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ABSTRACT: In this paper, we present an integrated strategy to comprehensively evaluate the feature relevance of point cloud and 
image data for classification of trees and vehicles in urban scenes. First of all, point cloud and image data are co-registered by back-
projection with available orientation parameters if necessary. After that, all data points are grid-fitted into the raster format in order to 
facilitate acquiring spatial context information per pixel/point. Then, various spatial-statistical and radiometric features can be 
extracted using a cylindrical volume neighborhood. Classification results as labeled pixels can be acquired from the classifier, and 
after appropriate refinements we obtain the objects of trees and vehicles. Compared to other methods which have assessed the 
classification and relevance simultaneously using a single classifier, we first introduce AdaBoost classifier combined with contribution 
ratio to provide both classification results and measures of feature relevance, and then utilize Random Forest classifier to evaluate and 
compare the feature relevance from a more independent viewpoint. In order to confirm the accuracy and reliability of classification 
and feature relevance results, we consider not only characteristics of the classifiers itself, but also errors of data co-registration and 
alterable parameters. We apply the procedure to two different datasets. In the dataset requiring co-registration a-priori, the AdaBoost 
classifier even achieves a great accuracy of 96.99% for trees and 83.45% for vehicles. The quantitative results of feature relevance 
assessment highlight the most important features for classification of tree covers and vehicles, such as NDVI, LiDAR intensity, 
planarity and entropy. By comparative analysis of the two independent approaches, the reliable and consistent feature selection for 
classification of trees and vehicles from LiDAR and image data could be validated and achieved, being unrelated to the classifiers. 
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1. INTRODUCTION 

Urban scene classification is an important topic in the field of 
remote sensing. Recently, point cloud data generated by LiDAR 
sensors and multispectral aerial imagery have become two 
important data sources for urban scene analysis. Multispectral 
aerial imagery with high resolution provides detailed texture 
information, while point cloud data is more capable of 
presenting the geometrical characteristics of objects.  
 
The current state of urban scene classification can be 
categorized by different objects, different data sources, and also 
different algorithms. During the last decade more papers 
referring to classification concentrated on specified objects. 
Many marvelous works (Jutzi & Stilla, 2003; Fauvel, 2007; Yao 
& Stilla 2010; Guo et al., 2011) have been done in extracting 
objects like buildings and roads, while trees and vehicles in 
urban areas are also interesting objects (Secord, 2005; Stilla et 
al., 2007; Höfle & Hollaus, 2010; Yao et al., 2011). However, 
classification of trees and vehicles might involve more 
complicated situations due to the various characteristics and 
appearances of the objects. More important, we want to know 
which features are relevant and how relevant they are with 
respect to the classification of specific objects. Moreover, we 
have to make sure the relevant features are reliable and 
consistent. Therefore, we intend to develop a comprehensive 
strategy of extracting relevant features from the two data 
sources for classification of trees and vehicles in different urban 
scenes while evaluating the reliability of the feature relevance.  
A framework for further researches in this field can be 
provided. 
 

Straub (2004) gave a detailed description of an automatic 
approach on tree detection from image and LiDAR data, which 
shows the potential of 3D target modeling on trees in urban areas. 
Secord & Zakhor (2005) provided a two-step method for tree 
detection in co-registered aerial image and range data obtained 
via LiDAR consisting of segmentation followed by classification. 
Yang & Praun (2009) presented an automatic approach to classify 
trees from aerial imagery on pixel-level using one-class 
AdaBoost. Template matching is adopted followed by greedy 
selection to locate the trees. The strategy is quite parameter-
sensitive using only image data, and without multiclass involved. 
Höfle & Hollaus (2010) combined the full-waveform LiDAR and 
image data to classify vegetation in urban scenes. Vehicles are 
also discussed but not towards integrating aerial imagery with 
LiDAR. Grabnera et al. (2008) used an online boosting-based 
strategy to detect cars solely from aerial images. Jutzi & Stilla 
(2003) presented a complete approach for classification of urban 
objects by laser pulse analysis. Syed et al. (2005) showed a 
complete automatic strategy of classification of different classes 
using both imagery and LiDAR data, which indicates the 
potential of complementation of the two data sources. 
Additionally, some papers have concentrated on the data source 
of LiDAR. For example, Fauvel (2007) used both spectral and 
spatial methods to classify objects from LiDAR data. Mallet et al. 
(2008) presented their works focusing on full-waveform LiDAR 
data to partition urban areas into building, vegetation, natural 
ground and artificial ground regions, however, the procedure also 
noticed by the authors could be improved in feature selection and 
classifier parameterization. 
 
