
Figure 1: Appearance of vehicles in optical high-resolution 

satellite imagery (Quickbird), GSD = 0.6 m 
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ABSTRACT:   
Vehicle detection is motivated by different fields of application, e.g. traffic flow management, road planning or estimation of air and 
noise pollution. Therefore, an algorithm that automatically detects and counts vehicles in air- or space-borne images would 
effectively support these traffic-related analyses in urban planning. Due to the small vehicle size in satellite images detection of 
single vehicles would deliver ambiguous results. Hence, our scheme focuses primarily on the extraction of vehicle queues, as the 
pattern of a queue makes it better distinguishable (as a whole) from similar objects. Hypotheses for queues are generated by 
sophisticated extraction of ribbons. Within these ribbons single vehicles are searched for by least-squares fitting of Gaussian kernels 
to the width and contrast function of a ribbon. Based on the resulting parameter values, false and correct hypotheses are discerned. 
The results show that the analysis of width and contrast information using least square optimization is able to extract single vehicles 
from queues with high correctness. Still, the completeness of the overall extraction is relatively low, since only queues can be 
extracted but no isolated vehicles. The results clearly show that the approach is promising but further improvements are necessary to 
achieve a higher completeness. 
 

1. INTRODUCTION 

1.1 Motivation 

There is an increasing demand for traffic monitoring of densely 
populated areas. The traffic flow on main roads can partially be 
measured by fixed installed sensors like induction loops, bridge 
sensors and stationary cameras. Traffic on smaller roads – which 
represent the main part of urban road networks – is scarcely 
monitored and information about on-road parked vehicles is not 
collected. Wide-area images of the entire road network can 
complement these selectively acquired data. New optical sensor 
systems on satellites, which provide images of 1-meter 
resolution or better, e.g. Ikonos and QuickBird, make this kind 
of imagery available. Hence new applications like traffic 
monitoring and vehicle detection from these images have 
achieved considerable attention on international conferences, 
e.g. (Bamler and Chiu, 2005; Heipke et al., 2005; Stilla et al., 
2005). The presented approach focuses on the detection of single 
vehicles by extracting of vehicle queues from satellite imagery. 
 
1.2 Related work 

Depending on the used sensors and the resolution of the imagery 
different approaches (Stilla et al., 2004) have been developed in 
the past. The extraction of vehicles from images with a 
resolution of about 0.15 m has already been comprehensively 
tested and delivers good results in many situations. Available 
approaches either use implicit or explicit vehicle models (Hinz, 
2003). The appearance-based, implicit model uses example 
images of vehicles to derive gray-value or texture features and 
their statistics, which are assembled in vectors. These vectors are 
used as reference to test computed feature vectors from image 
regions. Since the implicit model classification uses example 
images the extraction results depend strongly on the choice of 
representative images.  
Approaches using an explicit model describe vehicles in 2 or 3 
dimensions by filter or wire-frame representations. The model is 
then either matched "top-down" to the image or extracted image 
features are grouped "bottom-up" to create structures similar to 
the model. A vehicle will be declared as detected, whenever 
there is sufficient support of the model found in the image. 
These approaches deliver comparable or even better results than 
approaches using implicit models but are hardly applicable to 

satellite imagery since there vehicles only appear as blobs 
without any prominent sub-structures (see Fig. 1). 
Three different methods for vehicle detection from simulated 
satellite imagery of highway scenes are tested in (Sharma, 2002). 
The gradient based method and the method using Bayesian 
Background Transformation (BBT) deliver the best number of 
vehicle counts compared to ground truth. Since the number of 
false detections is lower using BBT, this method is more 
reliable. The performance of the third method using Principal 
Component Analysis (PCA) varies significantly with the noise 
level of the image. Furthermore, the method gives the lowest 
vehicle count. A manually created background image is 
mandatory for the PCA and BBT method, which requires 
extensive interactive work. Consequently, the approaches can 
hardly be generalized and are limited to images of the same 
scene.  
In (Gerhardinger et al., 2005) the commercial software Features 
Analyst® is used to implement an iterative learning approach by 
analyzing the spectral signature and the spatial context. The 
authors report that good results can be achieved if a very 



