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Abstract: Efficient inductive charging of electric vehicles requires the accurate alignment of 
the vehicle above a ground-based inductive charging platform. This can be achieved using on-
board cameras observing the charging platform during the approach manoeuvre. In this con-
tribution, a method for vehicle pose estimation relative to the charging platform is proposed. 
Vehicle dynamics data obtained from independent pose estimates relying on either markers or 
markerless features are fused by Kalman filtering to mutual vehicle pose estimates, wherefore 
the method can be used even when the vehicle is close to the charging platform and the mark-
ers are no longer visible in the on-board camera images. The method has been tested with 
simulated data along trajectories of typical approach manoeuvers to parking lots with a 
charging platform at the end of the trajectories. Independent from the vehicle motion model 
and the tested trajectory, deviations of estimated positions from the ground truth of around 
0.5 m at the charging platform have been achieved when using dynamics data from both inde-
pendent pose estimates with an extended Kalman filter. 
 

1 Inductive charging of electric vehicles at charging platforms 

Development of electro mobility leads to new requirements for vehicles and external infrastruc-
ture. Among these requirements, supplying power to the vehicles plays an important role. Nowa-
days, plug-in electric vehicles carry a battery providing energy to one or more electrical engines. 
Typically, batteries of such vehicles are charged using a wired connection between the vehicle and 
a power socket at a charging station. Alternatives to wired connections are exchanging the battery 
at battery swapping stations (either stationary or mobile) (SHAO et al. 2017) or doing inductive 
charging (HWANG et al. 2016). With inductive charging, townscapes don’t get changed by many 
charging stations along the streets and charging becomes more comfortable for the drivers of elec-
tric vehicles, to mention just two advantages. Power can be supplied via inductive charging both 
if the vehicles are being driven or being parked. In both cases, vehicles and roads or parking lots 
have to be equipped with electromagnetic coils for the power transfer to the vehicle. According to 
PANCHAL et al. (2018), two aspects have strong negative influence on the efficiency of the induc-
tive charging process of electric vehicles: A large air-gap (ground clearance of vehicles) and mis-
alignment between the coils at the vehicle and in the roads or parking lots. Methods for reducing 
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the air-gap to increase the efficiency are often limited, for example to vehicles with adaptive air 
suspension. In contrast, the degree of misalignment can be reduced by placing the vehicle accu-
rately above the coils. Accurate placement can be realized especially for inductive charging plat-
forms installed in parking lots, where specific approach manoeuvres can be driven. When ap-
proaching the platform with the vehicle, the induced voltage can be used up to a maximal misa-
lignment of around 60 cm (induced voltage has almost reached zero) as a measure for fine align-
ment (HWANG et al. 2016). Coarse alignment enabling a smooth approach manoeuvre requires 
therefore a different method. One possibility would be to use the vehicle position obtained by GPS 
to determine the relative pose to the charging platform and to guide the vehicle closer to the charg-
ing platform. This approach is not always practical as for example in dense urban areas with limited 
space vehicles are often parked in parking garages, where typically no GPS signal is available. For 
such situations, a possibility would be to detect the charging platform in images acquired by an 
environment-observing optical on-board camera in the vehicle during the approach manoeuvre and 
to derive the relative pose between vehicle and charging platform. Compared to other typical en-
vironment-observing sensors in vehicles like LiDAR or radar, optical cameras are relatively cheap 
(e.g. BMW parts catalogue, e.g. available at BMWFANS.INFO 2017) and mounted at several places 
of a car providing a good overview over the environment around the car on different sides (e.g. 
ZIEBINSKI et al. 2016). Among all cameras, front-looking ones are considered as most important 
for this task, as they observe the upcoming driveway.  
For both autonomously-driven cars relying on cameras for environment perception and human 
drivers, modern charging platforms installed completely below the road surface (e.g. Bombardier 
primove, BOMBARDIER TRANSPORTATION 2013), could be made visible for example by special 
markers attached to the ground. Common markers for photogrammetric applications, e.g. for ve-
hicle geometry inspection (AICON 3D SYSTEMS GMBH 2018), are circular markers (e.g. described 
by NAIMARK & FOXLIN 2002) providing one reference point per marker. Other markers, like the 
squared ArUco markers (ROMERO RAMIREZ et al. 2018), provide four reference points per marker, 
one per corner. Reference points with known 3D object coordinates and corresponding 2D image 
coordinates allow estimating the camera pose relative to the markers by solving the perspective-
n-point problem, for example. In the case markers are representing a charging platform, the relative 
pose between the camera-carrying vehicle and the platform can be obtained. 
Regardless of the camera position at the vehicle, markers attached to the ground will become in-
visible in images when the vehicle is close to the platform. In such situations, marker-based pose 
estimation becomes impossible. Nevertheless, algorithms like structure-from-motion (e.g. FITZ-