All the above works are excellent with great efforts, but none of 
them refer to feature relevance evaluation for classification in 
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urban scenes. Some researchers have developed approaches 
based on combination of both data sources for urban scene 
classification, but seldom assessed the feature relevance either 
towards vehicle detection or in the context of geometrical 
fusion of the two data sources. On the other hand, these two 
data sources sometimes are acquired in different mechanisms or 
at different time. Therefore, co-registration is often required in 
this case. 
 
There exist already some well-developed algorithms for feature 
selection by theoretical analysis. Dash & Liu (2003) provided 
an approach based on consistency search for feature selection, 
which is original for the field of Artificial Intelligence. Guyon 
& Elisseeff (2003) introduced the variable and feature selection 
for machine learning. However, those algorithms were not 
frequently applied to quantifying the relevance in the task of 
classification, especially for the objects of trees and vehicles 
from image and LiDAR data. Still some researchers paid their 
attentions to this topic. Guo et al. (2010) focused on image and 
full-waveform LiDAR data, providing both classification results 
and measures of feature importance for classification of 
building, vegetation and ground surface. The research is 
comprehensive with detailed feature extraction and well-built 
classifier. However, only one single classifier is selected, the 
feature relevance results are subjective without validation. Also 
trees and vehicles are not specified as classes. As an update of 
their previous research, Mallet et al. (2011) indicated more 
details about the feature relevance in full-waveform LiDAR 
data. However, those relevance results have not proved to be 
unrelated to the classifiers and some of them are quite sensitive 
to the parameters and data. 
 
In this work, we concentrate on the data sources of aerial 
multispectral imagery and LiDAR data, and using AdaBoost for 
classifying trees and vehicles and characterizing feature 
relevance by contribution ratio. However, those results are still 
assumed to be subjective without any verification. In order to 
assess the reliability and consistency of the feature relevance, 
we introduce the Random Forests classifier to generate 
classification results simultaneously providing feature relevance 
as its natural capability. The classification and feature relevance 
results from AdaBoost are expected to highlight the most 
relevant features for classification of trees and vehicles in urban 
scenes. By comparing with Random Forests, the feature 
relevance is verified towards the reliability and consistency 
across different classifiers. Therefore, in this paper, we develop 
a strategy to independently evaluate the feature relevance for 
classification of trees and vehicles in fusing airborne LiDAR 
and imagery. By comparing the results from different 
approaches, we can attain the possibility to prove the 
consistency and reliability of feature relevance.  
 
Section 2 presents the theory and methodology of the classifiers 
and relevance assessment. Section 3 defines the used features. 
Section 4 describes the test datasets, data pre-processing, and 
how the experiments are carried out. Results are exhibited in 
section 5 with discussions made meanwhile. The conclusion 
will be deduced in Section 6. 
 

2. CLASSIFIERS AND FEATURE RELEVANCE 

2.1 AdaBoost 

AdaBoost is the abbreviation of Adaptive Boosting, and it 
solves the problem of combining a bundle of weak classifiers to 
create a strong classifier which is arbitrarily well-correlated 

with the true classification. The algorithm consists of iteratively 
learning weak classifiers with respect to a distribution and adding 
them to a final strong classifier. Once a weak learner is added, the 
data is reweighted according to the weak classifier’s accuracy, 
examples that are misclassified gain weight and examples that are 
classified correctly lose weight. The Adaptive Boosting is 
formulated by Freund & Schapire (1999), who also introduce the 
original Boosting algorithm. AdaBoost is adapted to take full 
advantage of the weak learners. In this paper, we use an open-
source AdaBoost toolbox with one tree weak learner CART, more 
details can be found in the reference. 
 
