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Abstract 
 
The paper highlights a new 3D segmentation technique that detects single trees with an 
improved accuracy. The method uses the normalized cut segmentation and is combined with a 
special stem detection method. A subsequent classification identifies tree species using salient 
features that utilize the additional information the waveform decomposition extracts from the 
reflected laser signal. Experiments were conducted in the Bavarian Forest National Park with 
conventional first/last pulse data and full waveform LIDAR data. The first/last pulse data result 
from a flight with the Falcon II system from TopoSys in leaf-on situation at a point density of 10 
points/m2. Full waveform data were captured with the Riegl LMS Q-560 system at a point 
density of 25 points/m2 (leaf-off and leaf-on) and at a point density of 10 points/m2 (leaf-on). 
The study results prove that the new 3D segmentation approach is capable of detecting small 
trees in the lower forest layer. This was practically impossible so far if tree segmentation 
techniques based on the canopy height model (CHM) were applied to LIDAR data. Compared 
to the standard watershed segmentation the combination of the stem detection method and the 
normalized cut segmentation performs better by 12%. In the lower forest layers the 
improvement is even more than 16%. Moreover, the experiments show clearly that the usage of 
full waveform data is superior to first/last pulse data. The unsupervised classification of 
deciduous and coniferous trees is in the best case 93%. If a supervised classification is applied 
the accuracy is slightly increased with 95%. 
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1. Introduction  
 
Single tree detection has been a key issue in forest inventory research. So far, nearly all methods 
have tackled the problem to detect single trees from the CHM, which is a result of a surface 
interpolation. Approaches presented – for instances – by Hyyppä et al. (2001), Solberg et al. 
(2006) or Brandtberg (2007) stand for such kind of methods. Typically, the detection rate of 
single trees is limited due to unavoidable smoothing effects in the interpolated surface. The 
main drawback is that trees and young regeneration in the intermediate and lower forest layers 
are invisible from the CHM surface and hence cannot be detected at all. Tree species 
classification using solely LIDAR data and features derived from the coordinates of the laser 
returns has been investigated – for instance – by Holmgren et al. (2004) who showed that the 
coniferous tree species Norway spruce and Scots pine can be classified with an overall accuracy 
of 95% using highly dense LIDAR data. Heurich (2006) demonstrates that classification of 
Norway spruce and European beech is possible with an overall accuracy of 97% in leaf-off 
situation. However, the tree segments were derived from LIDAR data acquired in leaf-on 
situation. The study refers to LIDAR data with a mean point density of 10 points/m2 and clearly 
shows that desirable forest features like young regeneration could not be detected.  
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Recent advances in LIDAR technology have generated new full waveform scanners that provide 
a higher spatial point density and additional information about the reflecting characteristics of 
trees. Important issues like the calibration and the decomposition of full waveform data with a 
series of Gaussians, as well as the detection and classification of vegetation have been 
investigated by Wagner et al. (2006), Jutzi and Stilla (2006), Kirchhof et al. (2008) and 
Reitberger et al. (2008a). Recently, Reitberger et al. (2008c) successfully showed that the new 
full waveform technology can significantly improve the detection rate of single trees using a 3D 
segmentation technique based on the normalized cut segmentation. 
 
In this paper we present results of a tree species classification with full waveform data based on 
this new encouraging 3D tree segmentation technique. The objective of this paper is (i) to 
shortly highlight the new segmentation method that extracts single trees using full waveform 
LIDAR data, (ii) to demonstrate the improved detection rate of single trees, (iii) to prove the 
benefit of full waveform data both in leaf-on and leaf-off situation at different point densities, 
and (iv) to present classification results of a) deciduous and coniferous trees and b) spruces and 
fir trees. 
 
