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ABSTRACT: 
Knowledge of accurate travel times between various origins and destinations is a valuable information for daily commuters as well 
as for security related organizations (BOS) during emergencies, disasters, or big events. In this paper, we present a method for 
automatic estimation of travel times based on image series acquired from the recently developed optical wide angle frame sensor 
system (3K = “3-Kopf”), which consists of three non-metric off-the-shelf cameras (Canon EOS 1Ds Mark II, 16 MPixel). For the 
calculation of overall travel times, we sum up averaged travel times derived from individual vehicle velocities to pass defined road 
segments. The vehicle velocities are derived from vehicle positions in two consecutive geocoded images by calculating its distance 
covered over time elapsed. In this context, we present an automatic image analysis method to derive vehicle positions and vehicle 
distances involving knowledge based road detection algorithm followed by vehicle detection and vehicle tracking algorithms. For 
road detection, we combine an edge detector based on Deriche filters with information from a road database. The extracted edges 
combined with the road database information have been used for road surface masking. Within these masked segments, we extract 
vehicle edges to obtain small vehicle shapes and we select those lying on the road. For the vehicle tracking, we consider the detected 
vehicle positions and the movement direction from the road database which leads to many possible matching pairs on consecutive 
images. To find correct vehicle pairs, a matching in the frequency domain (phase correlation) is used and those pairs with the highest 
correlation are accepted. For the validation of the proposed methods, a flight and ground truth campaign along a 16 km motorway 
segment in the south of Munich was conducted in September 2006 during rush hour. 
 

1. INTRODUCTION 

Near real time monitoring of natural disasters, mass events, and 
large traffic disasters with airborne SAR and optical sensors 
will be the focus of several projects in research and 
development at the German Aerospace Center (DLR) in the 
next years. In this overall frame, knowledge of accurate travel 
times between various origins and destinations is a valuable 
information not only for traffic management and information 
purposes but also for security related organizations (BOS) 
during emergencies, disasters, or big events. One application 
currently under development is the generation of isochronal 
maps derived from airborne imagery, which shows the up-to-
date travel times from each map position to the accident scene. 
This may support BOS coordinators for fleet disposition and 
adequate alerting in times of adversities. 
In general, travel time estimation is based on data from 
conventional stationary measurement systems such as inductive 
loops, radar sensors or terrestrial cameras. One handicap of 
these methods is the low spatial resolution depending on the 
ground distribution. New approaches include data by means of 
mobile measurement units which flow with the traffic (floating 
car data, FCD, (Schaefer et al., 2002), (Busch et al. 2004)).  
The big advantage of the remote sensing techniques presented 
here is that the measurements can be applied nearly everywhere 
(exception: tunnel segments) and do not depend on any third 
party infrastructure. Besides, airborne imagery provides a high 
spatial resolution combined with acceptable temporal resolution 
depending on the flight repetition rate, but require complex 

image analysis methods and traffic models to derive the desired 
traffic parameters (Ernst, 2005).  
In this paper, we present a method for automatic estimation of 
travel times based on geocoded image series acquired from a 
recently developed DLR wide angle frame sensor system. For 
the calculation of the point-to-point travel times, we apply a 
simple semi-empirical travel time method which is based on 
averaged travel times derived from individual vehicle velocities 
to pass defined road segments. For this, individual vehicle 
positions and velocities are required which are provided by 
automatic image analysis tools. 
In this context, we present an automatic image analysis method 
to derive vehicle positions and vehicle distance covered based 
on a road detection algorithm using a road database followed by 
vehicle detection, and vehicle tracking algorithms. 
 