AdaBoost contains two phases as well, namely training and 
prediction, in the training phase, it repeatedly trains a weak 
classifier of T rounds, where T is the number of the weak 
classifiers. As shown in the pseudo code: 
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The (xi, yi) represent the training data and its reference, for 
example, xi is a row of feature values of a point, and yi is the class 
this point belongs to. m represents the amount of the training data. 
In each round, the AdaBoost algorithm selects out the proper 
threshold for each feature and updates the weight of each feature. 
The training data xi that the classifier ht identified correctly are 
weighted less and those that it identified incorrectly are weighted 
more. Therefore, when the algorithm is testing the classifiers on 
the Wt+1

i, it will select a classifier that better identifies those 
examples that the previous classifier missed. 
 
The output of the training phase is a final strong classifier: 
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Where the sgn function is defined as 
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Then in the prediction phase, it uses the strong classifier built in 
the training phase for classification. The weight αt can be an 
important factor of evaluating the feature relevance using 
contribution ratio defined by Masamitsu (2006), and we can 
quantify it by equation 3:  

  100%pδ
α

α
CR

T

1t
KT

1i
i

t
p 



















 


                             (3) 
where p is one feature and δκ is the Kronecker delta. δκ(p) means 
that if the feature is chosen in round t, then Kronecker delta is 1 
else equals 0. The range of CRp is [0%, 100%]. In the 
experiments, AdaBoost is adapted to be capable of multiclass 
classification. 
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2.2 Random Forests 

Random Forests is an ensemble classifier that is based on many 
decision trees and outputs the classification results as a 
combination of each individual tree. Prior to Random Forests, 
Boosting is supposed to be one of the best strategies for 
classification, but Random Forests can achieve a comparable 
accuracy while making an evident improvement in 
computational efficiency. The complete algorithm was firstly 
developed by Breiman (2001), and the basic idea came from 
random decision forests that was first proposed by Ho (1995). 
 
The Random Forests method grows many classification trees, 
and each tree in the forest classifies the object based on an 
independently sampled random variable set. For classification, 
we put the variables downwards into each of the trees in the 
Forests. Then, each tree gives a ‘vote’ for that class. The 
algorithm chooses the classification which has the most votes. 
The whole procedure also contains two main parts: training and 
prediction. In the training phase, the algorithm generates T 
samples from the training data, and uses those samples to build 
Classification and Regression Trees (CART). Only a randomly 
selected subset of the input features is considered to split each 
node of CART. The variable that minimizes the Gini impurity 
is used for the split (Breiman, 2001). When the training set for a 
particular tree is drawn by sampling with replacement, about 
one-third of the cases are left out of the sample set, called out-
of-bag (OOB) data. The OOB data is used to get a running 
unbiased estimate of the classification error as trees are added 
to the forest. It is also used to get estimates of variable 
importance from the training phase.  
 
The importance of variable m can be estimated by randomly 
permuting all the values of variable m in the OOB samples for 
each tree, named mean decrease in accuracy, which is the 
difference in prediction accuracy before and after permuting 
variable m, averaged over all trees. Firstly, the difference 
between the numbers of votes for the correct class in the 
variable m permuted OOB data and the number of votes for the 
correct class in the untouched OOB data is calculated as 
equation 4: 

 
T

VotesVotes
  Importance untouchedpermuted

raw




                 (4) 
Then, we divide the raw importance by its standard error to get 
a z-score and assign a significance level to the z-score assuming 
normality. This is the importance score for variable m. The 
range of the importance value is [0, 1]. 
 
The implementation codes of AdaBoost and Random Forests 
used in this paper are developed by Vezhnevets (2005) and 
Jaiantilal (2010), respectively. 
 

3. FEATURE DEFINITIONS 

In this paper, we combine point cloud and image data, and 
multispectral and intensity information are available but not 
always the case. In total 13 features are defined. 
 
