
INFERRING TRAFFIC ACTIVITY FROM OPTICAL SATELLITE IMAGES 
 
 

J. Leitloff a, *, S. Hinz b, U. Stilla a 

 
a Photogrammetry and Remote Sensing  

b Remote Sensing Technology  
Technische Universität München, Arcisstrasse 21, 80333 München, Germany 

{Jens.Leitloff | Stefan.Hinz | Uwe.Stilla}@bv.tum.de 
 
 

 
KEY WORDS:  Urban, Detection, Matching, Quickbird, Multispectral, Multiresolution 
 
 
ABSTRACT: 
 
In this paper we describe an approach to automatically estimate movements of vehicles in optical satellite imagery. The approach 
takes advantage of the fact that the optical axes of the panchromatic and multispectral channels of current spaceborne systems like 
IKONOS or Quickbird are not coinciding. The time gap that appears between the acquisition of the panchromatic and multispectral 
data can be used to derive velocity information. We employ a sub-pixel matching approach relying on gradient directions followed 
by least-squares fitting of Gaussian kernels to estimate the movement. The incorporation of the least-squares framework provides the 
basis to conclude about the accuracy of the movement estimates and to apply a statistical test deciding whether an object moves at 
all. We illustrate the matching and estimation scheme by various examples of real data.  
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1. INTRODUCTION 

The automatic detection, characterization and monitoring of 
traffic using airborne and spaceborne data has become an 
emerging field of research. Approaches for vehicle detection 
and monitoring include not only video cameras but nearly the 
whole range of available sensors such as optical aerial and 
satellite sensors, infrared cameras, SAR systems, and airborne 
LIDAR. The broad variety of approaches can be viewed, for 
instance, in the compilations (Stilla et al., 2005) and (Hinz et 
al., 2006). Although airborne cameras are already in use and 
seem to be an obvious choice, satellite systems have entered the 
resolution regime required for vehicle detection. Sub-metric 
resolution is available in the optical domain and, since the 
successful launch of TerraSAR-X, closely followed by 
Spotlight SAR data. While the utilization of along-track 
interferometric spaceborne SAR data as delivered by 
TerraSAR-X is straightforward for movement estimation, 
optical satellite images do not provide interferometric 
capabilities nor they allow for acquiring image sequences with 
reasonable frame rate (e.g., the time gap of IKONOS single-
pass stereo pairs reaches 6-12s).  
 
However, the CCD linescanners implemented in the IKONOS 
and Quickbird instrument offer the potential for deriving 
information about moving objects. Due to constructional 
reasons the panchromatic (pan) and multispectral (ms) channels 
have non-coinciding optical axes, which lead to a small time 
gap of 0.2s between the acquisition of the pan and ms images 
(see e.g. (EURIMAGE, 2007)).  
 
Two typical traffic scenes of a pan-sharpened Quickbird scene 
of an urban area are shown in Figure 1. The delay of 0.2s can be 
clearly seen by the typical color fringe caused by fast moving 
objects, which are observed at different positions in the pan and 
ms data.  
 

 

 
(a) (b) 

Figure 1. Spaceborne traffic scenes (Quickbird). Moving cars 
can be identified by their color fringe; see blue car in (a) and 

red cars in (b) 
 
The appearance of color fringes at moving objects is well-
known and has been mostly treated as artefact. Usually 
techniques are developed for removing the fringes to enhance 
the visual quality of images, although the potential for 
movement estimation has been already recognized – especially 
for airborne line scanner cameras like HRSC or ADS-40. In the 
context of spaceborne images, for instance, Etaya et al. (2004) 
showed the potential for moving object detection, using the 
delay between the acquisition of the pan and the ms channels.  
While this work was also done on Quickbird imagery another 
successful application of their approach is demonstrated for 
Spot data in Etaya et al. (2005). Here ocean wave movements 
during the Northern Sumatra Earthquake in 2004 were detected.  
 
While these works use manual object selection in both 
channels, we focus on the automatic matching of hypotheses 
found in the high resolution channel with their conjugates in the 
lower resolution channels. In particular, we apply the approach 
to the task of automatic movement detection of vehicles. 
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2. MOVEMENT ESTIMATION  

First, an overview of the complete system for vehicle extraction 
will be given. Afterwards the procedures for movement 
estimation are described in detail. 
 
 
2.1 System Overview 

The presented work is a part of an overall framework for the 
estimation of traffic parameters from satellite imagery. As input 
the panchromatic and multispectral channels are used. These 
images are geo-coded and co-registered with road data taken 
from a geoinformation system (GIS). These give information 
about potential regions of interest, i.e. roads, junctions, and 
parking lots. The further processing is divided into the 
extraction of vehicles that are grouped in queues or rows and 
the detection of isolated standing vehicles. The vehicle queue 
detection has already been described in detail, see (Leitloff et 
al., 2006), and approaches for the extraction of single cars from 
sub-meter resolution images are outlined in (Hinz, 2005, Hinz 
et al., 2007).  
 
This work focuses on the movement estimation of single 
vehicles. To thoroughly analyze the robustness of the approach, 
we assume the input data to be 100% complete and correct. 
Therefore, vehicles were selected manually from the 
panchromatic channel and are used as input. This step can 
easily be replaced by the automatic techniques mentioned 
above. A simplified system overview is illustrated in Fig. 2. 
 