2. ESTIMATION OF TRAVEL TIMES 

While only few detection methods offer the possibility to 
directly measure travel times of single cars (such as vehicle re-
identification by licence plate recognition, floating car 
tracking), certain model assumptions are needed to derive travel 
times from local detector data.  
Different methods for the estimation of travel times are applied 
depending on the sensors used and on the type and availability 
of sensor data. Simple methods derive travel times by 
constructing pseudo vehicle trajectories from time mean speed 
measured locally. Those methods are easy to implement and 
need no calibration but have difficulties to capture traffic 
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dynamics such as traffic jams at high densities. Better results 
can be generated by applying traffic flow models that are 
widely used in traffic engineering and control. For simulation or 
traffic prediction, data from inductive loops, terrestrial cameras, 
variable speed limits and other context data are fed into these 
traffic models.  
Macroscopic traffic models like METANET (Kotsialos, 2002) 
reproduce the spatial and temporal traffic flow based on 
averaged microscopic car dynamics and are used to estimate or 
predict traffic state information. A large group of macroscopic 
models is based on the fluid-dynamic theory, interpreting the 
traffic flow as a compressible fluid (e.g. Daganzo, 1997).  
Microscopic traffic models (e.g. Krauß, 1997) describe the 
vehicles with detailed behaviour. Each vehicle’s reactions to the 
actual traffic situations are modelled by assumptions concerning 
car following (e.g. Gipps, 1981) and overtaking procedures (e.g. 
Gipps, 1986). Microscopic models are more detailed than 
macroscopic models, but they require significantly higher 
computational efforts, what limits their use for real-time 
applications. A class of microscopic traffic models based 
cellular automat technology tries to overcome those problems 
(e.g. Nagel, 1992).  
New approaches aim to fuse all relevant data sources such as 
floating car data, stationary sensor data, modelled data and 
historic information.. 
In case of airborne optical data, travel times for a platoon of 
vehicles can be recorded from a helicopter, rather than a single 
car. The helicopter simply follows the vehicles in a traffic jam 
(Angel, 2003).  
In case of wide-angle airborne data, like the DLR 3K camera, 
we propose an instantaneous method to derive overall travel 
times T for a road section. For this, we divide the road section 
in N equally spaced segments with length L and calculate mean 
vehicle velocities iv  for segment i. The overall travel time T is 
then the sum of travel times for each segment.  
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In case of very low mean vehicle velocities, the travel times 
tend to be very high (standing cars would lead to an infinite 
value). Thus, a minimum vehicle velocity vmin is introduced to 
avoid too high travel times. The minimum vehicle velocity 
parameter is empirical and must be adjusted to the traffic type 
as well as to the road segment monitored as e.g. in case of 
blocked motorway lanes the estimated travel times will be 
erroneous using a constant minimum vehicle velocity for all 
traffic types.  
In this paper, we focus on congested traffic with traffic densities 
higher than the critical density without additional disturbances 
like blocked lanes and we set a priori the minimum vehicle 
velocity to 7.2 km/h following the METANET settings.  
The mean vehicle velocities iv  will be derived from the 
3K image sequences based on the vehicle positions in at least 
two consecutive geocoded images and based on the time 
elapsed (Hinz, 2007).  
In the following chapter, automatic image analysis tools to 
derive vehicle positions and velocities will be presented. 
 

3. AUTOMATIC ROAD AND VEHICLE DETECTION 

For an effective real time traffic analysis, the road surface needs 
to be clearly demarcated. Thus, we automatically delineate the 
roadsides by two linear features using the processing chain 
illustrated in Fig 1. Automated road extraction has been 

developed as an independent module in our ongoing research on 
real time traffic analysis. For brevity, we are not explaining the 
road extraction procedure in details. The road extraction starts 
by forming a buffer zone around the roads surfaces using a road 
database as basis for the buffer formation process. In the 
marked buffer zone, we use edge detection and feature 
extraction techniques. The critical step of edge detection is 
based on an edge detector proposed by Phillipe Paillau for noisy 
SAR images (Paillou, 1997). Derived from Deriche filter 
(Deriche, 1989) and proposed for noisy SAR images, we found 
this edge detector after ISEF filtering (Shen and Caston, 1992) 
extremely efficient for our purpose of finding edges along the 
roadsides and suppressing any other kind of surplus edges and 
noise present. The roadside identification module, again with 
the help of the road database tries to correct possible errors 
(gaps and bumps) that might have creped in during the feature 
extraction phase. 
 

 
Fig 1 Implemented processing chain for a knowledge based 

road extraction 
 

With the information of the roadside obtained in the processing 
step described before, it is possible to perform vehicle 
detections and tracking limited only to the roads. For this, we 
developed an algorithm for the detection and tracking of 
vehicles which is described in the following (see Fig 2). 

