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ABSTRACT: 
 
A new method for building change detection from Digital Surface Models (DSM) and multi-spectral images is presented. The DSM 
can be generated from Airborne Laserscanner (ALS) data or by image matching techniques. From the multi-spectral image, the 
Normalised Difference Vegetation Index (NDVI) is computed and used in the change detection process. The workflow of the method 
consists of two stages. In the first stage, the DSM, the NDVI, and surface roughness parameters derived from the DSM are used in a 
classification technique based on the Dempster-Shafer theory for data fusion. In the case of ALS data, the height differences between 
DSMs created from first and last pulse data can also be considered. This technique is used to detect buildings. In the second stage of 
processing, these building detection results are compared to an existing building data base, and changes between the existing data 
base and the new data set are determined. This paper focuses on the second processing stage, in which the actual change detection is 
carried out. The method is designed to classify buildings and building parts as being confirmed, changed, new, or demolished. The 
change detection method considers the facts that the original data and the building detection results can have a different topology and 
that small differences between the data from the two epochs might be caused by different levels of generalisation or errors caused by 
a misalignment or insufficient resolution of the sensor data. Examples for the performance are given using DSMs generated both 
from ALS data and by image matching, highlighting the different properties of these data for building change detection.  
 
 

1. INTRODUCTION 

1.1 Motivation and Goals 

Automatic building detection has been an important topic of 
research in Photogrammetry for more than a decade. In order to 
achieve results compliant with mapping scales of 1:1000-
1:10000, multi-spectral aerial imagery and/or airborne laser 
scanner (ALS) data have been used (Matikainen et al., 2003; 
Rottensteiner et al., 2007). In many industrialised countries 
there exist 2D maps or building databases. Due to the dynamic 
nature of industrialised societies, building data collected at a 
certain time become outdated rather quickly. To speed up the 
production cycle for keeping such databases up-to-date, it is 
desirable to automate the detection of areas where buildings 
have changed. It is the goal of this paper to describe such a 
method for building change detection based on Digital Surface 
Models (DSMs) and multi-spectral imagery. This method is 
based on an adaptation of previous work on automatic building 
detection (Rottensteiner et al., 2007). The building detection 
results are compared to the existing map, and a classification is 
carried out to determine the changes between the two epochs. 
This classification has to take into account deviations between 
the two data sets that might be due to different degrees of 
generalisation and to small registration errors between the 
original data captured at the two epochs. It also has to consider 
the fact that the topology of the existing map and the 
automatically detected buildings might be different (Ragia and 
Winter, 2000). The method will be applied to DSMs generated 
from ALS data and by digital image matching, showing how 
well these different data sets are suited for the purpose of 
change detection for updating existing building data bases. 
 

1.2 Related Work 

There are two basic approaches to the problem of change 
detection (Vosselman et al., 2004). If original data are available 
for two different epochs t1 and t2, change detection can be 
carried out by comparing the two datasets and inferring changes 
from the differences detected in the original data. This has been 
applied in the past to detect changes in buildings after 
earthquakes based on their different appearance in DSMs 
generated by ALS (Murakami et al., 1998). In the second 
scenario, a map or a digital data base is available for epoch t1 
and original data are only available for epoch t2. Change 
detection is carried out to keep the map up-to-date. In order to 
infer changes, the original map can be compared to the new 
sensor data directly. If ALS data are used for change detection, 
changes in buildings will result in height differences between a 
3D city model and the new DSM. However, if the original data 
are only available in 2D, this cannot be directly exploited. This 
problem can be circumvented by detecting the objects of 
interest independently in the new sensor data and comparing the 
object detection results to the original map (Vosselman et al., 
2004). This strategy does not take into consideration the fact 
that a building exists in the original map, it is not unlikely that 
there will still be a building at epoch t2.  
 
Matikainen et al. (2003, 2004) detect buildings in ALS and 
aerial image data and then compare the results to building 
segments from an existing map. The method applies rule-based 
classification techniques separately to the building detection 
results and to the buildings of the existing map, based on the 
percentage of the area of a building that overlaps with any 
building in the other data set. Buildings in the existing data set 
are classified as detected, partly detected, and not detected, 
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whereas buildings in the new data set are classified as new, 
enlarged, or old. Small errors caused by alignment errors and 
by the generalisation of the existing map are considered by 
selecting thresholds different from 100% for classifying a 
building as old or detected. A common visualisation of these 
two classification results is presented on a per-pixel basis, but 
no further object-based analysis is carried out.  
 