GIBBON & ZISSERMAN 1998), visual SLAM (e.g. LEMAIRE et al. 2007) or visual odometry (e.g. 
NISTER et al. 2004) allow for vehicle pose estimation also in such situations (HANEL & STILLA 

2017). Therefore, typically markerless image features like SIFT (LOWE 1999), SURF (BAY et al. 
2008) or ORB (RUBLEE et al. 2011) are used to obtain matches between images and to create a 
map of the environment around the vehicle. Consequently, pose estimation becomes possible for 
images taken in mapped parts of the environment. However, estimated poses are not directly re-
lated to the charging platform. 
In this paper, a method for iteratively estimating the vehicle pose during an approach manoeuvre 
to a charging platform using images from a front-looking on-board camera is proposed, which can 
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be used for both cases that markers representing the charging platform can be detected in the ac-
quired images or not. The key contribution of this paper is the evaluation of the performance of 
the proposed method for different vehicle motion models, for the cases that special markers have 
been detected or not and for different filtering methods for data fusion between poses obtained 
using markers and poses obtained without seeing markers on simulated data of trajectories of typ-
ical parking manoeuvers. 

2 Method for vehicle pose estimation during approach manoeuvres 
to a charging platform 

Objective of the method proposed in this paper is to estimate the vehicle pose relative to a charging 
platform iteratively during an approach manoeuvre to the platform using images taken with a front-
looking on-board camera. It is assumed that the charging platform is located in a parking lot of a 
parking garage or another place, where the beginning of the approach manoeuvre is known, for 
example by the known entry point to the parking garage. It is further assumed that the charging 
platform is represented by special markers attached to the ground, which can be detected in images 
and used for estimating the vehicle pose. By fusing vehicle dynamics data (e.g. vehicle position or 
vehicle velocity, depending on the dynamics model) obtained independently by pose estimation 
using special markers with vehicle dynamics data obtained by pose estimation using image fea-
tures, the proposed method allows to estimate the vehicle pose even when the vehicle is close to 
the charging platform and the markers are not visible in the camera images.  
The algorithm for pose estimation consists of the following two steps, which are supposed to be 
performed iteratively for every image 𝑖 acquired with the on-board camera during an approach 
manoeuvre. In the first step, depending on whether a sufficient number of markers has been de-
tected, either stage 1 or stage 2 is performed for obtaining vehicle dynamics data: Stage 1 (Fig. 1, 
sufficient number of markers detected): Vehicle position estimates 𝑥௜ and 𝑦௜ are obtained as vehi-
cle dynamics data from pose estimation using markers on the charging platform (“MB method”). 
Independently, vehicle velocity estimates 𝑣௫೔ and 𝑣௬೔ are obtained as dynamics data from pose 
estimation using a markerless method like SLAM or structure-from-motion (“ML method”) rely-
ing on image features. Stage 2 (Fig. 2, not sufficient number of markers detected): No position 
estimates are obtained by the MB method as no markers are visible, vehicle velocity estimates are 

Fig. 1:  Stage one workflow for vehicle pose estimation with markers and markerless image features 
assuming that the charging platform is visible in the acquired on-board camera images. 
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obtained by the ML method as in stage 1. In the second step, mutual vehicle pose estimates ac-
cording to a vehicle motion model describing vehicle dynamics are obtained by fusing available 
position and velocity estimates using a Kalman filter.  

 

Fig. 2:  Stage two workflow for vehicle pose estimation with markerless image features only assuming 
that the charging platform is not visible in the acquired on-board camera images. 