 
Fig 2 Vehicle detection algorithm 

 
Based on information about the alignment and direction of the 
roadside, all pixels of the road including the road direction are 
marked. For the vehicle detection, a Canny edge operator is 
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applied and a histogram on the edge steepness is calculated. 
Then, a k-means algorithm is used to split edge steepness 
statistics into three parts which represent the three main classes, 
vehicles, roads, and not classifiable.  
We consider the part with the lowest steepness being mainly 
pixels of the road background, since its intensity is quite 
uniform. Besides, we assume that the part with the highest 
steepness is due to the high discontinuity in the intensity 
probably populated by vehicles. This part of the statistic is also 
contaminated by the paintings on the roadside, shadows, sign 
boards, trees, etc.  
In the part which is not classifiable, it must be determined 
which pixels belong to the road background or to potential 
vehicles. For the decision, the pixel neighbourhood is 
examined. Pixels directly connected with a potential vehicle 
pixel are moved into the vehicle class. Remaining pixels are 
finally considered as road background.  
In case of coloured images, the processes described above are 
realized on each channel separately in order to obtain a multi 
channel edge image.  
In the next step, the roadside pixels are eliminated from the part 
with higher steepness. As the roads are well determined by the 
road extraction, the roadside lines can be found easily. Thus, 
the algorithm erases all pixels with high edge steepness which 
are laying on a roadside position. Thereby, it avoids erasing 
vehicles on the roadside by considering the width of the shape. 
Mid-line markings are erased using a dynamic threshold 
detector. This is done in order to reduce false detections, since 
these mid-line markings may look like white cars. 
Then, potential vehicle pixels are grouped by selecting 
neighboured pixels. Each group is considered to be composed 
of potential vehicle pixels connected to each other. With the 
groups obtained a list of potential vehicles is produced. 
In order to extract real vehicles from the potential vehicle list, a 
closing of the shapes of the potential vehicles is performed. We 
can see the effect of the closing algorithm in Fig 3. 
 

 
Fig 3. Closing the shapes of potential car pixels 

 
Using the closed shape, the properties of vehicle shapes are 
described by its direction, its area, the length and width 
following the direction, and its position on the road. Based on 
these parameters, the vehicles are assumed to have rectangular 
shapes with a specific length and width oriented in the road 
direction. Their area should be about the length multiplied by 
the width and vehicles must be located on the roads. We set the 
values for the vehicle length to 5.7 m and for the width to 2.6 m 
(for standard cars). In case of detections with very low 
distances the algorithm assumes a detection of two shapes for 
the same vehicle. Then, it merges the two detections into one 
vehicle by calculating averages of the positions. 
Finally, based on this vehicle model, a quality factor for each 
potential vehicle is found and the best vehicles are chosen.  
By applying vehicle detections to an image sequence taken 
within a small time interval, which is the case for the 3K image 
series, we are able to match a vehicle in this sequence, in order 
to measure its velocity.  

Within the tracking algorithm (see Fig 4), a search area for each 
vehicle detected in the first image is defined in the second 
image based on the predicted position. During short time steps 
between two images, vehicles do not change their direction 
significantly, so it can be assumed that the matching vehicle 
from the other image lies within the search area. Thus, we can 
find potential corresponding pairs of detected vehicles. 
However, in case of a high vehicle density on the images, as it 
is the situation in traffic congestions, many vehicles in the 
second image are located in the search area of one vehicle in the 
first image. At the same time each car in the second image has 
lots of possible origin cars in the first image. In order to choose 
the right pair, it is checked that the direction of both vehicles in 
a possible vehicle pair is the same. As criteria, the road 
direction from the road database is considered for the selection 
correct pairs. 

 
Fig 4 Car tracking algorithm 

 
Then, a phase correlation algorithm to find best corresponding 
vehicles is applied for each pair by using small image patches 
around the car. With these tests a quality coefficient is 
determined for each pair of matching candidates. At the end, 
when a car in the first image has several correspondents in the 
second image, we keep only the pair with the best quality value.  
 

4. SENSORS AND DATABASE 

4.1 3K camera system 

The 3K camera system (3K = “3Kopf”) consists of three non-
metric off-the-shelf cameras (Canon EOS 1Ds Mark II, 16 
MPix). The cameras are arranged in a mount with one camera 
looking in nadir direction and two in oblique sideward direction 
(Fig 5), which leads to an increased FOV of max 110°/ 31° in 
across track/flight direction.  
 

 
Fig 5. DLR 3K-camera system consisting of three Canon EOS 

1Ds Mark II, integrated in a ZEISS aerial camera mount 
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The camera system is coupled to a GPS/IMU navigation 
system, which enables the direct georeferencing of the 3K 
optical images. Fig 6 illustrated the image acquisition geometry 
of the DLR 3K-camera system. Based on the use of 50 mm 
Canon lenses, the relation between airplane flight height, 
ground coverage, and pixel size is shown, e.g. the pixel size at a 
flight height of 1000 m above ground is 15 cm and the image 
array covers up 2.8km in width.  
 

 
Fig 6. Illustration of the image acquisition geometry. The tilt 

angle of the sideward looking cameras is approx. 35°. 
 