Vögtle and Steinle (2004) present a method for building change 
detection from ALS data that is based on a comparison of an 
existing map and the DSM corresponding to that map with the 
newly detected buildings and the corresponding DSM. Change 
detection results in a classification of buildings as not-altered, 
new, demolished, added-on, or reduced. In a first step, the 
overlap ratio between buildings is evaluated for both the old 
and the new data set. This leads to an initial classification of 
buildings as new, demolished, or other. The buildings not yet 
classified have a correspondence in the other data set, and are 
further classified as not-altered, added-on, or reduced based on 
an analysis of the height changes of the DSM in the areas 
covered by corresponding segments. Thus, this is an example 
for a change detection algorithm that uses the original data for 
both epochs. The advantage that this method can also detect 
height changes is contrasted by the problem of actually having 
access to such data.  
 
Vosselman et al. (2004) present a method for comparing an 
existing map with the results of a building detection technique 
using ALS data. They give a list of errors that might result in 
differences between the existing map and the newly extracted 
buildings, namely generalization, random noise, systematic 
alignment errors, and object selection, the latter being a variety 
of generalization. Morphologic filters are applied before the 
comparison of the two data sets to compensate for errors caused 
by generalization, and an offset between corresponding 
segments is determined by a matching technique for coping 
with alignment errors.  
 
In (Rottensteiner et al., 2007), a method for building detection 
by the fusion of ALS data and a normalised difference 
vegetation index (NDVI) derived from the red and the infrared 
bands of a multi-spectral image was presented. This method has 
been modified so that it can be applied to building change 
detection. The main focus of this paper will be on describing a 
new change detection method that is based on a comparison of 
the existing map and the results of building detection.  
 
1.3 Method Overview 

Building change detection requires a DSM generated either 
from ALS data or by image matching and, optionally, an NDVI 
image generated from a geocoded multi-spectral image. The 
DSM, the NDVI, and surface roughness parameters derived 
from the DSM are used in a building detection technique based 
on the Dempster-Shafer theory for data fusion. In the case of 
ALS data, the height differences between DSMs created from 
first and last pulse data can also be used. This classification 
technique has been modified so that it can also consider the 
existing building data base. An outline of the modified building 
detection method will be given in Section 2. In a second 
processing stage, the results of building detection are compared 
to an existing building data base and changes between the 
existing data base and the new data set are determined. This 
method can handle data sets of different topology and will be 
described in Section 3. Section 4 will present first results, 
whereas conclusions will be drawn in Section 5. 

2. BUILDING DETECTON 

The input to the method for building detection presented in 
(Rottensteiner et al., 2007) comprises up to four data sets 
generated from the raw data in a pre-processing stage. The 
minimum set of input data consists of a DSM grid and a Digital 
Terrain Model (DTM). The DSM can be derived from ALS data 
or by image matching. For the experiments described in 
Section 4, the DTM was derived from the DSM by hierarchic 
morphologic filtering (Rottensteiner et al., 2005). If ALS data 
are used, a DSM grid representing the height differences 
between the first and the last pulse can also be used. The fourth 
data set that can be used in building detection is the NDVI.  
 
Building detection is based on the theory of Dempster-Shafer 
for data fusion. In Dempster-Shafer fusion, the output of a set of 
“sensors” is used for a classification process in which n classes 
Cj ∈ θ  are to be discerned. Denoting the power set of θ  by 2θ, 
a probability mass fulfilling certain constraints has to be 
assigned to every class A ∈ 2θ (i.e., also to any combination of 
the original classes) by each sensor. The probability masses 
from the individual sensors can be combined, and from these 
combined probability masses, two parameters can be computed 
for each class: the Support of a class is the sum of all masses 
assigned to that class, and the Plausibility sums up all 
probability masses not assigned to the complementary class 
of A. The accepted hypothesis Ca ∈ θ  is determined according 
to a decision rule. The Dempster-Shafer theory also provides a 
measure for the Conflict in the sensor data (Klein, 1999).  
 