 

 
 
 
2.2 Initial hypotheses extraction 

Starting from the manually selected vehicles’ center in the pan 
image the position of the corresponding blob in the low 
resolution ms images needs to be determined. Instead of 
applying a search algorithm on all color channels 
independently, the RGB images are transformed into the 
Intensity-Hue-Saturation (IHS) color space. The distribution of 
hue and saturation values for different typical objects is 
illustrated in Figure 3. It depicts a horizontal slice through the 
IHS conic, with the intensity values projected on the slice, i.e. a 
polar coordinate system is used, where the length of the vector 

between each point and the center corresponds to the saturation 
and the hue is defined as angle between abscissa and the vector 
to each point. It comes clear that high color saturation of an 
object like a red or blue car on a road in at least one of the 
multispectral channels strongly influences the distance form the 
coordinate origin (Figs. 3a,b), while a gray road with less much 
saturation is located near the origin (Fig. 3c). 
 
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 3. Hue (angle) and saturation (distance) for (a) red car 
and street, (b) blue car and street, (c) street, (d) grassland 
 
Examples for the saturation channel are illustrated in Figure 4. 
The blob structure of vehicles in this channel becomes clearly 
visible and is fundamental for the following steps.  
 
To find the translation vector between the blob of the input 
region and its conjugate region in the ms data, a sub-pixel 
matching approach is employed. The approach relies on the 
work of Steger (2001). The main idea of this algorithm is the 
use of a gradient filter to determine the gradient direction for 
each pixel of an image. First, a template is cropped from the 
pan channel around the vehicles’ position. To adapt it to the 
scale of the coarser resolution of the ms channels the template is 
smoothed by a Gaussian kernel for eliminating possible 
substructures from the pan image. Then the gradient directions 
for this template and the IHS channels are calculated. An 
exhaustive search constrained to a reasonably limited area 
compares the gradient directions of the template image with the 
gradient directions found in the IHS images, which results in a 
similarity measure for each pixel (Figure 5a and 5b). Notice 
that the pure utilization of gradient directions makes 
normalization or contrast manipulations of one or both data sets 
virtually unnecessary. For eventually detecting the vehicle 
region in the ms data, the position showing the highest 
similarity is chosen, if a maximum distance to the position in 
the pan channel is not exceeded. Figure 5c and 5d show the 
results of the initial detection. 
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Figure 2. System overview 
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(a) 

 

 
(b) 

 
(c) 

 

 
(d) 

Figure 4. (a) and (c) Pansharpened images,  
(b) and (d) corresponding saturation images 

 
 
 
 

 

 
(a) 

 
(b) 

 

 
(c) 

 
(d) 

 
Figure 5. Matching results: (a) and (b) show similarity 

measure, (c) and (d) corresponding detection with given 
position in pan image (green) and detection in ms images (red) 

 
 
 
 
 

2.3 Accurate position estimation 

The main goal of this step is to refine the matching result and – 
even more important – deliver statistically justified evidence 
about potential movement within the acquisition of the pan and 
the ms channels. Up to now, the precision of the positions in the 
higher and lower resolution is unknown. Therefore, the initial 
detections will be refined in terms of positional accuracy. Since 
this refinement is accomplished in a robust least square fitting 
approach, accuracies of the corrected position will be derived.  
 
Assuming that active traffic moves along the road, a profile 
centered at the initial detection is spanned along the road 
direction (taken from the corresponding GIS axis). Values in 
the pan and similarity image are determined by bilinear 
interpolation for each profile point. Then, the parameters of the 
following Gaussian function are determined using Least 
Squares fitting: 
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The accuracies of the unknown parameters (s, a, σ, μ) are 
obtained from their covariance matrix after an iterative fitting 
process. Figure 6 shows two examples of the fitted Gaussian 
function (continuous line) compared to the extracted profile 
points (dashed line). The finally refined positions in the image 
and the underlying profiles can be seen in Fig. 7. 
 
 
2.4 Movement estimation 

To make a decision about a significant movement of a vehicle, 
the distance between the position in the pan and the ms image is 
calculated. Using the known positional errors the accuracy of 
this distance can also be determined by simple error 
propagation: 
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Finally, a statistical test (i.e. Student’s test) is conducted with a 
standard value of 5% for the probability of error.  
 
In our tests we obtained values of less then half a pixel for the 
tested distances to verify a movement, i.e., 1.2m when taking 
the coarse resolution of the ms channels as reference scale. This 
corresponds to a minimum velocity of 20km/h, which is well 
below the typical velocity in city areas.  
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(a) 

 

 
(b) 

 
Figure 6. Refined position estimation for pan (green) and 

similarity (red) image. (a) and (b) correspond to the examples 
of initial matching in Fig. 5 (c) and (d), respectively. 

 
 
 

 
(a) 

 

 
(b) 

Figure 7. Profiles and accurate position for panchromatic 
(green) and similarity image (red). (a) and (b) correspond to the 

examples shown in Fig. 6 (a) and (b), respectively. 
 
 
 
 
 
 

3. RESULTS 

In this section more examples for the application of our 
approach are shown to illustrate the general performance of this 
approach. A numerical evaluation will be given in a later paper, 
once this algorithm has been added to the overall system 
sketched in Fig. 2.  
 
The figures of this section are organized as follows: 
 

(a) original image with initial detection 
(b) similarity image from matching 
(c) results of the fitting process 
(d) final results and used profiles 

 
 
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
Figure 8. Example I 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 

Figure 9. Example II 
 

4. OUTLOOK 

The examples show the potential of the presented approach. 
The position of all vehicles could be detected in the low 
resolution ms channels by the use of robust least square fitting 
in combination with a shape-based matching algorithm. This 
module will now be added to the overall detection for numerical 
evaluation. Furthermore, tests on gray vehicles which do not 
have large contrast in the ms channels will be performed. We 
expect that even in these cases movement detection can be 
performed, although it might be slightly less reliable.  
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Figure 10. Example III 
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