4.2 Test-Site 

The motorway A8 south of Munich is one of the busiest parts of 
the German motorway network with an average load of around 
100.000 vehicles per day. Fig 7 shows the 16 km motorway 
section between motorway junctions “Hofolding” and 
“Weyarn”, which was selected as test site on 2. Sep. 2006. At 
this time, heavy traffic was expected at this section caused by 
homebound travellers.  
 

 
Fig 7. 16km motorway strip (A8) south of Munich as imaged by 

3K camera system 
 

4.3 3K imagery 

Three 3K data takes were acquired on 2. Sep. 2006 between 
14:01 and 15:11 from 2000m above ground. Table 1 lists the 
exact acquisition times of each data take. During each 
overflight, 22 image bursts were acquired each containing four 
consecutive images. The time difference within these bursts was 
0.7 s, so that each car was monitored at least 2.1 s.  

 
ID Date Pixel 

size 
Images H.a.G. 

3K-Ia 02-Sep-2006  
 14:01-14:12

30cm 22x4x3 2000m 

3K-Ib 02-Sep-2006  
 14:30-14:40

30cm 22x4x3 2000m 

3K-Ic 02-Sep-2006  
 15:01-15:11

30cm 22x4x3 2000m 

Table 1  3K camera data takes at A8 south of Munich 
 
For further analysis, 3K images were geocoded using onboard 
GPS/IMU measurements with an absolute position error of 3m 
in nadir images and less than one pixel relative. The last error 
has great influence on the derived vehicle velocities. 
 
4.4 Road database and ancillary data 

Data from a road database are used as a priori information for 
the automatic detection of road area and vehicles. One of these 
road databases has been produced by the NAVTEQ Company 
(NAVTEQ 2006). The roads are given by polygons which 
consist of piecewise linear “edges,” grouped as “lines” if the 
attributes of connected edges are identical. Up to 204 attributes 
are assigned to each polygon, including the driving direction on 
motorways, which is important for automated tracking. Recent 
validations of position accuracy of NAVTEQ road lines 
resulted in 5m accuracies for motorways. 
Data from other sources and sensors were collected to make an 
overall comparison of derived travel times. Although traffic 
messages from the traffic channel do not contain travel times 
but congestion lengths, this information represents the state of 
the art and was therefore collected. Additionally, data from 
local detectors are used to calculate instantaneous travel times: 

∑
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With TT(t) being the travel time for the whole stretch at time 
instant t, vi being the speed reported at detector station i and li 
being the length of the segment assigned to detector station i.  
 
ID Time Traffic message 

channel 
Travel times from 

detector data 
3K-Ia -14:06 

-14:11 
Halting traffic 14km 
Congestion 7km 34 min 

3K-Ib -14:40 Congestion 12km 28 min 
3K-Ic -15:03 

-15:07 
-15:11 

Halting traffic 18km 
Congestion 7km 
Congestion 12km 

26 min 

Table 2  Traffic message channel information and estimated 
travel times from detector data for A8 south of Munich 

 
Table 2 lists data from other sources and sensors, which are 
linked to the acquired 3K data takes. Obviously, the traffic 
messages vary strongly within short time periods between 
congested and halting traffic.  
 
4.5 Reference vehicle 

As ground truth for travel times, two runs with a GPS equipped 
vehicle (ADAC) in northbound direction and one run in 
southbound direction was conducted. Table 3 lists the links 
between reference vehicle runs to 3K data takes. It should be 
mentioned, that a direct comparison between travel times from 
reference vehicle and 3K data takes contain systematic errors, 
as the northbound runs take around half an hour and the 3K data 
set represent a time span of ten minutes. 
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ID Date Strip Travel-

time 
Data 
take 

 

R1 02-Sep-2006  
 14:02-14:36 

16km 35 min 3K-Ia North-
bound 

R2 02-Sep-2006  
 14:38-14:47 

16km 9 min 3K-Ib South-
bound 

R3 02-Sep-2006  
 14:48-15:18 

16km 31 min 3K-Ic North-
bound 

Table 3  Data from reference vehicle at A8 south of Munich 
 
4.6 Manual measurements 

For manual measurements, the 3K images have been mosaiked 
in two orthophotos according to Fig 7 (taking the 2. and 4. 
image of the bursts). This mosaic represents the traffic situation 
with a relative time difference of 1.4s. Measurement of vehicle 
positions and corresponding vehicles resulted in the velocity of 
vehicles. These measurements were basis for calculating the 
travel times which are illustrated in Table 4.  
 