Building detection starts with a Dempster-Shafer fusion process 
carried out for each pixel of the DSM to achieve a classification 
of the input data into one of four classes: buildings (B), trees 
(T), grass land (G), and bare soil (S), thus θ = {B, T, G, S}. The 
model for the distribution of the evidence from each sensor to 
the four classes assumes that each sensor i can separate two 
complementary subsets of θ, UCi and UCi‘. The probability mass 
Pi (xi) assigned to UCi by the sensor i depending on the sensor 
output xi is modelled to be equal to a constant Pl for xi < xl. For 
xi > xu, it is modelled to be equal to another constant Pu, with 
0 ≤ Pl < Pu ≤ 1. Between xl and xu, the probability mass is 
modelled by a cubic parabola with horizontal tangents at xi = xl 
and xi = xu. The probability mass [1 - Pi (xi)] is assigned to UCi‘. 
No other assumptions about the distributions of the sensor data 
with respect to the classes are required. The combined 
probability masses are evaluated for each pixel, and the pixel is 
assigned to the class of maximum support. Originally, up to five 
“sensors” could be used in this process. The height differences 
ΔH between the DSM and the DTM help to distinguish elevated 
objects from the ground, thus UCΔH = B ∪ T. Two surface 
roughness parameters computed from the first derivatives of the 
DSM, namely strength R and directedness D, are also used in 
the classification process. Large values of surface roughness are 
typical for trees, thus UCR = T and UCD = T. However, D is only 
used if R differs significantly from 0. The height differences 
ΔHFL between the first and the last pulse DSMs also distinguish 
trees from other classes: UCΔHFL = T. Finally, the NDVI is an 
indicator for vegetation, thus UCNDVI = T ∪ G. The uncertainty 
of the NDVI in shadow areas can be considered by modulating 
the probability masses depending on the standard deviation of 
the NDVI. In (Rottensteiner et al., 2007) it was shown how the 
parameters of the model for the probability masses can be 
selected. The classification results are improved by a post-
classification technique aiming at re-classifying isolated pixels 
and pixels having a high conflict value. Initial building regions 
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are determined as connected components of “building pixels”. 
A second Dempster-Shafer fusion process is applied to these 
regions, using four cues representing average values for each 
building region to eliminate regions actually corresponding to 
trees. The result of building detection is the label image of the 
remaining building regions. The boundaries of these building 
regions can be extracted in vector format, too. 
 
For the purpose of building change detection, a further optional 
input “sensor” was integrated into the first Dempster-Shafer 
fusion process. In many scenes, the amount of change will not 
be high, so that the original map gives an indication where 
buildings are to be expected. Thus, if a pixel is situated inside a 
building in the original map, it is more likely still to be inside a 
building at epoch t2 than not. On the other hand, if the pixel is 
not inside a building in the original map, it is also more likely 
that it is not inside a building at epoch t2. Let the probability 
that a pixel inside a building in the original map is still a part of 
a building at epoch t2 be denoted by PB, and the probability that 
a pixel not being inside a building in the original map is not 
inside a building at epoch t2 by P¬B. For a pixel inside a 
building in the original map, a probability mass equal to PB can 
be assigned to class B, and (1 - PB) to class T ∪ G ∪ S. If the 
building is not inside a building in the original map, P¬B is 
assigned to class T ∪ G ∪ S and (1 - P¬B) is assigned to class B. 
Thus, a bias is introduced by the original map, which can 
especially help to confirm small buildings that might otherwise 
be classified as trees. In the current implementation, P¬B = PB is 
assumed, and the user has to specify the value for PB. Typically, 
PB is chosen between 60 % and 75 %. The user can also decide 
not to consider the original map in the classification if the 
amount of change in the scene is high.  
 