2. Method 
 
2.1 Normalized cut segmentation 
 
The motivation of the normalized cut segmentation is to overcome the disadvantages of a CHM 
based watershed segmentation (e.g. Reitberger et al., 2008a), which calculates the tree positions 

),...,1)(,( segi
CHM

stemi
CHM
stem NiYX =  from the local maxima of the CHM. Thus, neighbouring trees are 

often not separated and form a tree group instead of single trees. Moreover, smaller trees in the 
intermediate and lower height level cannot be recognized since they are invisible in the CHM. A 
special stem detection method (Reitberger et al., 2007) separates neighbouring trees and 
provides the stem positions ),( i

StDet
stemi

StDet
stem YX ),...,1( StDetNi =  if there are enough stem reflections, 

and if the stem area can be reliably separated from the crown points by the crown base height. It 
fails of course when young regeneration and small trees are located below tall trees. A further 
drawback is that the crown points belonging to the original segment are not separated with 
respect to the detected stems. In order to tackle these problems we have set up a true 3D 
segmentation of single trees using the normalized cut method known from image segmentation 
(Shi and Malik, 2000), which uses the positions ),,( iii zyx  of the reflections and optionally the 
pulse width Wi and the intensity Ii of the waveform decomposition (Reitberger et al., 2008b). 
 
This segmentation divides a graph G formed by voxels given in a region of interest (ROI) into 
disjoint segments A and B (Figure 1a) by maximizing the similarity of the segment members 
and minimizing the similarity between the segments A and B. The corresponding cost function is 
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weights wij between two voxels are basically a function of the LIDAR point distribution and 
features calculated from Wi and Ii. They define the similarity between the voxels. The 
minimization of NCut(A,B) is solved by a corresponding generalized eigenvalue problem 
(Reitberger et al., 2008b). The approach can use auxiliary data like, for instance, the information 
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about the local maxima of a CHM ),...,1)(,( segi
CHM

stemi
CHM
stem NiYX =  in order to weight the similarity 

between the voxels below the CHM maxima. Also, the results of the stem detection 
),...,1)(,( StDeti

StDet
stemi

StDet
stem NiYX =  can be introduced to provide special weights for the voxels similarity. 

The figure 1b shows complex situations where the normalized cut segmentation works excellent 
and where the watershed segmentation and the stem detection fail.  
 

 

Figure 1a: Subdivision of ROI into a voxel 
structure and division of voxels into two tree 

segments A and B 

Figure 1b: Examples of normalized cut segmentation with 
the reference trees as black vertical lines 

 
2.2 Classification 
 
We consider different types of salient features },,,,{ , nWIigt SSSSSS =  for the classification that 
are calculated using the Nt LIDAR points ),,,,( iiiii

T
i IWzyx=X ),...,1( tNi =  in the segments. 

They are subdivided into five groups reflecting the outer tree geometry by gS , the internal 
geometrical tree structure by iS , the intensity-related features by IS , the pulse width 
characteristics by WS , and the number of reflections per waveform by nS . Table 1 gives a short 
overview of the saliency definitions (see details Reitberger et al., 2008a). 
 

Table 1: Definition of saliencies (“Sal.”) used in classification 
Sal. Definition Sal. Definition 

1
gS  Parameters {a1,a2} of a parabolic surface 2

IS  Mean intensity in entire tree 
2
gS  Mean distances of layer points to tree trunk WS  Mean pulse width of single and first 

reflections in the entire tree segment 
h
iS  Percentiles of the LIDAR points 1

nS  Average number of reflections between the 
first and last reflection in the waveform 

d
iS  Percentage of LIDAR points in a tree 

height layer 
2
nS  Relation of the number of single reflections 

to the number of multiple reflections  
1
IS  Mean intensities of height layers   

 
Tree species are classified both by an unsupervised and a supervised classification. Let tS  be 
the salient features of a tree t to be classified and let },{ kkkC Σ= μ  be the density probability 
model (mean, covariance matrix) of the kth tree class. The clusters of different tree species are 
found by the Expectation-Maximization algorithm that approximates the distribution of a 

saliency subset S ε St by fitting the parameters of the density model ∑
=
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s

k
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the data by a maximum-likelihood estimation with kπ  as the mixing coefficients, ),|( kkSN Σμ  
as the multivariate Gaussian distribution and s as the number of Gaussians (Heijden et al., 2004). 
The clusters of tree species statistically described by kC  are the results of the unsupervised 
classification. The supervised classification is a maximum likelihood classification by 
estimating the density probability models },{ kkkC Σ= μ  from a training subset Strain with 
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 where Nk is the number of samples of the 

kth class. The probability that a tree t with the saliencies St is a member of the kth tree class is 
given by 
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with d as the number of salient features. 
 
