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ABSTRACT:

The need to automatically extract topographic objects, especially buildings, from digital aerial imagery or laser range data remains an 
important research priority in both photogrammetric and computer vision communities. This paper describes the proposed model for 
Level-of-Detail building modelling and progress with the prototype implementation. The paper begins with an overview of the 
concept of Level-of-Detail, important for adaptive building modelling. Building regions of interest are derived from a normalised 
digital surface model (nDSM) and regularisation of the roof lines is achieved by a set of contextual constraints with particular 
emphasis on rectangular buildings. For detailed building reconstruction, the main consideration is given to polyhedral building types 
with limited support for curvilinear shapes. A moving least squares approach for computation of surface normal vectors and texture 
metrics is employed for planar segmentation of both gridded data and unstructured point clouds. Delineation of homogeneous planar 
segments is based on a distance metric between neighbouring local planes. 2-D edge lines derived from the orthoimage are matched 
with 3-D lines derived from LiDAR based on adjacent plane intersections and then used for the final building reconstruction. 
Connected regions which fail the local planarity tests and are sufficiently large, are segmented using curvature measures based on 
least squares quadric surface fitting. Provisional results from the algorithms are promising. 

1. INTRODUCTION

1.1 Background

The need to automatically extract 3-D building data from digital 
aerial imagery or laser range data remains an important research 
priority in both photogrammetry and computer vision. 3-D 
building data is important for applications such as city 
modelling, environmental engineering, disaster mitigation and 
management and emerging civilian and tactical applications
such as virtual and augmented reality and homeland security. 
Significant success has been achieved so far with semi-
automatic building extraction systems using either imagery or 
LiDAR data, however in restricted domains. The need for an 
integrated data approach for building extraction has been 
realised however not yet fully tested. To meet the varying 
demands in terms of capture of building detail and 
representation, incorporation of Level-of-Detail (LoD) 
mechanisms into the building extraction schema has become a 
necessity. This paper presents an integrated approach for Level 
of Detail building model reconstruction using airborne LiDAR 
data and optical imagery and discusses the prototype 
implementation of the proposed model.

1.2 Related Work

Several algorithms have been proposed for automating the 
three-dimensional reconstruction of buildings however a robust 
and versatile solution is yet to be found although significant 
progress has been made. A discussion of systems based on and 
accuracies obtainable with photogrammetry and laser scanning 
in building extraction is contained in Kaartinen et al. (2005). To 
date, building extraction has largely been based on single data 
sources, in most cases either LiDAR data alone (Vosselman, 
1999; Verma et al., 2006) or images alone (Scholze et al., 2001; 

Kim and Nevatia, 2004) however the current trend is on 
integrated data paradigms. Integration of data sets provides 
multiple cues that can ease the problem of building 
reconstruction and result in significantly higher levels of 
automation in the algorithms. The data bases for integrated 
approaches have included multiple geometric data, GIS layers 
and bespoke or scene specific knowledge. A number of 
researchers have demonstrated approaches for combining data 
for building modelling, for example LiDAR and aerial images 
(Rottensteiner et al., 2004), LiDAR and three-line-scanner 
imagery (Nakagawa and Shibasaki, 2003), LiDAR and high 
resolution satellite images (Sohn and Dowman, 2001), LiDAR 
and 2-D maps (Overby et al., 2004), aerial images and 2-D 
maps (Suveg and Vosselman, 2004) and LiDAR, 2-D maps and 
aerial images (Vosselman, 2002). Schenk and Csatho (2002) 
discuss theoretical frameworks for multi-sensor data fusion for 
generic surface description. Not many researchers however have 
incorporated LoD modelling into their approaches, important
for catering for diverse users and applications.

1.3 Level-of-Detail Modelling

The concept of level of detail has been used in computer 
graphics since the 1970s, mainly for increasing the efficiency of 
object rendering. Rendering efficiency is achieved by 
decreasing the visual and geometric detail of 3-D objects as a 
function of distance from the view point or other metrics such 
as the perceived object importance. The concept has been 
adapted and extended for city modelling by the Special Interest 
Group on 3-D Modelling (Sig3D of the GDI Initiative). LoD 
building modelling involves adaptable and scaleable extraction 
and representation of building model information. This enables 
the capture of building information to be varied depending on 
the specific requirements of the project and limitations of the 
building extraction techniques and input data characteristics. 
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The five levels of detail range from a simple block (2.5-D) 
model right up to a walkable model, which takes into account 
both internal and external geometric detail. Figure 1 below 
illustrates the concept of level of detail modelling as modified 
for this research. For this research, the aim is to work up to 
LoD2 with texture effects applied. LoD modelling is important 
for understanding the trade-offs between model detail and 
automation potential.