3.1 Basic Features 

The so called basic features contain the features that can be 
directly retrieved from point cloud and image data. 
- R,G,B: The three color channels of the digital image. As two 
data sets are used for experiments and one of them (named data 
set Vaihingen) provides color-infrared images, features R,G,B 
stand for infrared, red and green spectrums, But in the other 

data set (Enschede), the features R, G, and B are normal bands of 
Red, Green and Blue. To avoid confusion, we always use the 
symbols R,G,B to indicate the three color channels of the image 
in order. 

- NDVI: Normalized Difference Vegetation Index, defined as  

VIS)(NIR

VIS)(NIR
NDVI





                              (5) 

It can assess whether the target being observed contains green 
vegetation or not. This feature is specified for data set Vaihingen, 
because it provides color-infrared imagery. 

- Z: The vertical coordinate of each point in the LiDAR data, as 
datasets used here are assumed to be flat.  

- I: Intensity, which is provided by the LiDAR system for each 
point. The intensity is not available for data set of Enschede, 
since it provides the XYZ coordinates associated with color 
information. 

 

3.2 Spatial Context Features 

Based on the basic features, we intend to extract more features. 
Therefore, a 3D cuboid neighborhood is defined with help of a 
2D square with radius of 1.25m in horizontal dimension as shown 
in Figure 1. All points located within the cell volume will be 
counted as the neighbors, the value 1.25m is chosen empirically. 

 
Figure 1: 3D cuboid neighborhood 

- ∆Z: Height difference between the highest and lowest points 
within the cuboid neighborhood. 

- σZ: height standard deviation of points within the cuboid 
neighborhood. 

- ∆I: Intensity difference between points having the highest and 
lowest intensities within the cuboid neighborhood. 

- σI: Standard deviation of intensity of points within the cuboid 
neighborhood. 

- E: Entropy, here being different from the normal entropy of 
images, we measure the entropy using intensities of the points 
within the cuboid neighborhood by equation 6 with K being the 
number of neighbors: 
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The following two features O and P are based on the three 
eigenvalues of the covariance matrix from the XYZ coordinates 
of points within the cuboid neighborhood. The 3 eigenvalues λ1, 
λ2 and λ3 are in descending order, and they can present the local 
tridimensional structure. This allows us to distinguish between a 
linear, a planar or a volumetric distribution of the points. 

- O: Omnivariance, which indicates the distribution of points in 
the cuboid neighborhood. It’s defined as 
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- P: Planarity, defined as 

  132 /λλλP                                       (8) 

It has high value for roofs and ground, but low values for 
vegetation. 

So far, in total we have defined 13 features if multispectral and 
LiDAR intensity information is provided besides RGB and 
XYZ information. However, as two different data sets are used 
for experiments, not all the features are always available. 
 

4. EXPERIMENTS  

4.1 Test Datasets 

There are two different datasets. One of them was captured over 
Vaihingen in Germany with separate image and LiDAR data, 
while the other one from Enschede with image and LiDAR data 
integrated consistently. 
 
Dataset Vaihingen: the digital aerial images of this dataset 
were captured using an Intergraph / ZI DMC on 24 July and 6 
August 2008. The images are pan-sharpened color-infrared 
images with a GSD of 8 cm. Airborne Laserscanner (ALS) data 
was acquired on 12 August 2008 using a Leica ALS50 system 
with 45° field of view and a mean flying height above ground 
of 500m, the mean point density is 4 points/m2. Multiple echoes 
and intensities were recorded but due to the leave-on 
conditions, the number of points with multiple echoes is quite 
low, so no feature based on multiple echoes are generated. The 
test area is 145m×156m large in ground. As point cloud and 
image data were acquired at different times, the two data 
sources are post co-registered by geometrical back-projecting 
the point cloud into image domain with available orientation 
parameters. After that, all data points are grid-fitted into the 
raster format in order to facilitate acquiring spatial context 
information per pixel/point. We apply grid-fitting using an 
interval of 0.5m in ground ensuring that at least each resampled 
pixel can be allocated with one LiDAR point. Then, we obtain a 
resampled image of 326×291 pixels associated with 94866 
LiDAR points. As color-infrared images and intensity 
information are provided, all 13 features are extracted for 
dataset Vaihingen: R, G, B, NDVI, Z, I, ∆Z, σZ, ∆I, σI, E, O and 
P. In the ground truth, 7590 pixels are generated as labels of 
trees while 1106 pixels are generated as labels of vehicles. 
 