3. Experiments 
 
3.1 Material 
 
Experiments were conducted in the Bavarian Forest National Park (49o 3’ 19” N, 13o 12’ 9” E) 
which is located in South-Eastern Germany along the border to the Czech Republic (Figure 2). 
There are four major test sites of size between 591 ha and 954 ha containing sub alpine spruce 
forest, mixed mountain forest and alluvial spruce forest as the three major forest types.  
 

 

 

 

Figure 2: Location of the Bavarian Forest National Park in the map of Germany (left) and map of the park 
with its forest types and test sites (right). 

 
18 sample plots with an area size between 1000 m2 and 3600 m2 were selected in the test sites E 
and C (Figure 3). Reference data for all trees with DBH larger than 10 cm have been collected for 
688 Norway spruces (Picea abies), 812 European beeches (Fagus sylvatica), 70 fir trees (Abies 
alba), 71 Sycamore maples (Acer pseudoplatanus), 21 Norway maples (Acer platanoides) and 2 
lime trees (Tilia Europaea). Tree parameters like the DBH, total tree height, stem position and tree 
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species were measured and determined by GPS, tacheometry and the ’Vertex III’ system. 
Furthermore, the trees are subdivided into 3 layers with respect to the top height htop of the plot, 
where htop is defined as the average height of the 100 highest trees per ha (Heurich, 2006). The lower 
layer contains all trees below 50% of htop, the intermediate layer refers to all trees between 50% and 
80% of htop, and finally, the upper layer contains the rest of the trees. Table 2 summarizes the 
characteristics of the individual sample plots. 
 

Figure 3: Orthophotos of the test sites E and C and the location of the sample plots 

 
Table 2. Characteristics of sample plots 

Plot name 21 22 55 56 57 58 59 60 64 65 74 81 91 92 93 94 95 96
Test site C C E E E E C C C C E E E E E E E E 
Age [a] 160 160 240 170 100 85 40 110 100 100 85 70 110 110 110 110 110 110
Size [ha] 0.20 0.20 0.15 0.23 0.10 0.10 0.10 0.10 0.12 0.12 0.30 0.30 0.36 0.25 0.28 0.29 0.25 0.30
Height [m] 860 885 610 640 765 710 810 890 835 875 720 690 764 767 766 768 750 781
N/ha 500 540 830 340 450 440 2150 380 430 810 700 610 260 170 240 250 240 200
N lower layer 37 19 77 31 0 10 76 8 13 53 11 29 31 13 7 15 6 30
N interm. layer 14 60 21 19 4 4 85 22 4 26 33 59 11 3 2 4 0 3 
N upper layer 48 29 20 27 41 30 54 27 35 35 165 96 54 27 59 54 53 26
Deciduous [%] 66 79 5 10 0 14 1 100 87 96 29 100 75 100 66 97 10 86

 
LIDAR data of several ALS campaigns are available for the test sites. First/last pulse data have 
been recorded by TopoSys with the Falcon II system. Full waveform data have been collected 
by Milan Flug GmbH with the Riegl LMS-Q560 system. Table 3 contains details about the point 
density, leaf-on and leaf-off conditions during the flights and the footprint size. The term point 
density is referring to the nominal value influenced by the PRF, flying height, flying speed and 
strip overlap. These unique data sets allow the comparison of conventional and full waveform 
systems, which have been flown in the same area. However, the data set IV is only available for 
the 12 reference plots in test site E. This has to be considered when comparing results of other 
data sets with this data set. Naturally, the reference data have been updated for the individual 
flying dates. Reference trees are plotted in the figures 1a and 1b as black vertical lines. 
 