 

3. BUILDING CHANGE DETECTION 

Change detection is based on a comparison of label images: the 
“existing label image” generated from the existing map and 
containing the labels le ∈ Le, and the “new label image” 
generated by the building detection method and containing the 
labels ln ∈ Ln. The goal of change detection is three-fold:  
 
1. A classification of the buildings in the existing map as 

either confirmed, changed, or demolished; 
2. The detection of buildings that are found to be new; 
3. A delineation of the outlines of both the changed and the 

new buildings, showing demolished and new building parts 
for the changed buildings.  

 
Since the two data sets will usually have different topologies, 
these goals are achieved in a procedure consisting of two stages. 
The first stage is a topological clarification of the new data set 
by matching its labels to those of the existing label image in 
order to achieve topological consistency between the two 
epochs. This is followed by the actual classification to detect the 
changes. The output of change detection consists of a “change 
map” showing the actual changes between the epochs according 
to the classification results described above, and a label image 
describing the state at epoch t2.  
 
3.1 Topological Clarification 

For each co-occurrence of two labels le ∈ Le and ln ∈ Ln, the 
overlap ratios pne = nn∩e / nn and pen = nn∩e / ne are computed, 
where nn∩e is the number of common pixels assigned to the 

region ln in the new label image and to le in the existing label 
image, nn is the total number of pixels assigned to the region ln 
in the new label image, and ne is the total number of pixels 
assigned to le in the existing label image. First, marginal 
correspondences, i.e. correspondences that do neither contribute 
significantly to ln nor to le, are eliminated. Using a user-defined 
threshold tm (typically, 10 %), all correspondences with pne < tm 
and pen < tm are eliminated. As a result, a set of correspondences 
between labels le ∈ Le and ln ∈ Ln is obtained. Figure 1 shows 
two sets of labels Le and Ln, with correspondences depicted by 
lines. If the topology of the two data sets were identical except 
for new or demolished buildings, each label would have no or 
one line connecting it to a label in the other data set. As the 
topology is not identical, six cases must be distinguished (cf. 
Figure 1):  
 

 
 

Figure 1.  Two sets of labels Le and Ln and correspondences 
between labels li

e ∈ Le and lj
n ∈ Ln.  

 
1. A label in Le not having any corresponding label in Ln 

indicates a demolished building (e.g. l1
e in Figure 1). 

2. A label in Ln not having any corresponding label in Le 
indicates a new building (e.g. l2

n). 
3. A label in Le having exactly one corresponding label in Ln 

(e.g. l2
e and l1

n) indicates a confirmed or a changed building. 
4. If a label in Le has M corresponding labels in Ln (e.g. l3

e, l3
n 

and l4
n), the original building is split into several labels. It can 

be either confirmed or changed. The splitting can be caused 
by the actual demolition of building parts, or it can just be 
caused by height discontinuities within a building.  

5. If a label in Ln has N corresponding labels in Le (e.g. l5
n, l4

e 
and l5

e), several existing buildings are merged. Again, this 
might be the result of some actual changes or not. It typically 
occurs with terraced houses having identical roof heights.  

6. If a set of M labels li
e ∈ Le corresponds to a set of N labels 

lj
n ∈ Ln (e.g. l6

e, l7
e, l8

e, l6
n and l7

n), buildings or building parts 
are both split and merged, and there are ambiguities with 
respect to the correct correspondence of some of the new 
labels (Figure 2). 

 
In all except the first two cases, there can additionally be 
building parts that overlap with the background in the other 
label image, i.e., new or demolished parts of changed buildings.  
 
In order to obtain a classification on a per-building level for all 
existing buildings, the ambiguous case 6 has to be resolved first. 
Assuming the topology of the existing label image to be correct, 
the new label image has to be changed so that no ambiguities 
occur. This can be achieved by splitting any label lj

n that 
corresponds to more than one label in Le and / or has a 
significant overlap with the background. This shall be explained 
using the example in Figure 2. The existing label image, shown 
in the upper row, contains two labels l1

e and l2
e. The second row 

shows the results of building detection. There are altogether five 

      
Ln 

      
Le   

 l1
n l2

n l3
n l4

n l5
n l6

n l7
n 

l1
e l2

e l3
e l4

e l5
e l6

e l7
e l8

e 
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labels lj
n, one of which (l2