 

Figure 2: Processing Scheme 

(a) (b) 

Figure 3: Queue model. a) original image, b) smoothed image 

accurate road GIS is available. However, this had to be derived 
by manual digitalization in their case. 
An encouraging approach for single vehicle detection is 
presented in (Jin and Davis, 2004). First, they use morphological 
filtering for a rough distinction between vehicle pixels and non-
target pixels, which are similar to vehicles. Then a 
morphological shared-weight neural network is used for 
extraction. The approach achieves good performance values 
under the condition that vehicles appear isolated. However, the 
approach is not designed for vehicle queues or traffic jams (Jin 
and Davis, 2004).  
The last mentioned approaches are designed for a resolution 
coarser than 0.5 m and limit their search space to roads and 
parking lots using GIS information. By this, the number of false 
alarms is significantly decreased. 
 
In dense traffic situations, traffic jams or parking lots, car 
groupings show quite evident regularities (see e.g. Fig. 1). 
Exploiting the knowledge about these repeating occurrences and 
the fact that cars rarely occur isolated is also referred to as global 
modeling in the filed of vehicle detection. Vehicle hypotheses 
extracted by a neural network classifier (Ruskoné et al., 1996) or 
a “spot detector” (Michaelsen & Stilla, 2001)  are collinearly 
grouped into queues while isolated vehicle hypotheses are 
rejected. Hinz & Stilla (2006) use a differential geometric blob 
detector for an initial extraction of car candidates followed by a 
modified Hough transform for accumulating global evidence for 
car hypotheses. Since these grouping schemes select hypotheses 
but do not add new hypotheses, these approaches need an over-
segmentation as initial input. They are designed for medium 
resolution images of approximately 0.5m ground sampling 
distance (GSD). 
When high resolution imagery is available a more promising 
strategy is to focus on reliable hypotheses for single vehicles first 
and complete the extraction afterwards by searching for missing 
vehicles in gaps of a queue using a less constrained vehicle 
model (Hinz, 2003). By this, not only queues but also isolated 
cars can be extracted as long as they belong to the set of reliable 
hypotheses. 
One of the few approaches focusing directly on vehicle queues – 
in particular military convoys – is presented in Burlina et al. 
(1997). They extract repetitive, regular object configurations 
based on their spectral signature. In their approach the search 
space is limited to roads and parking lots using accurate GIS-
information. This seems necessary since the spectrum will be 
heavily distorted, if adjacent objects gain much in influence – 
even if the spectrum is computed for quite small images patches. 
 
1.3 Overview 

Figure 3 shows the overall structure of our approach which is 
separated into three processing stages. In the pre-processing step 
(Fig. 2 I), GIS data is used to determine Regions of Interest 
(ROI). Afterwards we use a differential geometric approach 
followed by some post-processing to extract linear features as 
hypotheses of the queues (Sect. 2.2 and 2.3; Fig. 2 II). Finally, 
we determine single vehicles from these hypotheses by analyzing 
the width and contrast function using a least squares 
optimization (Sect.2.4; Fig. 2 III).  
 

2. QUEUE DETECTION 

 In Sect. 2.1 the used model will be presented. Sect. 2.2 
describes the extraction of vehicle queues using sophisticated 
line extraction. Then a number of attributes are calculated (Sect. 
2.3). The attributes are analyzed and checked for consistency to 

verify or falsify single vehicle hypotheses. This is done by a least 
square adjustment (discussed in Sect. 2.4) and by an iterative 
constrained search (see Sect. 2.5).  
 
2.1 Model of vehicle queues 

Generally, a vehicle queue is defined as ribbon with distinct 
symmetries along and across its local orientation. Basically, the 
model is similar to that defined in (Hinz, 2003); though, since 
this model is originally designed for aerial images, a number of 
modifications regarding the significance of different features 
have been applied: 
A vehicle queue  

• must have sufficient length, bounded width and low 
curvature; 

• shows a repetitive pattern along the centerline, both in 
contrast and width (Fig. 3a), while length and width of 
the individual replica correspond to vehicle 
dimensions; 

• collapses to a line in Gaussian scale space, i.e. when 
smoothing the image accordingly (Fig. 3b). 