Table 3: Different ALS campaigns 
Time of flight Sept. ‘02 May ‘06 May ‘07 May ‘07 
Data set I II III IV 
Foliage Leaf-on Leaf-off Leaf-on Leaf-on 
Scanner TopoSys Falcon II Riegl LMS-Q560 Riegl LMS-Q560 Riegl LMS-Q560 
Pts/m2 10 25 25 10 
HAAT [m] 850 400 400 500 
Footprint [cm] 85 20 20 25 
Ref. plots all all all Area E 
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3.2 Segmentation results 
 
The watershed segmentation (‘W’) and the new 3D segmentation technique (‘Ncut’), using both 
results from the watershed segmentation and from the stem detection, were applied to all the 
plots and data sets in a batch procedure without any manual interaction (Table 4). The accuracy 
and reliability of the presented methods are evaluated in the following way: The tree positions from 
the segmentation are compared with reference trees if (i) the distance to the reference tree is smaller 
than 60% of the mean tree distance of the plot and (ii) the height difference between htree and the 
height of the reference tree is smaller than 15% of htop. If a reference tree is assigned to more than 
one tree position, the tree position with the minimum distance to the reference tree is selected. 
Reference trees that are linked to one tree position are so-called ‘detected trees’ and reference trees 
without any link to a tree position are treated as ‘non-detected’ trees. Finally, a tree position without 
a link to a reference tree results as a ‘false positive’ tree. 
 

Table 4: Results of segmentation methods with data sets I, II, III and IV 
 

Detected trees per height layer [%] Data set Method
low. intermed. up. total 

False  
pos. [%] 

W 2 12 80 52 5 I (only area E) 
Leaf-on NCut 15 27 77 55 13 

W 5 21 77 48 4 II  
Leaf-off NCut 21 38 87 60 9 

W 5 20 79 48 4 III 
Leaf-on NCut 17 32 86 58 10 

W 5 20 82 55 5 III (only area E) 
Leaf-on NCut 24 35 88 66 11 

W 6 21 84 57 6 IV (only area E) 
Leaf-on NCut 26 33 87 65 11 

 
 
In the first instance, we want to highlight with data set II how the 3D normalized cut 
segmentation compares to the 2D watershed segmentation. The 2D segmentation leads to an 
overall detection rate of 48%, where the detection rate is rather poor in the lower forest layer. 
The 3D segmentation increases the detection rate considerably in the lower and intermediate 
layer with about 16%. This is remarkable and shows that the new segmentation technique can 
successfully detect smaller trees below the CHM. The improvement in the upper layer is 10% 
and the overall detection rate increases by 12%. The high spatial point density of the full 
waveform data, which practically contain all relevant reflections of the laser beam, turns out as 
the key factor to segment in 3D not only the dominant trees but also the dominated smaller trees 
in the lower and intermediate layers. However, this increased detection rate also deteriorates the 
reliability of the segmentation process by the factor 2 in terms of false positives. Figure 4 
illustrates the improvement of the detection rate graphically. 
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Figure 4: Comparison of single tree detection with data set II 

 
The results given for leaf-off condition (data set II) can also be compared with full waveform 
data captured in the same area and with the same point density in leaf-on condition (data set III).  
As expected, the detection rate deteriorates in the case of the normalized cut segmentation in the 
lower and intermediate layer by roughly 5% due to the reduced penetration rate of the laser 
beam causing in turn a worse spatial distribution of the reflections. The number of false 
positives does not change significantly for the normalized cut segmentation. 
 
If we restrict data set III to area E and compare it with data set IV the impact of the nominal 
point density on the segmentation methods can be analyzed. The comparison of both data sets 
shows that the detection rate and false positives are practically the same for both point densities. 
Obviously, although the number of penetrating laser beams is significantly reduced, the most 
relevant tree structures are still detected by reflections.  
 