2.1 Marker-based vehicle pose estimation (“MB method”) 

Marker-based estimation of vehicle poses relies on reference points provided by special markers 
representing the charging platform. The vehicle dynamics data 𝑥௜ and 𝑦௜ describing the planar 
vehicle position are obtained from pose estimation and are fed to the Kalman filter as measurement 
at time point 𝑡௜. 
Many common pose estimation methods rely on known 3D object coordinates and 2D image co-
ordinates of reference points. Using reference points provided by markers has multiple advantages 
for the proposed application of approach manoeuvres: Pose estimates are linked to the charging 
platform, allowing to determine the relative pose between vehicle and platform. The 3D object 
coordinates can be obtained, for example by tacheometry, in an Euclidean parking garage coordi-
nate system with metric scale, which could be used as common coordinate system for data fusion 
with data obtained by other methods (see Section 2.2). Using ArUco markers providing four ref-
erence points per marker can increase the robustness in case of partial visibility or bad viewing 
conditions, as only a single marker has to be detected to make pose estimation possible.  
While 3D object coordinates need to be obtained only once, 2D image coordinates of reference 
points have to be obtained for every acquired image. Consequently, pose estimation using the MB 
method can be done for every image, in which a sufficient number of markers can be detected. For 
detecting markers in images and extracting image coordinates of the reference points, there are 
many methods available in the literature (e.g. GARRIDO-JURADO et al. (2014) for ArUco markers). 
For estimating vehicle poses, methods solving the perspective-n-point problem (e.g. WU & HU 

2006; LEPETIT et al. 2008) can be used, for example.   

2.2 Markerless vehicle pose estimation (“ML method”) 

With monocular visual SLAM or structure-from-motion algorithms applied to images taken with 
the front-looking on-board camera, vehicle poses can be estimated using a sufficient number of 
image features extracted from images taken during the approach manoeuvre, independent from 
how many special markers can be detected in these images. As in contrast to the MB method no 
direct link to the charging platform is given, the vehicle dynamics data 𝑣௫೔ and 𝑣௬೔ describing the 



A. Hanel, P. Sudi, S. Pfenninger, E. Steinbach & U. Stilla 

58 

vehicle velocity are derived from two consecutive poses and are fed to the Kalman filter as meas-
urement at time point 𝑡௜. 
E.g. using SLAM or structure-from-motion, a map of 3D points representing the environment in 
front of the vehicle is created from matches of image features between multiple images. If using a 
front-looking on-board camera, the created map will cover the environment in the upcoming drive-
way of the vehicle. Therefore it is likely that later acquired images show parts of the already 
mapped environment and matches can be obtained for image features between these images and 
previous ones. By these matches, correspondences between the 3D map points and the later ac-
quired images are established, allowing to use the 3D coordinates of the map points and the 2D 
image coordinates of the matched features for pose estimation.  
With no further information available, the origin, orientation and scale of the map coordinate sys-
tem are determined by the SLAM or structure-from-motion algorithm and do not correspond with 
the parking garage coordinate system, wherefore the direct link to the charging platform is not 
given. For fusing data from the ML method and the MB method, both data should be given in the 
metric parking garage coordinate system. The metric scale can be obtained for the map coordinate 
system from a vehicle odometer or being extracted from objects with known size in the environ-
ment, like traffic signs (HANEL et al. 2018). The origin and orientation of the map coordinate sys-
tem can be aligned to the parking garage coordinate system assuming that the vehicle position and 
driving direction are known at the entry point into the parking garage. As the position of the entry 
point is prone to large uncertainties (e.g. driveway has multiple lanes), the vehicle velocities 𝑣௫೔ 
and 𝑣௬೔  and not the vehicle position coordinates 𝑥௜ and 𝑦௜ are used as measurement for Kalman 
filtering. 

