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ABSTRACT:

Vehicle detection is motivated by different fielosapplication, e.g. traffic flow management, rgadnning or estimation of air and

noise pollution. Therefore, an algorithm that aultivally detects and counts vehicles in air- orcepaorne images would

effectively support these traffic-related analysesirban planning. Due to the small vehicle sizesatellite images detection of
single vehicles would deliver ambiguous resultsnéde our scheme focuses primarily on the extraatiowehicle queues, as the
pattern of a queue makes it better distinguishgatea whole) from similar objects. Hypotheses faeups are generated by
sophisticated extraction of ribbons. Within theibdons single vehicles are searched for by leas&rss fitting of Gaussian kernels
to the width and contrast function of a ribbon. Bhse the resulting parameter values, false andecbhypotheses are discerned.
The results show that the analysis of width andreshinformation using least square optimizat®alle to extract single vehicles
from queues with high correctness. Still, the catgiess of the overall extraction is relatively l@ince only queues can be
extracted but no isolated vehicles. The resultarlyleshow that the approach is promising but furth@rovements are necessary to

achieve a higher completeness.

1. INTRODUCTION
1.1 Motivation

There is an increasing demand for traffic monitgraf densely
populated areas. The traffic flow on main roads gartially be
measured by fixed installed sensors like inductaops, bridge
sensors and stationary cameras. Traffic on smalkds — which
represent the main part of urban road networks scacely
monitored and information about on-road parked slekiis not
collected. Wide-area imagesf the entire road network can
complement these selectively acquired data. Nevcalpgensor
systems on satellites, which provide images of feme
resolution or better, e.g. Ikonos and QuickBird, e#étkis kind
of imagery available. Hence new applications likaffic
monitoring and vehicle detection from these imades/e
achieved considerable attention on internationaifer@nces,
e.g. (Bamler and Chiu, 2005; Heipke et al., 2009jaSét al.,
2005). The presented approach focuses on the ietedtsingle
vehicles by extracting of vehicle queues from $isgéemagery.

1.2 Related work

Depending on the used sensors and the resolutitive afnagery
different approaches (Stilla et al., 2004) havenbéeveloped in
the past. The extraction of vehicles from imageshwa
resolution of about 0.15 m has already been conepsbely
tested and delivers good results in many situatidnwailable
approaches either use implicit or explicit vehigiedels (Hinz,
2003). The appearance-based, implicit model usesnpbe
images of vehicles to derive gray-value or textig@ures and
their statistics, which are assembled in vectong®s€ vectors are
used as reference to test computed feature vefrtorsimage
regions. Since the implicit model classificationesisexample
images the extraction results depend strongly enctivice of
representative images.

Approaches using an explicit model describe vehiale2 or 3
dimensions by filter or wire-frame representatiofise model is
then either matched "top-down" to the image oraetad image
features are grouped "bottom-up" to create strestsimilar to
the model. A vehicle will be declared as detectwtenever
there is sufficient support of the model found fre timage.
These approaches deliver comparable or even betelts than
approaches using implicit models but are hardlyliepble to

satellite imagery since there vehicles only appasr blobs
without any prominent sub-structures (see Fig. 1).

Three different methods for vehicle detection fremmulated
satellite imagery of highway scenes are teste@hafma, 2002).
The gradient based method and the method using Bayes
Background Transformation (BBT) deliver the best numiife
vehicle counts compared to ground truth. Sincenthber of
false detections is lower using BBT, this method isren
reliable. The performance of the third method ushrgncipal
Component Analysis (PCA) varies significantly withethoise
level of the image. Furthermore, the method gives lbwest
vehicle count. A manually created background imadge
mandatory for the PCA and BBT method, which requires
extensive interactive work. Consequently, the apgrea can
hardly be generalized and are limited to imageghef same
scene.

In (Gerhardinger et al., 2005) the commercial safef-eatures
Analyst®is used to implement an iterative learning appndac
analyzing the spectral signature and the spatiatesd. The
authors report that good results can be achieved ifery

Figure 1. Appearance of vehicles in optical higisolution

satellite imagery (Quickbird), GSD = 0.6 m



accurate road GIS is available. However, this ttate derived
by manual digitalization in their case.