Finally, we compare the segmentation methods with respect to first/last pulse data (data set I) 
and full waveform data (data set IV) that have the same nominal point density. The total 
detection rate of the 2D watershed based segmentation is by 5% better for the full waveform 
data. The number of false positives is basically the same. The main reason for this is that the full 
waveform data represent the tree shape more precisely since the waveform decomposition even 
detects weak reflections and reflections resulting from adjacent targets. If we focus on the 
normalized cut segmentation, the benefit of full waveform becomes clearer with an increase of 
10%. Most remarkably, the full waveform technique and the normalized cut segmentation 
outperform the conventional first/last pulse technique and the watershed segmentation by more 
than 20% in the lower and intermediate layer. 
 
3.3 Classification results 
 
First, we apply an unsupervised and a supervised classification between deciduous and 
coniferous trees to the 3D segments (Table 5). One fifth of the trees were randomly selected 
from the entire data set as a training data set for the supervised classification by keeping the 
proportion between the tree species. Also, both classification methods were applied 20 times in 
order to minimize the impact of the selection procedure and the initialization of the 
EM-algorithm of the unsupervised classification on the results. Thus, the numbers in table 5 
refer to averaged classification values, whereby the best result of each data set and classification 
method is highlighted. 
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Table 5: Results of unsupervised („un.“) and supervised classification („su.“) 
Overall accuracy (%) for data sets I - IV and for the 2D and 3D segments 
I (only area E) II III III (only area E) IV (only area E) 

Saliency 

un. su. un. su. un. su. un. su. un. su. 
1
gS  80 80 74 75 81 82 83 84 83 83 
2
gS  80 78 75 78 80 82 83 82 81 81 
h
iS  62 66 73 72 64 67 66 66 65 70 
d
iS  66 67 68 76 68 74 69 73 65 70 
1
IS    74 74 90 91 93 93 91 91 
2
IS    81 81 93 94 97 96 95 97 
WS    75 79 52 51 54 56 60 64 
1
nS    80 84 56 54 57 65 66 64 
2
nS    89 93 62 63 61 65 57 57 

22
Ig SS +    81 86 90 94 93 97 91 97 

222
nWIg SSSS +++    91 94 81 95 84 97 82 97 

 
If we compare both classification methods with respect to the used saliencies and best results we 
recognize that in general the supervised classification is slightly better than the unsupervised 
classification. If we focus on the individual saliencies it is evident that the intensity related 
saliency 2

IS  turns out as the most important feature in the leaf-on case (data sets III and IV). 
Data set II proves that the saliency 2

nS  is the best single feature in the leaf-off case. Apparently, 
coniferous trees cause more single reflections than deciduous trees in leaf-off situation. The 
saliencies h

iS  and d
iS  describing the penetration of the laser beams in the segmented trees 

have very little impact on the classification results. The saliency WS  representing the pulse 
width of the reflections works in general better in the leaf-off case. Finally, the saliencies gS  

representing the tree geometry have an almost constant impact on the classification in leaf-on 
and leaf-off situations. Even for data set I, which refers to first/last pulse data at a point density 
of 10 pts/m2, the overall classification accuracy is almost the same as with full waveform data. 
Thus, this saliency seems to be significant even for the low point density. 
 
The comparison between data set II and data set III indicates that both classification methods 
are almost the same for both foliage conditions. However, differing saliencies have been used. 
Furthermore, the results of data set III (only area E) and data set IV (only area E) show also 
clearly that the point density has practically no influence on the classification results. Thus, the 
lower point density of 10 pts/m2 does not appear as disadvantageous. This is consistent with our 
experience that the segmentation results are also practically the same for both point densities. 
Finally, the comparison of data set I (only area E) and data set IV (only area E), which both refer 
to leaf-on situation and a nominal point density of 10 pts/m2, indicates that the classification 
with first/last pulse data is significantly inferior by about 15% since only the coordinates of the 
reflections could be used and hence, the saliencies Sg and Si could only be calculated for the 
classification.  
 