2.3 Mutual vehicle pose estimates using Kalman filtering with vehicle dynamics 
data obtained from the MB and ML methods 

Kalman filtering is applied to obtain mutual vehicle pose estimates in two ways: 1) Pose prediction 
for time points without any measurements given (time update only), especially if the markers at 
the charging platform are not visible in the images and 2) pose estimation by fusing vehicle dy-
namics data provided as measurements by the MB and the ML method (time update and measure-
ment update).   
The Kalman state vector contains parameters describing the vehicle dynamics, like planar position 
or velocity, using special motion models for vehicles, as described by SCHUBERT et al. (2008). 
Measurement update is done consecutively for different types of measurements (MB, ML) and not 
in a common update step to be able to perform measurement updates even if not all measurements 
are available at a time point. A Kalman filter method for non-linear motion models and measure-
ment models is used.  
As vehicles typically follow trajectories with multiple straight and curved parts, different motion 
models might be the most appropriate ones for describing the vehicle dynamics at different time 
points. Therefore, the motion model used for Kalman filtering should be adaptive: At every time 
step, all motion models are updated (time update, measurement update) and the motion model 
providing the best state accuracy is selected, using the state accuracy as the measure for determin-
ing the most appropriate model. The steps for model adaption at time point 𝑡௜ are: 
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1) State estimates 𝑋௜,௝ for all motion models 𝑗 are calculated from the state estimate in the current 
motion model using model transfer equations derived from physical relations between the different 
motion models (e.g. calculating velocity 𝑣௫ in 𝑥 direction from total velocity 𝑣 and vehicle heading 
angle 𝜃), 2) state covariance matrices 𝑃௜,௝ are calculated using error propagation based on the 
transfer equations and the state covariance matrix of the current motion model, 3) updated state 
estimates 𝑋෠௜,௝ and covariance matrices 𝑃෠௜,௝ are obtained either by time update or measurement 
update for all motion models separately, 4) updated state variances are extracted from 𝑃෠௜,௝ and 
normalized using the state values 𝑋෠௜,௝ assuming that larger state values correlate with larger state 
variances, 5) state accuracy is calculated for each model by averaging the normalized state vari-
ances and 6) the motion model for the next Kalman filtering step is adapted to the model with the 
lowest state accuracy value, the final state 𝑋෠௜ and covariance matrix 𝑃෠௜ are given by the state and 
covariance matrix of this model. 

3 Simulation of approach manoeuvres to a charging platform 

Purpose of the simulation is to compare different motion models, measurements and Kalman filter 
methods with regard to estimated vehicle poses and their deviation from the ground truth for typ-
ical approach manoeuvres to a charging platform.  

3.1 Simulation settings 

In the following, the cases and settings used for simulating approach manoeuvres are described.   

Simulation cases 

The simulation covers the following cases, which are considered as most relevant for the problem 
addressed in this paper. Additional cases with variations of parameters like the length of the tra-
jectory, the vehicle velocity or the measurement frequency are considered as less relevant.   

1) Motion models with the following state parameters describing vehicle dynamics (SCHUBERT et 
al. 2008): CV (“constant velocity”; position 𝑥௜, 𝑦௜, velocity 𝑣௫೔, 𝑣௬೔), CTRV (“constant turn rate 
and velocity”; position 𝑥௜, 𝑦௜, heading angle 𝜃௜, velocity 𝑣௜, yaw angle 𝜔௜), CTRA (“constant 
turn rate and acceleration”; position 𝑥௜, 𝑦௜, heading angle 𝜃௜, velocity 𝑣௜, acceleration 𝑎௜, yaw 
angle 𝜔௜),  CCA (“constant curvature and acceleration”; position 𝑥௜, 𝑦௜, heading angle 𝜃௜, ve-
locity 𝑣௜, acceleration 𝑎௜, curvature 𝑐௜) and ADAP (the best motion model selected among CV, 
CTRV, CTRA and CCA for each time point using the approach described in Section 2.3). 

2) Measurements: MB (vehicle positions 𝑥௜ and 𝑦௜ from marker-based pose estimation), ML (ve-
hicle velocities 𝑣௫೔ and 𝑣௬೔  from markerless pose estimation), CAR (velocity 𝑣௜ and yaw rate 
𝜔௜ from standard vehicle sensors for comparison purpose), MB + ML (combination of 𝑥௜, 𝑦௜ 
and 𝑣௫೔, 𝑣௬೔) and MB + ML + CAR (combination of 𝑥௜, 𝑦௜ and 𝑣௫೔, 𝑣௬೔ and 𝑣௜ and 𝜔௜). 

3) Kalman filter methods: EKF (extended Kalman filter) and UKF (unscented Kalman filter). 