n) overlaps with both l1
e and l2

e. The 
label l4

n also contains a new building that has been constructed 
in a gap within the building l2

e. First, new buildings or building 
parts are identified. For this purpose, a binary image of those 
building pixels in the new label image that correspond to the 
background in the existing label image is generated. This binary 
image highlights the new building pixels, but it is also affected 
by noise at the building outlines. A morphological opening 
filter is used to remove the noise. The size of the structural 
element is the minimum size of a change that can be detected, 
and is typically chosen to correspond to one to three times the 
sensor resolution. If there remain “white” pixels in the filtered 
image, new labels corresponding to new building parts can be 
detected by a connected component analysis. A label image Lc 
combining the existing labels Le and these new labels is created. 
Each label in Ln corresponding to more than one label in Lc is 
split so that each of the new labels corresponds to exactly one 
label of Lc. In order to compensate for smoothing effects of the 
morphological filter at the fringes of new building parts, the 
Voronoi diagram of Lc is used to assign pixels to one of the new 
labels. The third line of Figure 2 shows the results of this 
splitting process. Two new labels were added to Ln. The label l6

n 
corresponds to a new building part, and the label l7

n is the result 
of splitting off the part of l2

n that corresponds to l2
e.  

 

 

 

 

 
Figure 2.  First row: Existing map. Second row: Results of 

automatic building detection. Third row: New label 
image after resolving ambiguities. Fourth row: 
Results of topological clarification. 

 
Having resolved all ambiguities, the case corresponding to 
merged labels is resolved. Labels can be merged because the 
buildings are close to each other (left part of Figure 3), or 
because a new building has been constructed between them 
(right part of Figure 3). In a similar process as described above, 
new building labels are detected, and the merged label in Ln is 

split into several new labels, each corresponding either to a new 
building or to exactly one label in the existing map. 
 

 
 

Figure 3.  Clarifying the case of merged labels. Upper row: 
Existing map with two buildings. Second row: 
Results of building detection. Third row: Clarified 
label image. Left: the merged buildings are close to 
each other. Right: a new building was detected. 

 
Finally, the case corresponding to split labels is analysed. We 
want to merge all new labels corresponding to an existing label 
if the fact that these labels are separate in the new label image is 
not the result of a larger building part having been demolished. 
For that purpose, the new labels are grown by morphologic 
closing (i.e., the binary image of building pixels is closed 
morphologically, and each building pixel in the closed image is 
assigned to the label found in the Voronoi diagram of the new 
label image). If two labels are found to be neighbours in the 
closed label image, the two labels are merged. If this is not the 
case, the separation is assumed to have been caused by the 
demolition of a building part, and the original labels are 
maintained. The last row in Figure 2 shows the results of 
topological clarification after merging of the split labels. As a 
result of topological clarification, an improved version Ln

imp of 
the new building label image Ln is obtained, with some of the 
original labels in Ln having been split and others having been 
merged. Each of the labels in Ln

imp corresponds either to exactly 
one label in Le or to none (Figure 4). Each of the labels of Le 
corresponds to one or more labels of the improved version of 
Ln

imp or to none. There remaining split cases (one label of Le 
corresponding to more than one label in the improved version 
of Ln

imp) all correspond to changed buildings. 
 

 
 

Figure 4.  Two sets of labels Le and Ln
imp and correspondences 

between labels li
e ∈ Le and lj

n ∈ Ln
imp after 

topological clarification. 
 
3.2 Classification of Changes 

After topological clarification, the actual change detection is 
carried out. Again, the percentages of overlap are computed for 
each co-occurrence of two labels le ∈ Le and ln ∈ Ln

imp. 
Marginal correspondences are eliminated, which results in a 
correspondence graph like the one shown in Figure 4. A 
building is classified as new if its label ln ∈ Ln

imp does not have 
a correspondence in Le. An existing building is classified as 
demolished if its label le ∈ Le does not have a correspondence in 
Ln

imp. For all remaining building labels le ∈ Le, two binary 
images are created: a binary image of demolished pixels (i.e., 
pixels assigned to le in the existing map, but not to any of the 

      