The new 3D segmentation provides an interesting insight into the classification accuracy of 
single trees in different height layers. Table 6 shows how the supervised classification performs 
in leaf-off (date set II) and leaf-on (data set III) situations. As expected, there is almost no 
dependency on the height layer in the leaf-off case. Contrary, the classification accuracy 
deteriorates slightly for the lower and intermediate layers in the leaf-on case. Obviously, the 
differing classification results are influenced by the lower penetration rate in leaf-on situation.  
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Table 6: Classification accuracy in dependence on height layers 

Correctly classified trees per height layer [%] Data set 
lower intermediate upper total 

II 95 93 94 94 
III 86 90 97 95 

 
Lastly, we want to focus on the question how the tree species spruce and fir can be classified. 
Table 7 shows the confusion matrix for a supervised classification of 242 spruces and 42 firs, 
which are located in the sub area E.  
 

Table 7: Confusion matrix of the best classification result for spruces and fir trees 
Classified tree species  Spruce Fir No. classified segments User’s accuracy 
Spruce 230 8 238 97% 
Fir 12 34 46 74% 
No. reference segments 242 42 284  
Producer’s accuracy 95% 81%   
Overall accuracy: 93%     Kappa: 0.72 

 
We used a combination of the saliencies 2

gS , 2
IS , WS  and 2

nS . The firs, which are 
proportionally lower represented than spruces, could be classified with 81% accuracy. However, 
we noticed a standard deviation of 7.7% when we applied the classification procedure 20 times 
with randomly selected training data sets. We also tried to classify beeches and maples, but 
failed in any case. Thus, these tree species could not be identified with the data sets and the 
presented classification procedure. 
 
4. Discussion 
 
The watershed segmentation generates results comparable with results of Heurich (2006), who 
obtained a detection rate of 45% in almost the same reference areas using also the data set I. 
Moreover, the experiments prove that the usage of full waveform data is clearly superior to 
first/last pulse data. The comparison of the different foliage conditions demonstrates a higher 
detection rate for the leaf-off data set mainly in the lower and intermediate layer because of the 
higher penetration in unfoliated deciduous trees. Thus, the leaf-off situation seems to be the 
more appropriate flying time to segment trees in 3D, at least for mixed mountain forests that are 
scanned with a high point density. The experiment with the different point densities shows that a 
nominal point density higher than 10 pts/m2 does not improve the detection rate considerably. 
However it remains to be seen whether a higher density is advantageous to estimate other 
parameters like for instance the timber volume. Summarizing, the significant improvement of 
the detection rate – apparent in the lower and intermediate layer – is influenced both by the full 
waveform data and the new normalized cut segmentation. The accuracy gain in the lower and 
intermediate layer is more than 20%. 
 
The classification experiments demonstrate clearly that the overall accuracy is significantly 
increased by using full waveform data. In general, the accuracy is excellent even for the 
unsupervised classification. In case of the supervised classification we attained an overall 
accuracy of 95% for all reference data. Moreover, the results are practically independent on the 
point density and the foliage condition. Contrary, we have found a slight dependency of the 
overall accuracy on the height layer in leaf-on situation. However, the accuracy loss is 
compensated by a superior accuracy in the upper height layer in the leaf-on case. Spruces and 
firs could be successfully classified as different tree species. Since the number of fir trees was 
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low further experiments are needed. All in all, the increased detection rate of single trees leads 
to an increased number of correctly classified trees. For instance, a detection rate of 60% and a 
classification accuracy of 94% imply 56% correctly detected and classified trees. Finally, our 
classification results of 80% with first/last pulse data in leaf-on case compare excellent with the 
experiments of Heurich (2006). However, our results with the full waveform data in leaf-on 
situation are in any classification case better than the leaf-on results with first/last pulse data of 
this study. 
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