An encouraging approach for single vehicle detectis

presented in (Jin and Davis, 2004). First, theymegphological
filtering for a rough distinction between vehiclixgls and non-
target pixels, which are similar to vehicles. Them
morphological shared-weight neural network is usfmt

extraction. The approach achieves good performaraees
under the condition that vehicles appear isolatémlvever, the
approach is not designed for vehicle queues ofidrgms (Jin
and Davis, 2004).

The last mentioned approaches are designed fois@utsn
coarser than 0.5 m and limit their search spaceo&mls and
parking lots using GIS information. By this, the rhen of false
alarms is significantly decreased.

In dense traffic situations, traffic jams or paxkirots, car
groupings show quite evident regularities (see €ig. 1).

Exploiting the knowledge about these repeating neages and
the fact that cars rarely occur isolated is al$erred to as global
modeling in the filed of vehicle detection. Vehidigpotheses
extracted by a neural network classifier (Ruskora.etL996) or
a “spot detector” (Michaelsen & Stilla, 2001) aellinearly

grouped into queues while isolated vehicle hypaheare
rejected. Hinz & Stilla (2006) use a differentia@agnetric blob
detector for an initial extraction of car candidafellowed by a
modified Hough transform for accumulating globaidence for
car hypotheses. Since these grouping schemes bgleatheses
but do not add new hypotheses, these approachdsaneever-
segmentation as initial input. They are designed nfiedium

resolution images of approximately 0.5m ground damgp
distance (GSD).

When high resolution imagery is available a morenpsing

strategy is to focus on reliable hypotheses foglsinehicles first
and complete the extraction afterwards by searcfingissing

vehicles in gaps of a queue using a less consttaiahicle

model (Hinz, 2003). By this, not only queues bubabolated
cars can be extracted as long as they belong tsethef reliable
hypotheses.

One of the few approaches focusing directly onslehjueues —
in particular military convoys — is presented in Bu et al.

(1997). They extract repetitive, regular object faumrations

based on their spectral signature. In their appraae search
space is limited to roads and parking lots usinguete GIS-
information. This seems necessary since the spacwil be

heavily distorted, if adjacent objects gain muchirifiuence —
even if the spectrum is computed for quite smadiges patches.

1.3 Overview

Figure 3 shows the overall structure of our appnoabich is
separated into three processing stages. In thprpoessing step
(Fig. 2 1), GIS data is used to determine Regiondntérest
(ROI). Afterwards we use a differential geometricpagach
followed by some post-processing to extract linfe@tures as
hypotheses of the queues (Sect. 2.2 and 2.3; Hij. Binally,
we determine single vehicles from these hypothbgesalyzing
the width and contrast function using a
optimization (Sect.2.4; Fig. 2 IlI).

2. QUEUE DETECTION

In Sect. 2.1 the used model will be presented.t. SR
describes the extraction of vehicle queues usimghisticated
line extraction. Then a number of attributes aleutated (Sect.
2.3). The attributes are analyzed and checkeddosistency to
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Figure 2: Processing Scheme

verify or falsify single vehicle hypotheses. Ttesdione by a least
square adjustment (discussed in Sect. 2.4) andnbiyeeative
constrained search (see Sect. 2.5).

2.1 Modd of vehicle queues

Generally, a vehicle queue is defined as ribborh wiistinct
symmetries along and across its local orientatBasically, the
model is similar to that defined in (Hinz, 2003ptigh, since
this model is originally designed for aerial imagasaumber of
modifications regarding the significance of differefeatures
have been applied:

A vehicle queue

< must have sufficient length, bounded width and low
curvature;

* shows a repetitive pattern along the centerling oo
contrast and width (Fig. 3a), while length and Wwidf
the individual replica correspond to vehicle
dimensions;

¢ collapses to a line in Gaussian scale space, henw
smoothing the image accordingly (Fig. 3b).