Ln
imp 

      
Le   

 l1
n l2

n l3
n l4

n l5
n l6

n l7
n 

l1
e l2

e l3
e l4

e l5
e l6

e l7
e l8

e 

 l8
n  l9

n 

new 

l1
e 

l2
e 

l1
n l2

n 

l3
n 

l4
n 

l5
n 

l1
n 

l1
n 

l2
n 

l3
n 

l5
n 

l4
n 

l4
n 

l6
n 

l6
n 

l7
n 

PIA07 - Photogrammetric Image Analysis  ---  Munich, Germany, September 19-21, 2007
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

148



 

corresponding labels in Ln
imp), and a binary image of new pixels 

(i.e., pixels assigned to any of the labels corresponding to le in 
Ln

imp, but not assigned to le in the existing map). Both are 
filtered by morphological opening. The size of the structural 
element is chosen to be identical to the one used in topological 
clarification. If neither demolished nor new pixels remain after 
morphological opening, the existing building is classified as 
confirmed; otherwise, it is classified as changed. For changed 
buildings, connected components in the binary images of 
demolished and new pixels are considered to correspond to 
demolished building parts and new building parts. Finally, two 
images representing the change detection results are generated:  
 
1. A change map using different colours for new, demolished, 

confirmed, buildings as well as for confirmed, new, or 
demolished parts of changed buildings.  

2. A label image representing the new state. 
 
For generating the label image representing the new state, there 
are two options. The first option is to use the improved version 
of the new label image. As an alternative, the original building 
outlines can be used for confirmed buildings, whereas for 
changed buildings, the outlines can be a combination of the 
original outlines for those building parts that have not been 
changed and the new building parts. The second option is to be 
preferred if the original map is more accurate, e.g. if it is a 
cadastral map generated by a geodetic survey. 
 
 

4. EXPERIMENTS 

The method described in this paper was tested using two data 
sets. The first data set, captured over Fairfield (NSW), consisted 
of ALS points with a nominal spacing of 1.2 m. The first and 
the last laser pulses as well as the intensity of the returned 
signal were recorded. In addition, a colour orthophoto was 
available. From the red band of that orthophoto and the 
intensity of the signal, a “pseudo-NDVI” image could be 
generated. DSMs of a grid width Δ = 1 m were generated for 
both the first and the last pulse data. For a part of the Fairfield 
data set, the outlines of the buildings were determined by 
photogrammetric plotting with a planimetric accuracy of 
±0.2 m. In order to simulate actual changes, the label image 
generated from these outlines was modified by both adding and 
removing buildings or building parts. This modified building 
map was used as the existing map in change detection. The size 
of the test area was about 500 x 400 m2. The second data set 
was provided by EuroSDR. It consisted of a DSM generated by 
image matching, a colour orthophoto and an orthophoto 
representing the infrared band, and an existing building data 
base in the form of a binary building image. Both the DSM and 
the orthophoto had a resolution of Δ = 0.501 m. The size of the 
test area was about 1100 x 1100 m2. The DSM was very noisy, 
especially in the shadow regions, where the outlines of 
buildings were smoothed. The numerical resolution of the DSM 
heights was identical to the planimetric resolution Δ. Thus, the 
only height values occurring were full multiples of Δ. Along 
with the uncertainties of the DSM in shadow areas, this was the 
reason why surface roughness was of no use for building 
detection. 
 
Building detection using the method outlined in Section 2 was 
applied to both data sets. In Fairfield, standard parameters 
described in (Rottensteiner et al., 2007) were used for the height 
differences between DSM and DTM, the height differences 
between first and last pulse DSMs, the NDVI, and the two 

surface roughness parameters. The existing map was also 
considered in the classification process, using PB = P¬B = 75 %. 
In Toulouse, we used the DSM, the NDVI, the directedness of 
surface roughness (but not the strength), and the existing map, 
using PB = P¬B = 60 % and selecting the other parameters in the 
way described in (Rottensteiner et al., 2007). As described in 
Section 3, the results of building detection were used to detect 
changes between the original map and the new data. The 
resulting change maps, generated at the resolution of the 
respective DSM grids, are presented in Figure 5.  
 