4) Approaching manoeuvre trajectories representing typical parking situations: STRAIGHT (driv-
ing straight from the driveway into a parking lot at its end) and CURVED (turning right from 
the driveway into a parking lot on the right side, “transverse parking”). 
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Trajectories 

The ground truth trajectories (Fig. 3) start at the entry point into the virtual parking garage and end 
in a parking lot equipped with a charging platform. The charging platform is placed few meters 
before the end of the trajectory to simulate that markers can’t be seen in some images. Both tra-
jectories have the same length of around 30 m. 

 
Fig. 3:  Ground floor view of a virtual parking garage with the virtual straight trajectory (left) and curved 

trajectory (right). The trajectories (blue crossed lines) start at the entry point to the parking gar-
age. The charging platform installed in a parking lot is visualized in red. 

The virtual vehicle is moving along the trajectory with a constant velocity of 1 m/s. It is assumed 
that the dynamics of the virtual vehicle are equal to the virtual front-looking on-board camera.  

Virtual camera 

For specifying the virtual front-looking on-board camera (specifications see Tab. 1), the properties 
of the front-looking camera used to record the Cityscapes dataset of road scene images (CORDTS 
et al., 2016) are used.  

Tab. 1: Specifications of the virtual cam-
era used for simulation. 

 Tab. 2: Specifications of the virtual markers repre-
senting the charging platform. 

Geometric resolution 1024 x 2048 px 
 
 

Geometry of markers 7 x 5 grid 

Principal point 513 px, 1097 px 
 Distance between mark-

ers 
20 cm 

Focal length of the 
lens 

5 mm 
 

Marker edge size 10 cm 

  
 Reference point distance 

on a marker 
5 cm 

  
 
 

Min. marker size in im-
ages 

10 px 
 

Measurements for Kalman filtering 

Virtual MB measurements 𝑥 and 𝑦 are obtained by performing pose estimation (solving the PnP 
problem) using virtual ArUco markers (specifications see Tab. 2) representing the charging plat-
form. For reference points on the ArUco markers, 3D object coordinates and corresponding 2D 
image coordinates are simulated. White zero-mean Gaussian noise is added for the sake of realism. 
Points being far away from the camera tend to lead to large pose errors (PENTENRIEDER et al. 2006), 
whereas markers which would be imaged with a pixel size below a minimal marker size (threshold 
see Tab. 2) are not considered for MB measurements. Points which would not be visible in images 
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(e.g. lying behind the camera) are not considered, as well. Virtual ML measurements 𝑣௫ and 𝑣௬ 
are obtained from position differences between consecutive points along the ground truth trajec-
tory with noise added. ML measurements are not given during ML initialization in the first seven 
seconds to account for the time needed for correctly initializing scale and orientation (see Section 
2.2). Virtual CAR measurements 𝑣 and 𝜔 are obtained from the ground truth trajectory with noise 
added. CAR measurements are used for comparison between images as data from additional vehi-
cle sensors and velocity and yaw rate as data from standard vehicle sensors. All virtual measure-
ments are given with a frequency of 2 Hz.  

Kalman filter methods 

An extended Kalman filter and an unscented Kalman filter are used as filtering methods. Both 
methods allow for non-linear motion and measurement models. The extended Kalman filter re-
quires a smaller number of filter parameters to be determined, which might make it more robust to 
use. In contrast, the unscented Kalman filter does not require Jacobian matrices for time and meas-
urement updates. Therefore, this filter method is not restricted to first-order approximations of the 
non-linear motion and measurement models, which could lead to sub-optimal performance or 
sometimes divergence of the extended Kalman filter (WAN & VAN DER MERWE 2000).  