Dataset Enschede: which was acquired by the helicopter-based 
FLI-MAP 400 system from John Chance Land Surveys, Inc 
over Enschede in Netherlands in 2006. The FLI-MAP 400 
system is a LiDAR sensor integrated with an additional line 
scan camera, which is able to provide true color values to each 
laser point (Red, Green and Blue attributes can be associated to 
the laser data points). Therefore, point cloud and image data are 
consistently integrated in this dataset. The test area covers the 
area of 153m×278m in ground but with irregular shape, and 
contains 1,197,686 LiDAR points integrated with RGB 
information. As only RGB and XYZ information are provided, 
in total 8 features are extracted for dataset Enschede: R, G, B, Z, 
∆Z, σZ, O and P. In the ground truth, 46893 points are generated 
as labels of trees while 10880 points are generated as labels of 
vehicles. 
 
4.2 Design of Experiments 

In this paper, AdaBoost and Random Forests are involved as 
two classifiers. We concentrate on the classification domain: 

Others+Trees+Vehicles as 3 classes, which means that we will 
classify trees and vehicles, and for the other objects we consider 
them as Others. Two datasets are introduced for experiments, one 
from Vaihingen and the other from Enschede. In the experiments, 
we first use AdaBoost to generate classification results and then 
calculate the relevance results by contribution ratio. So far, we 
will get both classification and feature relevance results of 
AdaBoost, however, these results are one-sided without 
verification. Therefore, we apply Random Forests to generate 
both classification and relevance results simultaneously in order 
to do a comparatively analysis. For each dataset we can obtain 
two sets of classification results and two sets of feature relevance 
results. Results and discussions are presented in next section. 
 

5. RESULTS AND DISCUSSIONS 

5.1 Relevance Results 

As explained in section 4.2, we use contribution ratio for 
AdaBoost to quantize the feature relevance and use Random 
Forests to generate comparative relevance results as Figure 2 and 
3. 
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Figure 2: Feature relevance of dataset Vaihingen. 
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Figure 3: Feature relevance of dataset Enschede. 

 
At first glance, we can say that the relative variations of feature 

relevance obtained by the two methods accord with each other in 
general. Moreover, we collect out the most relevant features (7 

for Vaihingen, 4 for Enschede) indicated by contribution ratio of 
AdaBoost classifier for both datasets Vaihingen and Enschede in  

Table 1 in descending order from left to right. 
 

Vaihingen R> G> NDVI> ∆Z> σZ> B> E 
Enschede O>σZ> ∆Z> P>Z 

Table 1: Most relevant features for datasets Vaihingen and 
Enschede 
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For dataset Vaihingen, the features R, G and NDVI are the three 
most relevant features. The feature R stands for the first color 
channel of the color-infrared image, which indicates green 
objects in dataset Vaihingen. NDVI, which is derived by the 
combining spectral bands in the image of Vaihingen, is more 
relevant for classification of trees as expected. Compared to 
Guo et al. (2010), the features R,G,B in their research are 
sampled from normal visible spectral bands, and also NDVI is 
not available, so the features from images are not so important 
as here. On the other hand, the features ∆Z and σZ also well 
contribute to the classification ranking as fourth and fifth places, 
respectively in Table 1, which agree with the results of Guo et 
al. (2010). Moreover, the ground truth shows that the amount of 
vehicle pixels is much smaller than trees. Therefore, all those 
factors could result in the high relevance of features R,G,B and 
NDVI for dataset Vaihingen. 
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Figure 4: Feature relevance results of Contribution Ratio and 
Random Forests for dataset Vaihingen. 
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Figure 5: Feature relevance results of Contribution Ratio and 
Random Forests for dataset Enschede. 
 