 
Fig 8. Manual measured northbound velocity profiles on the left 

lane (red) and right lane (green) for all 3K datatakes 
 
Fig 8 shows velocity profiles of all vehicles going northbound 
during the three 3K data takes. The vehicle velocities vary 
strongly between 150 km/h and 0 km/h with small differences 
between left and right lane.  
 

5. RESULTS 

5.1 Comparison of travel times 

Travel times are calculated using measured vehicle positions 
and velocities based on equation (1). For this, the minimum 
vehicle velocity was set to 7.2 km/h according to the 
METANET settings, and average vehicle velocities iv  were 
calculated based on segments L of 1 km length. Table 4 lists the 
travel times derived from the 3K data sets separated in left and 
right lane, the travel times from the detector data, and the travel 
times of the reference vehicle.  
In general, left lane travel times are slightly shorter than right 
lane travel times. In comparison with the reference travel times, 
the 3K derived times are higher and the detector derived times 
are shorter. Besides, the 3K times decrease with higher 
minimum vehicle velocity or longer road segments. Thus, with 
a minimum vehicle velocity of 15 km/h or a road segment 
length of around 10 km, the derived travel times correspond 
with the reference times. These two parameters are free and 

must be adjusted to the road type and traffic type, but in this 
experiment they were fixed to the METANET settings.  
 

Travel time 3K ID Ref 
Left lane Right lane Detector data 

 

Ia 35’ 39’48’’ 39’57’’ 34’ S-N 
Ib X 38’36’’ 40’42’’ 28’ S-N 
Ib 9’ 08’04’’ X X N-S 
Ic 31’ 37’06’’ 37’27’’ 26’ S-N 
Table 4 Comparison of travel times derived from 3K images 

with reference travel times 
 
Instantaneous travel times derived from detector data do not 
completely comply with the reference measurements. That is 
because only speeds at certain stations are used that are more or 
less a set of random observations of the complete freeway 
stretch. Also, instantaneous speeds do not reflect the dynamics 
of traffic, as they do not consider the time a vehicle actually 
needs to pass the different stations.  
 
5.2 Automatic detection of vehicles 

 
Fig 9. Zoom into the two images used for tests on the automatic 

vehicle detection. Rectangles mark automatic detections, 
triangles point into the travel direction. 

 
We tested our programs for automatic road and vehicle 
detection on several image sequences of traffic on motorways 
taken by the 3K camera system. Fig 9 shows a zoom into two 
example images which were taken from a sequence obtained at 
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the motorway A8 near “Holzkirchen”. The lower image was 
taken 1.4s later than the upper image. Using these images the 
programs for automatic road and vehicle detection were tested 
(see also section 3), and the results of the automatic detection 
were compared to manual measured reference.  
Table 5 shows the results of the automatic and manual detection 
of cars on these two images as well as the completeness and 
correctness of the automatic car detection with respect to the 
reference. It can be seen that the correctness is quite high, 
whereas the completeness is lower. We used these results of the 
automatic vehicle detection as input for the vehicle tracking 
program. However, the results in correctness and completeness 
of corresponding pairs of vehicles in these two images obtained 
from the vehicle tracking program are quite low due to the low 
completeness of the automatic vehicle detection. 

 
ID 
 

Total 
automatic 
detection
s 

Correct 
automatic 
detections 

Manual 
detections 

Correctness of 
automatic 
detection 

Completeness
of automatic 

detection 

Ia 117 95 193 81% 49% 
Ib 56 47 170 84% 28% 
Table 5 Comparison of automatic and manual car detection for 

two images 
 

6. CONCLUSIONS 

The investigations show the high potential to use airborne 
image time series for the estimation of travel times. Firstly it is 
shown that the automatic road detection works sufficiently good 
for restricting the search area of the vehicle detection and for 
giving information about road directions. Also the automatic 
vehicle detection has already reached a high level of accuracy 
concerning the correctness, although the completeness is still 
too low for car tracking applications and has to be improved. A 
further challenge of the methodology is a better estimation of 
the minimum velocity for modelling the vehicle speed in a 
traffic congestion. Models have to be established to estimate 
this parameter out of vehicle density and/or other measurable 
values. It is expected that overall accuracy could be enhanced if 
the system would be combined with a dedicated traffic flow 
model in order to utilize the strength of both approaches.   
The results of such measurements can be used for obtaining 
travel times and other relevant traffic parameters in cases of 
catastrophes or other special events (e.g. mass events), where 
the costs for an airborne data acquisition is justified. 
It is planned to test the airborne based camera travel time 
measurement system against a real reference database with high 
sampling rate, e.g. vehicle re-identification via automatic 
licence plate recognition. 
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