Please note that this queue model differs from dheve
mentioned approaches in a way that — in partictieough the
scale-space description — the queue is modeled asicae
structure and not just as a composite of its ugohgy] smaller
elements. At first glance, this seems of less itgmme. Still, it
provides the basis for detecting a queue hypottesia whole

(b)
Figure 3: Queue model. a) original image, b) smoothed image



(even though at a coarser scale) rather than cmtisiy it from
smaller elements. Thereby global knowledge camberporated
from the very beginning of the extraction.

2.2 Extraction of vehicle queues

Figure 4 illustrates the a priori information abeatd location
and direction taken from a national core databaise.positional
accuracy is known to be approximately 2m. Neithex toad
sides are contained in the database nor the posidfothe
individual lanes. Hence, the road width needs toesmated
from attributes like the number of lanes or therage width per
road segment. Thus the generated regions of imtR€H) can
only be regarded as an approximation of the trae erea.

Line extraction is carried out by applying the dintial
geometric approach of Steger (1998). This algoritghprimarily
based on the computation of the second image dieeea i.e.
the local curvatures of the image function. Paramsefor the
line extraction are chosen corresponding to théclelgeometry
(vehicle width: w) and radiometry (expected cortttagoad: c).

Thus, the necessary input parameters for line etitrac, t, and

t,, can be calculated as follows: Figure 5: Resulting Iin_es a_n‘ter merging, smoothing and
1w s filtering.
W _ -w ‘5[5] _ —\/6 az -> . . .
_T t= (:\/_7 e = (:\/_72 e= o rectangular structuring element oriented alongomticular road
2J3 2y W segment. In doing so the queues are enhanced ahdhiing
t =c [a 4= g0a substructures in bright cars are almost completaiyoved. The

relaxed parameter settings lead to a huge numbefalsé
where o defines the preliminary smoothing factor, caloedat hypotheses but also return most of the promisingptheses for
from the maximum expected width (e.g. 2.5 metgr)and ty vehicle queues. However, since the line extractiequires a
define the hysteresis thresholds for the secontiapderivative =~ Minimum contrast between vehicles and the roadaserfgray
of the image at each point. If the value excegda point is  Vvehicles can not be extracted reliably, as theydlgaemerge
immediately accepted as line point. All points venéite second from their surroundings.
derivative is smaller thah. are rejected. Points with a second Bright and dark lines are extracted separately. Tlaey
derivative betweent, and t, are accepted if they can be connected if they fulfill some distance and coldirigy criteria.
connected to already accept points. In order tdemehinitial N our case a maximum distance of one vehicle fengist not
hypotheses, the parameters for (minimum contrast to be be exceeded. Additionally, one has to keep in ntimat the
accepted) and (contrast for queues definitely to accept) aremerging of parallel lines would lead to significapositional
chosen quite relaxed. errors and is therefore prevented. The final prsiogs steps
Additionally, the line extraction algorithm is supped by consist of geometrical smoothing by polygonal agpmnation,

morphologically filtering the image with a direcial  resampling (Ramer, 1972) and testing all resultingsl against a
minimum length threshold and an upper limit forediion

differences to the road. Results of the mergingfdieting steps
are illustrated in Fig. 5.

2.3 Determining queue width and contrast

After extracting lines as medial axes of a ribbendth and
contrast functions are determined. The algorithmfinol the
ribbon width in each line point is based on prafilgpanned
perpendicular to the local line direction, and deiaing each
profile’s gray values by bilinear interpolation. &y for each
profile, local maxima are determined with sub-pigetcision by
fitting a second-order polynomial to the first detive of the
gray value profile in each profile point. The firmeximum value
found on either side of centerline is supposedaimespond to
the vehicle boundary, i.e., the distance betweertilo maxima
yields the queue width. If no maximum is found, gap the
width function are closed afterwards by linear iinteor
extrapolation.

Results of width determination are illustrated ig.F8. It can be
seen that most edges correspond to vehicle sideauBe of
weak contrast between vehicles and road surfacensber of
outliers are present, which are to remove by mefili@ning the
width function.

j .