Kalman filter initialization and noise characteristics  

For initializing the Kalman filter, the first trajectory position at the entry point into the parking 
garage is used as initial vehicle position 𝑥ଵ, 𝑦ଵ in the parking garage coordinate system. The head-
ing angle 𝜃ଵ is set to the trajectory direction at the entry point. The initial velocity 𝑣ଵ is taken from 
the first CAR measurement, 𝑣௫భ and 𝑣௬భ are calculated thereof using 𝜃ଵ. The initial yaw angle 𝜔ଵ 
is taken from the first CAR measurement, as well, assuming that CAR measurements are available 
always when the vehicle is in use. As accelerations are not observed by any sensor, 𝑎ଵ is initialized 
to zero. White zero-mean Gaussian noise is added to all initial values.  
The state covariance matrix 𝑃ଵ is initialized with a pessimistic approximation of variance values 
reported in previous work (e.g. SCHUBERT et al. 2008). A small value of 0.01 is added as covariance 
between different state parameters taken from the same measurement source (MB, ML, CAR). No 
covariance is assumed between state parameters from different measurement sources.  
Setting process noise covariance matrix 𝑄 and measurement noise covariance matrix 𝑅 for Kalman 
filtering can be a challenging task (ABBEEL et al. 2005), as often no information about the specific 
noise characteristics is available. Different strategies for setting those matrices have been proposed 
(e.g. ODELSON et al. 2006; ÅKESSON et al. 2007). To avoid additional complexity in the simulation, 
which might correlate with the obtained results, values for 𝑄 and 𝑅 are selected based on assump-
tions and not on one of the aforementioned strategies. For state parameter variances in 𝑄, the same 
values as for 𝑃ଵ are used. In contrast to 𝑃ଵ, the covariance values on the minor diagonals are as-
sumed to be random values obtained from a zero-mean Gaussian distribution with a small sigma 
of 0.01. Measurement variance values for 𝑅 are selected based on pessimistic approximation of 
values reported by PENTENRIEDER et al. (2006), the covariance values assumed to be random values 
obtained from a zero-mean Gaussian distribution with sigma equal to 0.01. When obtaining the 
random values for 𝑄 and 𝑅, it is ensured that the symmetry property for covariance matrices is not 
violated.  
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3.2 Deviation of estimated vehicle positions from the ground truth 

The different simulation cases are compared based on the deviation of the estimated mutual vehicle 
positions from the ground truth positions. The estimates are obtained from 100 executions of each 
case to avoid biases which might result from specific random values or noise, which are used for 
the measurements or for initializing the Kalman filter, for example, as described above.    

MB measurements 

For the cases with MB measurements only (Fig. 4), deviations are increasing in the centimetre 
range as long as measurements are available. When measurements become unavailable (markers 
not detected anymore  predicted poses, > ~27s), the deviations are increasing in the meter range 
in only a few seconds. This strong increase can be observed especially for the curved trajectory. A 
reason for this might be that the prediction begins shortly after the curve in the trajectory, whereas 
the Kalman filter might not have settled with regard to the new movement direction. Another ob-
servation is a stronger increase of the deviation for predicted poses for the UKF than for the EKF.  

 
Fig. 4:  Position deviation for mutual pose estimates obtained with MB measurements. The vertical 

dashed line indicates the beginning of the curve in the trajectory. In the beginning of the trajec-
tory (red background color), markers have been available for pose estimation. For later time 
points (white background) without seeing markers, mutual poses have been predicted only us-
ing the Kalman filter. 

ML measurements 

For cases with ML measurements only (Fig. 5), a stronger increase of the deviation can be observed 
for predicted poses (< ~7 s; time needed for ML initialization) compared to the following time 
points with measurements available. For the curved trajectory, the deviation increases in a step-
like shape at the beginning of the curve (~20 s), which was not observed for the case with MB 
measurements only. Again, estimates obtained by UKF show larger deviations compared to esti-
mates obtained by EKF.  



Dreiländertagung der DGPF, der OVG und der SGPF in Wien, Österreich – Publikationen der DGPF, Band 28, 2019 

63 

 
Fig. 5:  Position deviation for mutual pose estimates obtained with ML measurements. The vertical 

dashed line indicates the beginning of the curve in the trajectory. For the first time points (white 
background color), mutual poses have been predicted only due to the time needed for initializing 
the ML method. For later time points (red background), measurements have been available. 

CAR measurements 

For cases with CAR measurements only (Fig. 6), the motion models CV and ADAP show almost 
constant strong increase of the deviation of more than one meter per second. A disadvantageous 
property of the CV model for the given measurements might be that neither the heading angle nor 
yaw rate are modelled as state parameters. CTRV, CTRA and CCA models having heading angle 
and yaw rate as state parameters show a remarkably lower increase of the deviation.  