 

 
Figure 5.  Change maps for Fairfield (above) and Toulouse 

below). Ochre/yellow: confirmed buildings/building 
parts. Blue/light grey: demolished buildings/building 
parts. Red/green: new buildings/building parts.  

 
In Fairfield, changes affecting the main buildings are detected 
correctly. All new buildings (red areas in Figure 5) and building 
parts (green) in the data set were detected. All new buildings are 
correct, and so are the majority of the new building parts. The 
few incorrect new building parts are the result of an over-
estimation of the building extents. Of course, the algorithm 
cannot really discern whether a larger area found to be new is a 
new building or only a new building part. In case of doubt, a 
new building is assumed. All demolished buildings (blue) and 
building parts (light grey) were detected. All except two 
demolished building parts are correct. However, with 
demolished buildings, the trend observed in (Rottensteiner et 
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al., 2007) is confirmed: For the main buildings, the change 
detection results are correct, but for smaller structures, the 
results become more and more uncertain. Thus, the small 
buildings classified as demolished in the back yards, mostly 
garden sheds and garages, are actually too small to be detected 
by the method and hence have to be considered as false 
negatives. A comparison of the label image representing the 
new state to the reference label image was carried out to derive 
quality parameters on a per-pixel level. Completeness, 
correctness, and quality (Rottensteiner et al., 2005) were 
determined for the building pixels of the label image 
representing the new state. Completeness was 95.0 %, thus 5 % 
of the building pixels in the reference data set were not 
detected; these are mostly small buildings in the back yards. 
Correctness was 97.9 %, thus only 2.1 % of the detected 
building pixels were incorrect. The overall quality was 93.1 %. 
These numbers represent the actual classification accuracy and 
are not affected by misalignment of the data sets, because the 
original outlines were used for confirmed buildings. 
 
In Toulouse, the results are not as good as for Fairfield. Again, 
it can be observed that small buildings are not detected in the 
new data set. Many major changes are detected correctly, e.g. 
the groups of new and demolished buildings in the south-west 
of the scene. There are two very large areas of false detections: 
the large green area in the northeast corner of the scene merges 
a correctly detected new building with a parking lot, and the 
large red area in the east is actually a sports field. In both cases, 
as well as in the case of some building parts erroneously 
classified as demolished, the poor quality of the DSM in these 
areas (height variations larger than 3 m in essentially horizontal 
areas) contributed to these false classifications. Note also the 
obvious over-estimation of the large building complex in the 
western part of the scene in the shadow areas (i.e., north of the 
building). Other problems were related to trees partly 
overhanging buildings and to the general lack of ground points 
in the forested areas, the latter causing errors in the DTM 
generation process. On a per-pixel basis, completeness was 
determined to be only 89.3 %, and correctness was even poorer 
(68.1 %). Without the two problematic areas, correctness was 
still only 76.5 %. These data are partly afflicted by errors in the 
reference data. They were determined by digitization in the 
orthophoto and, thus, are not as accurate as the Fairfield 
reference data. In any case, a comparison of the results for the 
two data sets shows the importance of using a high-quality 
DSM in the classification process. 
 
 

5. CONCLUSIONS 

A new method for building change detection was presented. It 
combines DSMs, DSM roughness parameters, an NDVI image, 
and an existing map in a classification process based on 
Dempster-Shafer fusion. Comparing the building detection 
results to the existing map, a topological clarification is carried 
out, and the changes between the existing map and the results of 
building detection are classified. The classification takes into 
account the fact that small differences are likely to be caused by 
errors of building detection at the building outlines. The results 
of change detection are presented so that the user can easily 
assess which buildings are confirmed, new, demolished, or 
changed, and in case of changed buildings also the nature and 
extent of these changes. Given the importance of the DSM in 
the classification process, it is not astonishing that the method 
works considerably better with DSMs derived from ALS data 
compared to DSMs generated by image matching. However, 

this may be partly the result of the specific matching algorithm 
used to generate the Toulouse DSM. In the future, the method 
will be tested further using the remaining EuroSDR data sets. 
Further work will concentrate on improving the geometrical 
quality of the building outlines by image edges, because the 
building outlines are much better defined in the image data than 
in a DSM, especially if the latter was generated by matching.  
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