Figure 4: Regions of Interest



Figure 6: Extracted ribbons: medial axis (cyan) and
width function (white).

One can see that most edges correspond to vehibs.s
However, since the gradient image has quite wealkrast, the

edges extraction results show also some irregigsrite. noisy
boundaries. Therefore smoothing of the extractegeds useful
to reduce the number of outliers.

Usually the irregularities are caused by other eduyearby the
vehicle queue. In future implementations we inteaddetect

such outliers by a more sophisticated shape asalysithe

boundary functions.

To determine the contrast function of a ribbonefenence gray
value outside the vehicle regions must be defifdwe actual
gray values in the direct neighborhood of a vehisctavever, are
often influenced by adjacent objects or shadows anel

therefore no reliable estimates of the referenay gralue. A
better way to determine the contrast function igstimate the
median road surface brightness in the neighborlud@dvehicle

gqueue and use this estimate as reference gray. vasseming

that — despite of the presence of some vehiclebe-ntost
frequent gray values in the Rol represent the reafhse, and
further assuming that in the center of a road distsirbances by
vehicles and shadows occurs than at the road shiefllowing

simple procedure has been implemented to compwerdad

surface brightness:

e project the start and end point of each extracted

centerline onto the GIS road axis, thereby defiring
relevant road section
- dilate this section by approximately the width afeo
lane
e calculate the median gray value of this image megio
order to estimate the road surface brightness
Since the gray values along the medial axes haeady been
extracted, the contrast function simply resultsrfrthe absolute
difference of these values and the reference gahyevIn Fig. 7
examples of width and contrast function of a riblzoa shown.
It furthermore illustrates that both functions shaoautually
correlated repetitive patterns which will be usedlétect single
vehicles.
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Figure 7: Width and contrast function of a ribbon

24 Single vehicle determination
optimization

by least sguares

For extraction of single vehicles from a ribbonusian kernels
are fitted to the width and contrast function (Fig. Of course,
different kernels like a second-order polynomialilldobe used
instead. However, the estimated parameters otfeal flbaussian
kernel relate not only to the desired vehicle digiens but also
allow to establishing a link to the particular scalsed for line
extraction in Sect. 2.2. — especially the Gauské@nels fitted to
the contrast function. The rationale of the procedwutlined in
the following should thus be understood as an gitemembed
the vehicle detection into the same scale-spacecfrmrk as the
line extraction approach.

The calculation of the unknown parameters of eaelusGian
kernel is done by a least squares fit. The notat@mesponds to
the work of Mikhail (1976).

The functional model of a Gaussian function to tiit a
predefined interval of the width functions has tledowing

form:

fxuy
w(%ﬁwﬂ)=£a ezté”w) (1)

with w(...) width as function ofa,, ¢, andu
ay the amplitude of the fitted Gaussian kernel
Gy second-order moment of the Gaussian kernel
7] first-order moment of the Gaussian kernel, i.e.
the position of maximum amplitude
X position of w along the interval

investigation

under

The functional model for the contrast function istg similar:

c(a o ,u):h%mézcE o

with c(...) contrast as function oé., g, andu
a the amplitude of the fitted Gaussian curve
(o2 second-order moment of the Gaussian curve
7 first-order moment of the Gaussian kernel, i.e.

the position of maximum amplitude



position of valuec along the interval under
investigation

Since a vehicle should yield the maximum of bothittviand
contrast function at the same positipsis a shared parameter in
both functions. Fig. 7 illustrates an example @& tontrast and
the width signal. The fitted Gaussian curves far fibst interval
are also included. These intervals are definedvoycdonsecutive
minima in a smoothed version of the function. laiso apparent
from Fig. 7 that additionally introducing as shared parameter
would not lead to satisfactory results. The promaeh
differences between the shapes of the two functiomdd cause
the accuracy of the estimated unknown to drop down
significantly.
The unknown parameters of the functional modebkfid (2) are
summarized in the vectar