For data set Enschede, as shown in Table 1, features based on 
LiDAR data: O, σZ, ∆Z and Z are the most relevant features, 
which can be easily assumed to be credited to the property of 
inherent alignment of image and point clouds in this dataset. 
However, features R,G,B result in much less importance, none 
of them take a place in the first four most relevant features. This 
is due to image sensitivity to the illumination angles and the 
presence of shadows in dense urban scenes. Vehicles are not 
frequently chosen as target objects in urban scene classification 
as trees. In works of Guo et al. (2010) and Mallet et al. (2011), 
buildings and ground surface are considered, but they are 
provided by exploiting more features based on full-waveform 
LiDAR technology. In order to further evaluate the consistency 
of relevance results, Figure 4 and 5 exhibit the relevance results 
from Contribution Ratio and Random Forests together with 
normalized magnitudes.  

We can easily find out that the relevance results from the two 
different methods well agree with each other. The major 
differences happen in dataset Vaihingen in the first three most 
relevant features as R, NDVI and σZ. For the less relevant features, 
the differences are almost negligible. Therefore, the feature 
relevance as a whole is assumed to be consistent and reliable for 
the two different methods and two different datasets. 
 
5.2 Classification Results 

In this section, we discuss the classification result of AdaBoost. 
Figure 6 and 7 show the classification maps of datasets Vaihingen 
and Enschede. As an overview, the results are very promising for 
trees in both datasets, whereas vehicles are worse classified in 
dataset Vaihingen. In Table 2 and 3, we summarize the 
classification accuracies for trees and vehicles.  
 

 
Figure 6: Classification maps of dataset Vaihingen with 
image(left), trees(middle) and vehicles(right). 
 

 
Figure 7: Classification maps of dataset Enschede with image 
(left), trees (middle) and vehicles (right). 
 

 Commission 
Accuracy 

Omission 
Accuracy 

Trees 95% 91% 
Vehicles 96% 60% 

Table 2: classification performance for dataset Vaihingen 
 

 Commission 
Accuracy 

Omission 
Accuracy 

Trees 97% 96% 

Vehicles 94% 83% 

Table 3: classification performance for dataset Enschede 
 

From the accuracy results, we can see that trees are always well 
classified with the accuracies of >90% for dataset Vaihingen and 
>95% for dataset Enschede. For dataset Vaihingen, features NDVI 
and R,G,B contribute the most to the classification of trees while 
spatial context features seem not so important. This may be on 
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account of the high coverage rate of trees in Vaihingen dataset, 
pixels of vehicles are much less than trees. In addition, errors of 
post co-registration could even cause the spatial context 
features to be further less weighted in the classification. But the 
situation is quite different for dataset Enschede, for which all 
classes are yet significantly better classified. It shows the 
advantage of the prior co-registration of both image and LiDAR 
data in the acquisition process. 
 
On the other hand, the classifications of vehicles reach 
distinctly different accuracies for datasets Vaihingen and 
Enschede. 83.45% vehicles are correctly classified for dataset 
Enschede while only around 60% for dataset Vaihingen. This is 
obviously due to the post co-registration error of dataset 
Vaihingen, and wherefore the moving vehicles are hardly 
classified due to temporal inconsistency between the acquisition 
of two data sources. Figure 6 also shows that the correctly 
classified pixels of vehicles are mostly stationary ones which 
are located in the park areas. 
 

6. CONCLUSIONS 

In this paper, we present an integrated strategy for evaluating 
the feature relevance by combining classifiers with different 
mechanisms for classification of trees and vehicles in urban 
scenes. Various experiments are carried out for two datasets 
with different properties. Feature relevance is quantified in 
details, which highlights the most important features for 
classification of tree covers and vehicles, such as NDVI, Laser 
intensity, height difference, height standard deviation, planarity 
and omnivariance and so on. The process also points out the 
considerable deficiency of post co-registration of image and 
LiDAR data, especially for vehicles. By comparative analysis 
of independent approaches, the reliable and consistent feature 
selection for classification of trees and vehicles by fusing 
LiDAR and image data is validated and achieved being 
unrelated to the classifiers. However, the defined features are 
not comprehensive especially when taking more features 
derived from full-waveform laser scanners into account, so that 
the framework can be extended for further researches. Also 
more statistical methods can be involved for evaluation. 
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