we demon-
strated the usefulness of density functions for performing the
spatial calculations required to solve spatial problems. The
evaluation of our approach on a synthetic benchmark dataset
generated for this purpose shows that it is able to find tours with
good length and quality. To apply the approach to large real-
world data sets, all that is required is faster path planning. Many
optimizations are possible in the context of ongoing work, such
as taking drive-by situations into account. The most important
aspect, however, is a detailed study of the theoretical properties
of the Explorational Traveling Salesman Problem.
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společnosti, 3, Mor. přı́rodovědecká společnost.
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