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ABSTRACT: 
 
With the development of low cost aerial optical sensors having a spatial resolution in the range of few centimetres, the traffic 
monitoring by plane receives a new boost. The gained traffic data are very useful in various fields. Near real-time applications in the 
case of traffic management of mass events or catastrophes and non time critical applications in the wide field of general transport 
planning are considerable. A major processing step for automatically provided traffic data is the automatic vehicle detection. In this 
paper we present a new processing chain to improve this task. First achievement is limiting the search space for the detector by 
applying a fast and simple pre-processing algorithm. Second achievement is generating a reliable detector. This is done by the use of 
HoG features (Histogram of Oriented Gradients) and their appliance on two consecutive images. A smart selection of this features 
and their combination is done by the Real AdaBoost (Adaptive Boosting) algorithm. Our dataset consists of images from the 3K 
camera system acquired over the city of Munich, Germany. First results show a high detection rate and good reliability. 
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1. INTRODUCTION 

1.1 Motivation 

Within recent years automatic traffic monitoring using aerial 
images has become an essential part of several valuable 
applications (Stilla et al., 2005) (Stilla et al., 2009). Some of 
them are in the field of traffic research and should provide 
efficiently planned and highly optimized road networks, e.g. 
control of traffic signals (Hickman and Mirchandani, 2008). 
This leads to less environmental pollution, a reduction of CO2 
emissions and a saving of resources. Another field of 
application can be found in the case of mass events, which have 
to be managed (Kühne et al., 2005). For this purpose a complete 
overview of the existing traffic situation is useful. This includes 
data about travel times (Kurz et al., 2007a), traffic flow and 
density as well as smart controlling of the parking situation. 
Catastrophes and disaster management also require data about 
the current traffic situation. In an emergency, scenarios can be 
analysed faster, better reactions can be initiated, and the 
emergency crews can act more efficiently. To satisfy these 
needs traditional methods of gathering traffic information are 
induction loops or stationary video cameras, but utilization is 
limited due to their inherently fixed location and sparse 
distribution. 
To overcome the drawback of current sensor systems, an 
airborne camera system has been developed at the German 
Aerospace Center (DLR) (Reinartz et al., 2006). The new 
system is called 3K camera system and is used in the context of 
the VABENE (Verkehrsmanagement bei Großereignissen und 
Katastrophen) project. Goal of this project is to provide traffic 
information in case of mass events and catastrophes. A small 

but important part of this comprehensive project is the 
automatic vehicle detection. 
 
1.2 Related Work 

We can split the methods for vehicle detection from optical 
images mainly in three groups according to the platform of the 
sensor. The field with definitely the highest amount of research 
activity are stationary video cameras which provide side view 
images. Schneiderman and Kanade (2000) use wavelet features 
and AdaBoost. Also She et al. (2004) are detecting cars by the 
use of Haar wavelets features in the HSV colour space. Negri et 
al. (2008) use Haar features and HoG features which are formed 
to a strong cascading classifier by boosting. Kasturi, et al. 
(2009) uses a simple background subtraction, which is only 
working for video data. An overview on the work for stationary 
cameras can be found in Sun (2006). 
The next group considers satellite imagery which provide a 
reduced spatial resolution (lowest pixel size is 0.5 m) and 
mainly use single images, not time series. Promising results 
have been achieved by Leitloff et al. (2010). They use Haar-like 
features in combination with AdaBoost. 
The last group of approaches deals with airborne images which 
either use explicit or implicit models. Approaches based on 
explicit models are for example given in Moon et al. (2002) 
with a convolution of a rectangular mask and the original 
image. Also Zhao and Nevatia (2003) offer an interesting 
method by creating a wire-frame model and further try to match 
it with extracted edges of the end of a Bayesian network. A 
similar way is suggested by Hinz (2003a, 2003b), he makes the 
approach more complex and added additional parameters like 
the position of the sun. Kozempel and Reulke (2009) provide a 
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very fast solution which takes four special shaped edge filters 
trying to represent an average car. 
Finally implicit modelling is used by Grabner et al. (2008), they 
take Haar-like features, HoG features and LBP (local binary 
patterns). All these features are passed to the AdaBoost training 
algorithm which creates a strong classifier. 
A comprehensive overview and evaluation of airborne sensors 
for traffic estimation can be found in Hinz et al. (2006) and 
Stilla et al. (2004). 
The next chapter has technical details of the currently used 
optical sensor system. Chapter 3 explains the fast pre-
processing and the presented method for car detection. The 
experimental results with urban area imagery are shown in 
chapter 4. Gained results a going to be discussed and evaluated 
in chapter 5. Also a prospect of future work can be found here. 
Finally chapter 6 gives a conclusion of the 3D HoG feature 
vehicle detection method. 
 