 
Please note that this queue model differs from the above 
mentioned approaches in a way that – in particular through the 
scale-space description – the queue is modeled as a unique 
structure and not just as a composite of its underlying, smaller 
elements. At first glance, this seems of less importance. Still, it 
provides the basis for detecting a queue hypothesis as a whole 



 

Figure 5: Resulting lines after merging, smoothing and 
filtering. 

Figure 4: Regions of Interest 

(even though at a coarser scale) rather than constructing it from 
smaller elements. Thereby global knowledge can be incorporated 
from the very beginning of the extraction. 
 
2.2 Extraction of vehicle queues  

Figure 4 illustrates the a priori information about road location 
and direction taken from a national core database. The positional 
accuracy is known to be approximately 2m. Neither the road 
sides are contained in the database nor the position of the 
individual lanes. Hence, the road width needs to be estimated 
from attributes like the number of lanes or the average width per 
road segment. Thus the generated regions of interest (ROI) can 
only be regarded as an approximation of the true road area. 
Line extraction is carried out by applying the differential 
geometric approach of Steger (1998). This algorithm is primarily 
based on the computation of the second image derivatives, i.e. 
the local curvatures of the image function. Parameters for the 
line extraction are chosen corresponding to the vehicle geometry 
(vehicle width: w) and radiometry (expected contrast to road: c).  
 
Thus, the necessary input parameters for line extraction σ,  �tBLB and 
tBH can be calculated as follows: 
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where σ defines the preliminary smoothing factor, calculated 
from the maximum expected width (e.g. 2.5 meter). tBLB and tBH 
define the hysteresis thresholds for the second partial derivative 
of the image at each point. If the value exceeds tBH a point is 
immediately accepted as line point. All points where the second 
derivative is smaller than tBLB are rejected. Points with a second 
derivative between tBH and tBLB are accepted if they can be 
connected to already accept points. In order to achieve initial 
hypotheses, the parameters for cBLB (minimum contrast to be 
accepted) and cBH (contrast for queues definitely to accept) are 
chosen quite relaxed.  
Additionally, the line extraction algorithm is supported by 
morphologically filtering the image with a directional 

rectangular structuring element oriented along the particular road 
segment. In doing so the queues are enhanced and disturbing 
substructures in bright cars are almost completely removed. The 
relaxed parameter settings lead to a huge number of false 
hypotheses but also return most of the promising hypotheses for 
vehicle queues. However, since the line extraction requires a 
minimum contrast between vehicles and the road surface, gray 
vehicles can not be extracted reliably, as they hardly emerge 
from their surroundings.  
Bright and dark lines are extracted separately. They are 
connected if they fulfill some distance and collinearity criteria. 
In our case a maximum distance of one vehicle length must not 
be exceeded. Additionally, one has to keep in mind that the 
merging of parallel lines would lead to significant positional 
errors and is therefore prevented. The final processing steps 
consist of geometrical smoothing by polygonal approximation, 
resampling (Ramer, 1972) and testing all resulting lines against a 
minimum length threshold and an upper limit for direction 
differences to the road. Results of the merging and filtering steps 
are illustrated in Fig. 5. 
 
2.3 Determining queue width and contrast 

After extracting lines as medial axes of a ribbon, width and 
contrast functions are determined. The algorithm to find the 
ribbon width in each line point is based on profiles spanned 
perpendicular to the local line direction, and determining each 
profile’s gray values by bilinear interpolation. Then, for each 
profile, local maxima are determined with sub-pixel precision by 
fitting a second-order polynomial to the first derivative of the 
gray value profile in each profile point. The first maximum value 
found on either side of centerline is supposed to correspond to 
the vehicle boundary, i.e., the distance between the two maxima 
yields the queue width. If no maximum is found, gaps in the 
width function are closed afterwards by linear inter- or 
extrapolation.  
 