 
Fig. 6:  Position deviation for mutual pose estimates obtained with CAR measurements. The vertical 

dashed line indicates the beginning of the curve in the trajectory. CAR measurements have 
been available along the complete trajectory (red background color). 

MB and ML measurements  

For cases using MB and ML measurements together (Fig. 7), lower deviation values can be ob-
served at the end of the trajectory (where the charging platform is located) in comparison to cases 
using MB or ML measurements only. Furthermore, the deviations at the end of the trajectory are 
similar (max. ~1 m difference) for all of the four cases in Fig. 7 and for all motion models in these 
cases. The most remarkable increase in the deviation can be observed for the last time points (> 
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~27 s), for which no MB measurements are available anymore (cf. the red background color in Fig. 

4).  In contrast to using MB and ML together, for other measurements some of the four cases show 
remarkably larger deviations than others: Cases with UKF if using MB or ML measurements only, 
motion models CV and ADAP if using CAR measurements only, for example.  

 
Fig. 7:  Position deviation for mutual pose estimates obtained with MB and ML measurements. The ver-

tical dashed line indicates the beginning of the curve in the trajectory. Measurements have been 
available along the complete trajectory (red background color). 

MB, ML and CAR measurements 

For cases using MB, ML and CAR measurements together (Fig. 8), the deviations are larger than 
for using MB and ML measurements together. In contrast to previous cases for which UKF has 
shown worse performance, using the EKF shows larger deviations at the end of the trajectory using 
MB, Ml and CAR measurements. A possible explanation might be that when fusing multiple dif-
ferent types of measurements, the first-order approximation of non-linear motion and measurement 
models by the EKF might not be sufficient.  

 
Fig. 8:  Position deviation for mutual pose estimates obtained with MB, ML and CAR measurements. 

The vertical blue dashed line indicates the beginning of the curve in the trajectory. Measure-
ments have been available along the complete trajectory (red background colour). 
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General discussion 

For none of the cases it has been analysed whether the deviations are deviations in longitudinal or 
lateral direction (wrt. the vehicle movement direction). For all cases, the motion model CCA did 
diverge when using the EKF (deviation values in the range of 10଺ m and above). As mentioned 
already in the paragraph above, the first-order approximation of the EKF filter might not be suffi-
cient for this motion model. The adaptive motion model has shown varying performance: For some 
cases, deviations are lower than for the fixed motion models (CV, CTRV, CTRA, CCA), while for 
others they are larger. A correlation to simulation settings (like the Kalman method or the trajec-
tory) can’t be observed visually. Coming back to the task of aligning an electric vehicle at a charg-
ing platform, the results shown above lead to the recommendation to use MB and ML measure-
ments together with EKF. If using MB and ML with EKF, none of the motion models has led to 
larger deviations than approximately 0.5 m at the end of the trajectory. That avoids the question 
which motion model to select, which is considered as important for robust application of the pro-
posed method in daily use of vehicles, even though in certain other cases lower deviations (min. 
~0.2 m) have been achieved with other measurements. Considering the induced voltage for fine 
alignment of the vehicle above the charging platform within a maximal misalignment of 0.6 m, a 
position deviation of approximately 0.5 m can be seen as sufficient for coarse alignment.  

4 Conclusion 

In this paper, a method for vehicle pose estimation relative to a ground-based inductive charging 
platform represented by special markers has been proposed. In a first step of the method to be 
performed iteratively during an approach manoeuvre, vehicle dynamics data are independently 
obtained from camera pose estimation using the markers detected in images acquired by a front-
looking on-board camera and from camera pose estimation based on a markerless algorithm like 
visual SLAM. In a second step, vehicle dynamics data are fused to achieve mutual vehicle pose 
estimates. By fusing the data from different sources, the proposed method is capable to estimate 
vehicle poses even if no markers are available, for example because the vehicle is close to the 
charging platform at the end of the approach manoeuvre. Experiments with simulated camera pose 
estimates and vehicle dynamics data have shown for typical approach manoeuvers to parking lots 
that deviations of estimated vehicle positions from the ground truth of around 0.5 m can be 
achieved using both independent estimations. Obviously, goal of future work could be to test the 
proposed method in real-world experiments. A further goal could be to test and, if necessary, im-
prove the robustness of the method for bad conditions, which can occur on roads, like rain.  
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