x'=(a, o, # a o)
It is easy to see that the functions (1) and (2) monlinear.
Therefore the determination of the unknown pararsei® an
iterative process, wher& needs to be calculated by (see
(Mikhail, 1976):

x=x"+4  (3)

and

4=(8"8)"B"(I-(x°))
assuming the observations to be uncorrelated aneqogl
accuracy, i.e. neglecting the weighting matki%. Vector |
contains the observations of the current interval #x°%) the
width and contrast function derived from the iitialuesx’. 4
are the corrections to the initial values a@Bds the Jacobian
matrix containing the partial derivatives with resp to the
unknowns of the Gaussian kernels.

The vectors and f (x°) are defined by:
1T :(Wf WG (;)
(00 =(w(a ot u), W obu) {dah), ¢ datu))

where indicesf (first value) andl (last value) indicate the
boundaries of the interval under investigation.
Values forx? are chosen considering that:

current interval
a’ is the contrast value at positiph

length
a’, can be calculated by, = w, /277, wherew,,

is the width at maximury

Now the unknowns can be calculated according to Equ.3. If
the L1-norm Hx - XOH is greater than a predefined threshoft,
is replaced by andA4 will be calculated again until convergence
or after a maximum number of iterations is reached.
Furthermore the accuracy of the unknowns can bairedd from
the diagonal of th€,, matrix, which is calculated by:
~2 ~ 2 TR\t

Cxx = 0 [qux :JO EGB B)

with

P corresponds to the position of the maximum of the

&, = & is chosen according to the supposed vehicle

Here n is the number of observations, is the number of
unknown parameters (here 5) amdontains the observations
residuals, which are calculated by:

V:BDA—(I - f (xo))
If the width and the contrast functions exhibit tbgpected
repetitive pattern, only a few iterations are neaeg
As final result of the least squares adjustment,ol&in the
parameters describing a fitted Gaussian kernel &ogiven
interval including their accuracies. Thresholds applied to
these parameters to discern false and correct hgpes. The
required thresholds were acquired from test dagaset
In some cases multiple detections of the same lebicur due
to neighboring ribbons. Therefore, an overlap asialis carried
out in which all overlapping (or nearby) hypotheaes mutually
tested for consistency. In case of conflicts thesedypothesis
is rejected.

25 Single vehicle determination by iterative constrained
search

A second method to find single vehicles also usesaippearance
of significant repetitive patterns in the width @ion (Figure 8).
Here, maximum values in this function are assumed t
approximately represent the centers of single Vehiwhereas
minimum values are assumed to represent gaps hetivees
vehicles of a queue.

The following parameters are used:
. minimum length of a single vehicle (SV) and
search interval (SI)
Viax --- Maximum length of SV and Sl
Imin ... pOSition of the minimum width within Si
Imax -+~ position of the maximum width within Sl
d ... distance betweep, and }ax

Viin

A vehicle hypothesis is generated if the followiogndition is
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Figure 8: Concepts of width functions' analysis
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Figure 9: Verification

Figure 8 shows the flow chart of the width analysiseme.
Essentially, this algorithm tries to find local niaa and minima
in the noisy width function and place the vehiclesitions in
such a way that vehicle hypotheses do not overlap.
It is possible that more than one hypothesis isifofor a single
vehicle. This is caused by two or more maxima ia thdth
function within size of a vehicle. Therefore we ttohthe space
between two hypotheses not to fall below a certainimum
distance. If more than one hypothesis is found iwitthis
minimum distance, the hypothesis with the higheakima in
the width function will be verified.
Unlike the method described in Sect. 2.4, the @sttiunction is
not used here. Rather, the contrast of the vehacld the
adjacent road surface is used for a simple vetifinaafter a
hypothesis has been generated. Here the diffeiitbe median
gray values of the inner and the outer region Isutated (see
Figure 9).