Results of width determination are illustrated in Fig. 6. It can be 
seen that most edges correspond to vehicle sides. Because of 
weak contrast between vehicles and road surface a number of 
outliers are present, which are to remove by median filtering the 
width function. 



 

Figure 6: Extracted ribbons: medial axis (cyan) and 
width function (white). 

Figure 7: Width and contrast function of a ribbon 

One can see that most edges correspond to vehicle sides. 
However, since the gradient image has quite weak contrast, the 
edges extraction results show also some irregularities, i.e. noisy 
boundaries. Therefore smoothing of the extracted edges is useful 
to reduce the number of outliers.  
Usually the irregularities are caused by other edges nearby the 
vehicle queue. In future implementations we intend to detect 
such outliers by a more sophisticated shape analysis of the 
boundary functions.  
 
To determine the contrast function of a ribbon, a reference gray 
value outside the vehicle regions must be defined. The actual 
gray values in the direct neighborhood of a vehicle, however, are 
often influenced by adjacent objects or shadows and are 
therefore no reliable estimates of the reference gray value. A 
better way to determine the contrast function is to estimate the 
median road surface brightness in the neighborhood of a vehicle 
queue and use this estimate as reference gray value. Assuming 
that – despite of the presence of some vehicles – the most 
frequent gray values in the RoI represent the road surface, and 
further assuming that in the center of a road less disturbances by 
vehicles and shadows occurs than at the road sides, the following 
simple procedure has been implemented to compute the road 
surface brightness: 

• project the start and end point of each extracted 
centerline onto the GIS road axis, thereby defining the 
relevant road section 

• dilate this section by approximately the width of one 
lane 

• calculate the median gray value of this image region in 
order to estimate the road surface brightness 

Since the gray values along the medial axes have already been 
extracted, the contrast function simply results from the absolute 
difference of these values and the reference gray value. In Fig. 7 
examples of width and contrast function of a ribbon are shown. 
It furthermore illustrates that both functions show mutually 
correlated repetitive patterns which will be used to detect single 
vehicles. 
 

2.4 Single vehicle determination by least squares 
optimization 

For extraction of single vehicles from a ribbon, Gaussian kernels 
are fitted to the width and contrast function (Fig. 7). Of course, 
different kernels like a second-order polynomial could be used 
instead. However, the estimated parameters of a fitted Gaussian 
kernel relate not only to the desired vehicle dimensions but also 
allow to establishing a link to the particular scale used for line 
extraction in Sect. 2.2. – especially the Gaussian kernels fitted to 
the contrast function. The rationale of the procedure outlined in 
the following should thus be understood as an attempt to embed 
the vehicle detection into the same scale-space framework as the 
line extraction approach. 
 
The calculation of the unknown parameters of each Gaussian 
kernel is done by a least squares fit. The notation corresponds to 
the work of Mikhail (1976).  
The functional model of a Gaussian function to fit to a 
predefined interval of the width functions has the following 
form: 
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The functional model for the contrast function is quite similar: 
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Figure 8: Concepts of width functions' analysis 

        x position of value c along the interval under 
 investigation 
 
Since a vehicle should yield the maximum of both width and 
contrast function at the same position, µ is a shared parameter in 
both functions. Fig. 7 illustrates an example of the contrast and 
the width signal. The fitted Gaussian curves for the first interval 
are also included. These intervals are defined by two consecutive 
minima in a smoothed version of the function. It is also apparent 
from Fig. 7 that additionally introducing σ  as shared parameter 
would not lead to satisfactory results. The pronounced 
differences between the shapes of the two functions would cause 
the accuracy of the estimated unknown σ  to drop down 
significantly. 
The unknown parameters of the functional model (1) and (2) are 
summarized in the vector x: 

( )σ µ σ= w w c ca aTx  

It is easy to see that the functions (1) and (2) are nonlinear. 
Therefore the determination of the unknown parameters is an 
iterative process, where x needs to be calculated by (see 
(Mikhail, 1976):  

       (3)= +0x x ∆  
and  
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assuming the observations to be uncorrelated and of equal 
accuracy, i.e. neglecting the weighting matrix W. Vector l 
contains the observations of the current interval and f(x P

0
P) the 

width and contrast function derived from the initial values x P

0
P. ∆∆∆∆ 

are the corrections to the initial values and B is the Jacobian 
matrix containing the partial derivatives with respect to the 
unknowns of the Gaussian kernels. 
 