 

2. SENSOR SYSTEM 

 

 
 

Figure 1: 3K camera system 
 
As previously mentioned, the utilized data are acquired from 
the 3K camera system, which is composed of three off-the-shelf 
professional SLR digital cameras (Canon EOS 1Ds Mark II). 
These cameras are mounted on a platform which is specially 
constructed for this purpose. Figure 1 shows the ready for flight 
installed camera system. A calibration was done (Kurz et al., 
2007b) to enable the georeferencing process which is supported 
by GPS and INS. The system is designed to deliver images with 
maximum 3 Hz recording frequency combined into one burst, 
which consists of 2 to 4 images. After one burst a pause of 10 
seconds follows. Depending on the flight altitude a spatial 
resolution up to 15 centimetres (at 1000m altitude) is provided. 
The acquired images are processed on board the plane in real 
time and the extracted information is sent without further delay 
to the ground station. The processing step includes ortho-
rectification followed by car detection and tracking. The 
received data are ready to use for instantaneous analysis of the 
current traffic situation. For further information about the 3K 
camera system please refer to Reinartz et al. (2010). 
 
 

3. METHOD 

The proposed technique uses 2D and 3D HoG features in 
combination with AdaBoost to detect vehicles in aerial images. 
Figure 2 depicts the workflow of the presented method. In this 

section we give detailed explanations of the theory behind our 
approach. Experimental results are shown in Section 4. 
 

 
 

Figure 2: Workflow of proposed method 
 
3.1 Pre-processing 

Pre-processing is often used to limit the search space for the 
detector. This is usually done by fast and simple methods. The 
final goal is a faster detection of the vehicles in the image due 
to fewer regions that have to be examined. 
For this purpose we take a three channel RGB colour image and 
smooth it with a Gaussian filter. Afterwards, we perform 
regiongrowing that uses the distance of each pixel to the pixels 
in the von Neumann neighbourhood. Equation 1 shows the 
algorithm which calculates the Euclidean distance of two 
pixels. Pixels that have a distance below the predefined 
threshold are accumulated to one region. 
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where  D = Euclidean distance 

ria, gia, bia = red, green, blue channel   pixel a   
image i 
rib, gib, bib = red, green, blue channel   pixel b   
image i 

 
Finally the resulting segmentation allows excluding large 
homogeneous regions, which often appear as road surface. 
 
3.2 Histogram of Oriented Gradients 

The Histrogram of Oriented Gradients offers a way to describe 
typical parts of the vehicle. For this reason the gradient 
directions and their magnitude are calculated and finally saved 
in a histogram. 
The basic work has been done by Lowe (1999) with the 
introduction of the SIFT operator. The process of creating HoG 
features (Dalal and Triggs, 2005) begins with a gradient 
filtering of the image; e.g. using the Sobel operator. Afterwards, 
the number of bins of the histogram has to be chosen 
adequately. Too many bins increase the calculation time while 
an insufficient number of bins will lead to distinctive features. 
Finally each bin contains the accumulated magnitudes of the 
gradient vectors with the corresponding direction. The obtained 
histogram is finally normalized. 
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For a fast calculation of the HoG features it is recommended to 
use the integral histogram (Porikli, 2005). The integral 
histogram is an accumulation of all magnitudes of the current 
pixel and the previous pixels within the same bin over the 
whole image (Equation 2). 
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where  H(x,y) = Integral Histogram 

I(x,y) = magnitudes of gradients with same 
orientation 

 x, y are the pixel coordinate 
 
The integral histogram allows for every region of interest to 
calculate the HoG feature very fast by two subtractions and one 
addition for each bin (as Figure 3 and Equation 3 show). 
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where  F(x,y,h,w) = one bin from HoG feature F 
 w, h are width and height of HoG feature F 
 

 
 

Figure 3: Integral Histogram and sum of one bin in yellow 
 
So far the presented method is applied to 2D data (single 
image). Our goal is to enhance this method by extending the 2D 
features by a further dimension. This can be realized if two 
consecutive images are used for feature extraction (Viola et al., 
2005). This should especially improve the detection of moving 
vehicles, because in the moving case the first image shows a car 
and on the same position in the next image there is a road 
instead (Figure 4). 
 

           
        (a)    (b)            (c) 
 
Figure 4: (a) car in image1 (b) same location in image2 (c) 

sample1 as red channel and sample2 as green 
channel 

 
We give the 2D and the 3D feature to the training that is 
depicted in the next section. 
 
3.3 Training 

The previous step delivers a lot of different features which are 
passed to the boosting algorithm (Freund and Scharpire, 1997), 
which performs feature selection and reduction. Finally we 
receive a strong classifier which consists of as many features as 
necessary to classify the tested negative and positive samples 

correctly (break by thresholds of detection rate and false 
positives). The training for the 2D and the 3D detector is 
processed separately. 
 