3. RESULTS

In Figures 10 and 11, results achieved with th&aekon

approach from Sect. 2.4 are shown. Therefore, wegssed an
image scene covering an area of 0.1 sgq. km. Cyhpsed

correspond to correct extractions, white ellipsepresent
misdetections. As can be seen, the ellipses of dbeect

extractions coincide quite well with the actual iotbs, clearly
indicating that the fitting procedure works reliabrhis is a very
encouraging result, especially when recalling Fégidr which
gives an impression on the “noisiness” of the amsitand width
function.

However, there are also a number of misdetectiongarticular
at side-walks when dark objects are on either sidthe side-

Figure 10: Extraction results |

walk (see e.g. Fig. 11). Such failures could berowme, for
instance, by a more detailed analysis of neighbmihelations
of extracted vehicles. A constellation as achief@adthe right
queue in Fig. 10 is very unlikely to happen; fowhicles are
almost perfectly aligned in a row while each of tiiber two
vehicles is located on a different side of this rémcorporating
this kind of reasoning into the approach wouldwlto further
reducing the misdetection rate.

Fig. 10 and 11 also show that a number of carsatrextracted,
i.e. the completeness of this approach is quite flowever, one
has to keep in mind that vehicles do not alwaysapps queues
and, furthermore, that the line extraction does extract all
existing queues. In fact, tests have shown thatrcpately
60% of all vehicles are contained in the ribbonat therve as
initial hypotheses. Besides this, also the edgeeadtieh
procedure for determining a ribbon’s width could ibgroved
to support convergence of the least squares adgmstm

For numerical evaluation, manually created refegedata sets
have been utilized and the well-known criteria Yeotness" and
"completeness" values are calculated as evaluatEasures:

TP

TP+ FP

correctness

completeness ———
TP+ FN

with TP true positives
FP false positives
FN false negatives
Here true positives are correctly extracted vebicléalse
positives are misdetections, and false negatives raissed
vehicles with respect to the reference data. Tabd&mmarizes
the evaluation results depending on the type ddresfce data
and the used method:
a) all vehicles using least squares adjustment
b) all vehicles using iterative constrained search
c) only bright and dark vehicles, i.e. without gray
vehicles (using least squares adjustment)
d) only bright and dark vehicles, i.e. without gray
vehicles (using iterative constrained search)

Gray vehicles have been excluded from the referemd® and
d) since they almost show no contrast to their@aurdings. We
would like to mention in addition that the acqugsit of

Figure 11: Extraction results Il



reference data for some vehicles is certainly ne¢ fof errors.
Even a human observer is sometimes not able totifgeal
vehicles in an image scene with high confidenceer&fore our

Hinz, S., 2005. Fast and Subpixel Precise Blob @ete and
Attribution . Proceedings of ICIP 05, Genua, Séfit14 2005.

reference data can only be considered as a veryd goo

approximation of real “ground-truth”.

It can be seen from Table 1, that on one hand bppgroaches
deliver comparable results, although the iteratbemstrained
search generally achieves higher completeness wétter

correctness at the same time. On the other handsitigle

vehicle determination by least square optimizatigives

statistical accuracy of all hypotheses. It is pkthito use these
values for internal evaluation, which is supposedirtcrease
performance and reliability.

Reference data
(a) (b) (c) (d)
Completeness [%)] 31.1 34.1 36.1 40.3
Correctness|[%] 73.5 76.0 70.5 72.3

Table 1: Numerical Evaluation

Despite the weak completeness, the good correctobgke
extracted vehicles allows to use them as startiogtpfor
searching additional vehicles. Therefore the netdps of
implementation will include the search for isolatedhicles
using the information from the previous queue deiac
Preliminary investigations using a differential blaetector
(Hinz, 2005) for accomplishing this task have alyetaken out.

Concluding the discussion, vehicles with good cgremedium
contrast to the road surface can be extracted secyrately.
Furthermore, the results show that the analysisvidth and
contrast information using least square optimizat&@lows to
extracting single vehicles from queues with highrectness.
Still, the completeness of the overall extractismalatively low,
since only queues can be extracted but no isolahbitles. The
results clearly show that the approach is promiding further
improvements are necessary to achieve a higherletengss.
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