The vectors l and ( )0f x are defined by: 
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where indices f (first value) and l (last value) indicate the 
boundaries of the interval under investigation. 
Values for x P

0
P are chosen considering that:  

• µP

0
P corresponds to the position of the maximum of the 

current interval 
• aP

0
PBcB is the contrast value at position µP

0
P   

• σP

0
PBwB = σP

0
PBcB is chosen according to the supposed vehicle 

length 

• aP

0
PBwB can be calculated by 2µ π σ= ⋅ ⋅w wa w where wBµ B 

is the width at maximum µ 
 
Now the unknowns x can be calculated according to Equ.3. If 

the L1-norm − 0x x  is greater than a predefined threshold, x P

0
P 

is replaced by x and ∆∆∆∆ will be calculated again until convergence 
or after a maximum number of iterations is reached.  
Furthermore the accuracy of the unknowns can be obtained from 
the diagonal of the C Bxx B matrix, which is calculated by: 
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Here n is the number of observations, u is the number of 
unknown parameters (here 5) and v contains the observations' 
residuals, which are calculated by: 

( )( )= ⋅ − − 0v B ∆ l f x  

If the width and the contrast functions exhibit the expected 
repetitive pattern, only a few iterations are necessary.  
As final result of the least squares adjustment, we obtain the 
parameters describing a fitted Gaussian kernel for a given 
interval including their accuracies. Thresholds are applied to 
these parameters to discern false and correct hypotheses. The 
required thresholds were acquired from test datasets.  
In some cases multiple detections of the same vehicle occur due 
to neighboring ribbons. Therefore, an overlap analysis is carried 
out in which all overlapping (or nearby) hypotheses are mutually 
tested for consistency. In case of conflicts the worse hypothesis 
is rejected. 
 
2.5 Single vehicle determination by iterative constrained 
search 

A second method to find single vehicles also uses the appearance 
of significant repetitive patterns in the width function (Figure 8). 
Here, maximum values in this function are assumed to 
approximately represent the centers of single vehicles whereas 
minimum values are assumed to represent gaps between two 
vehicles of a queue. 
 
The following parameters are used:   

• vmin ... minimum length of a single vehicle (SV) and 
    search interval (SI) 

• vmax ... maximum length of SV and SI 
• lmin ... position of the minimum width within SI 
• lmax ... position of the maximum width within SI 
• d ... distance between lmin and lmax 

 
 
A vehicle hypothesis is generated if the following condition is 

fulfilled: min maxv v
d

2 2
≤ ≤  

 
 



 

Figure 9: Verification 

Figure 10: Extraction results I Figure 11: Extraction results II 

Figure 8 shows the flow chart of the width analysis scheme.  
Essentially, this algorithm tries to find local maxima and minima 
in the noisy width function and place the vehicle positions in 
such a way that vehicle hypotheses do not overlap. 
It is possible that more than one hypothesis is found for a single 
vehicle. This is caused by two or more maxima in the width 
function within size of a vehicle. Therefore we control the space 
between two hypotheses not to fall below a certain minimum 
distance. If more than one hypothesis is found within this 
minimum distance, the hypothesis with the highest maxima in 
the width function will be verified.  
Unlike the method described in Sect. 2.4, the contrast function is 
not used here. Rather, the contrast of the vehicle and the 
adjacent road surface is used for a simple verification after a 
hypothesis has been generated. Here the difference of the median 
gray values of the inner and the outer region is calculated (see 
Figure 9). 