3.4 Detection 

Classification is performed by sliding the detector over the 
original image, which is masked as Section 3.1 describes. All 
the areas that are masked are examined by the detector. The 
detector works in a cascading way that means, if the first 
hierarchical step is sure that the examined location is not a 
vehicle the next hierarchical steps are not applied. This 
cascading detector construction helps saving computation time 
for the detection, as well as pre-processing does. Result after 
applying the detector is a confidence matrix for each processed 
pixel. Further step is a manual threshold applied to the 
confidence values to get detected cars. 
 
 

4. EXPERIMENTAL RESULTS 

The used data, acquired by the 3K camera system, shows a 
street in the western inner city of Munich with a ground 
sampling distance of 15 cm (Figure 5(a)). The scene is 
orthorectified and can be overlaid with vector data from street 
databases (i.e. Navteq). This also helps limiting the search 
space but due to the low accuracy of this data, all near to the 
road positioned houses remain. 
 

                                  
   (a)         (b) 

Figure 5: (a) Origina ocessed image with 
masked regions 

 
l image (b) pre-pr
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4.1 Pre-processing 

Figure 5(a) shows the original image and Figure 5(b) shows the 
image after the pre-processing step. The upper left corner of 
each region is used as starting point for the regiongrowing. 
Parameters for the method described in 3.1 are Gaussian filter 
of size 5 by 5 pixels (results in sigma 0.87) and tolerance value 
for the distance between neighbour pixels of 5. Finally the 
search space after pre-processing is only 14 percent of the 
original image. 
 
4.2 Training 

For the creation of the 2D detector we use a training database of 
446 positive samples and 700 negative samples. Each sample 
has a size of 32 by 32 pixel and same resolution as test image 
sample. A window for creating 2D HoG features in the 
quadratic sizes 4, 8, 12 and 16 is moved over them. In this 
experiment we take 8 bins for each feature. 
The same procedure is done with the 3D HoG features, these 
features consist of 16 bins because each of the two image layers 
has 8 bins. The 3D training data are 29 positive and 700 
negative samples. One positive training sample is displayed in 
Figure 4(c). 
 
4.3 Detection 

 
 (a)    (b)      (c) 

Figure 6: (a) Detection result without threshold (b) detection 
result with confidence threshold set manually (c) 
Image1 in red, image2 in green and detected cars by 
3D HoG detector in red rectangle (manual threshold 
0.9) 

 
Sliding the hierarchical 2D detector with a 32 by 32 rectangle 
over the image results in the detected vehicles displayed in 
Figure 6(a). For every pixel position in the image we receive a 
confidence value on which a threshold can be applied to 
suppress low values. Figure 6(b) shows the result with 
confidence values above 0.87. 
 

positivesfalsepositivestrue

positivestrue
rateprecision

  

 
 


    (4) 

 

negativesfalsepositivestrue

positivestrue
raterecall

  

 
 


    (5) 

 
The precision rate according to Equation 4 is 97 percent in the 
case of Figure 6(b). The recall rate (Equation 5) is 80 percent. 
Of course, the prerequisite for this assumption is a successfully 
applied method to suppress multi detections. 
To enhance this 2D result we use the 3D detector which is 
thought to detect moving vehicles better. Figure 6(c) shows a 
result that is supposed to explain the idea behind this technique. 
Cars that are moving do appear in green (image1) and in red 
(image2). The missing cars after 2D detection can now be 
substituted with the 3D detection. 

 
 

5. DISCUSSION AND FUTURE WORK 

The proposed pre-processing step shows its capability to limit 
the search space for the following classification. It is correct 
that the first hierarchical step of the cascading detector can 
exclude those regions as well. To gain clarity about this fact an 
exhaustive testing has to be made. Additionally important is the 
robustness of the operation, taking care that regions of vehicles 
are not excluded from further processing. 
The achieved result of the 2D detector shows still some false 
positives and some false negatives. Therefore the next step is 
finding an adequate method to select final vehicles correctly 
without setting a threshold manually. The information we have 
is the position of the rectangle including double and triple 
detections and the confidence values. Developing a method 
utilising this information for further improvement will be the 
next implementation step. 
Also, the 3D detector that should support the 2D detector needs 
further development. Reason for the poor detection rate is 
probably the low quantity of training samples. Another point 
that has to be reviewed is the impact of the road markings, 
which appear in the second image of 3D training data (Figure 
4(b)). These markings are very different for each image and 
return completely different features. Hence the sensitive 
boosting returns bad rates for the trained detector due to highly 
heterogeneous training data. 
 
 

6. CONCLUSIONS 

Detection of vehicles from aerial images is a challenging 
problem due to the great diversity of vehicles and its restricted 
resolution. The presented approach shows the beginning of an 
innovative processing chain for vehicle detection. Starting with 
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a very fast pre-processing which is able to exclude large 
homogeneous regions of multi channel images without 
exclusion of useful information. Afterwards we proposed the 
idea of generating a robust detector which is build on 2D and 
3D HoG features in combination with a training algorithm. 
These 3D HoG features show additional enhancement and are 
able to support classification solely based on 2D HoG features. 
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