3. RESULTS 

 In Figures 10 and 11, results achieved with the extraction 
approach from Sect. 2.4 are shown. Therefore, we processed an 
image scene covering an area of 0.1 sq. km. Cyan ellipses 
correspond to correct extractions, white ellipses represent 
misdetections. As can be seen, the ellipses of the correct 
extractions coincide quite well with the actual vehicles, clearly 
indicating that the fitting procedure works reliably. This is a very 
encouraging result, especially when recalling Figure 7, which 
gives an impression on the “noisiness” of the contrast and width 
function.  
However, there are also a number of misdetections, in particular 
at side-walks when dark objects are on either side of the side-

walk (see e.g. Fig. 11). Such failures could be overcome, for 
instance, by a more detailed analysis of neighborhood relations 
of extracted vehicles. A constellation as achieved for the right 
queue in Fig. 10 is very unlikely to happen; four vehicles are 
almost perfectly aligned in a row while each of the other two 
vehicles is located on a different side of this row. Incorporating 
this kind of reasoning into the approach would allow to further 
reducing the misdetection rate. 
Fig. 10 and 11 also show that a number of cars are not extracted, 
i.e. the completeness of this approach is quite fair. However, one 
has to keep in mind that vehicles do not always appear as queues 
and, furthermore, that the line extraction does not extract all 
existing queues. In fact, tests have shown that approximately 
60% of all vehicles are contained in the ribbons that serve as 
initial hypotheses. Besides this, also the edge detection 
procedure for determining a ribbon’s width could be improved 
to support convergence of the least squares adjustment. 
 
For numerical evaluation, manually created reference data sets 
have been utilized and the well-known criteria "correctness" and 
"completeness" values are calculated as evaluation measures: 

TP
   correctness

TP FP
TP

completeness
TP FN

=
+

=
+  

 
with    TP  true positives 
           FP  false positives 
           FN  false negatives 
Here true positives are correctly extracted vehicles, false 
positives are misdetections, and false negatives are missed 
vehicles with respect to the reference data. Table 1 summarizes 
the evaluation results depending on the type of reference data 
and the used method: 

a) all vehicles using least squares adjustment 
b) all vehicles using iterative constrained search 
c) only bright and dark vehicles, i.e. without gray 

vehicles (using least squares adjustment) 
d) only bright and dark vehicles, i.e. without gray 

vehicles (using iterative constrained search) 
 

Gray vehicles have been excluded from the reference in b) and 
d) since they almost show no contrast to their surroundings. We 
would like to mention in addition that the acquisition of 



 

reference data for some vehicles is certainly not free of errors. 
Even a human observer is sometimes not able to identify all 
vehicles in an image scene with high confidence. Therefore our 
reference data can only be considered as a very good 
approximation of real “ground-truth”.  
 
It can be seen from Table 1, that on one hand both approaches 
deliver comparable results, although the iterative constrained 
search generally achieves higher completeness with better 
correctness at the same time. On the other hand the single 
vehicle determination by least square optimization gives 
statistical accuracy of all hypotheses. It is planned to use these 
values for internal evaluation, which is supposed to increase 
performance and reliability. 
 
 Reference data 

 (a) (b) (c) (d) 

Completeness [%] 31.1 34.1 36.1 40.3 

Correctness [%] 73.5 76.0 70.5 72.3 

Table 1: Numerical Evaluation 
 
Despite the weak completeness, the good correctness of the 
extracted vehicles allows to use them as starting point for 
searching additional vehicles. Therefore the next steps of 
implementation will include the search for isolated vehicles 
using the information from the previous queue detection. 
Preliminary investigations using a differential blob detector 
(Hinz, 2005) for accomplishing this task have already taken out. 
 
Concluding the discussion, vehicles with good or even medium 
contrast to the road surface can be extracted very accurately. 
Furthermore, the results show that the analysis of width and 
contrast information using least square optimization allows to 
extracting single vehicles from queues with high correctness. 
Still, the completeness of the overall extraction is relatively low, 
since only queues can be extracted but no isolated vehicles. The 
results clearly show that the approach is promising but further 
improvements are necessary to achieve a higher completeness. 
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