One can possibly identify two main approaches for 
incorporating the LoD schema into the building reconstruction
process. Firstly, a bottom-up approach where a multi-level 
strategy is adopted for reconstructing each level more or less 
independently varying the data sets used, their resolution and 
the algorithmic detail. Secondly, the initial reconstruction effort 
might be aimed at a detailed level with lower levels derived by 
building generalisation. A hybrid approach is also possible. In 
this research, a bottom-up approach is adopted for the multi-
level building reconstruction.

1.4 Study Area and Datasets

The study area for the research is Portbury, a small agricultural 
village, approximately 11 kilometres North West of Bristol, 
England. Portbury is one of the test sites identified by the 
Ordnance Survey Research Labs, source of LiDAR data and 
digital imagery, for research on automated building extraction. 
The data sets available for the test site are as follows: LiDAR 

data [16 points/m2]; digital orthoimagery [GSD 10cm] and OS 
MasterMap Topography data.

2. ROOFLINE DETECTION

The rooflines are detected from a normalised DSM (nDSM) 
obtained by differencing an optimised DTM derived from 
LiDAR using the adaptive TIN algorithm employed in the 
commercial software TerraScan and an interpolated DSM. A 
three-metre threshold is applied to the nDSM to detect above 
ground objects however these include buildings and vegetation. 
The options followed for vegetation removal included use of 
intensity data, generic tree point classification, least squares 
planar fitting differences and near infrared image analysis. The 
minimum building size was considered to be 12m2 according to 
Ordnance Survey specifications. Building segment 
simplification is achieved using the modified sleeve algorithm
and rectangular enforcement is achieved by deriving a moments 
based orientation and enforcing building line segments to be 
perpendicular or parallel to this orientation within a defined 
tolerance. The extracted rooflines define the regions of interest 
for the geometrical reconstruction of the different levels of 
detail mentioned before.

3. BUILDING RECONSTRUCTION

3.1 LoD Reconstruction Schema

Reconstruction of LoD0 (block models) requires building 
rooflines and representative building heights. The building 
heights are derived from differences of roof and ground heights
obtained from a DSM/DTM. LoD1 requires rooflines and 
LiDAR data for generic roof modelling. LoD2 additionally 
requires high resolution image data for accurate edge and sub-
feature detection and texturing the models.

3.2 Types of Building Surfaces

For this research, consideration is given to two types of 
surfaces, planar and curvilinear surfaces as shown in Figures 2
and 3 respectively. Planar surfaces are by far the most common 
type and form the initial hypothesis for the reconstruction 
algorithms. For curvilinear surfaces, consideration is given to 
quadric surfaces although this could be extended to more 
generic superquadric surfaces.

Figure 2. Planar surfaces

Figure 3. Quadric (curvilinear) surface
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      Figure 1. Level-of-Detail modelling schema
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3.3 Planar segmentation

For planar segmentation of the LiDAR data, a moving least 
squares plane fitting algorithm is employed. For each point, a 
cluster of neighbouring points is determined depending on 
whether a grid or an unstructured point cloud is used. For 
gridded data, the algorithm searches for the 8-connected 
neighbours of each point however the grid resolution can be 
changed. For unstructured point clouds, the neighbourhood of 
each point is defined based on either a search radius or a defined 
number of nearest neighbours within a set maximum distance. 

Figure 4. Workflow for planar segmentation

A least squares plane is fitted to the neighbourhood of each 
point. For each point, a normal vector and texture metrics are 
computed together with tests for local planarity. Clusters of 
points lying on the same planes are determined by comparing 
similarity of normal vector orientations and distances between 
their local planes. Figure 4 illustrates diagrammatically the steps 
in the planar segmentation phase of the algorithm. Figure 5 
illustrates the vector dispersion and computation of a normal 
vector for a planar patch. The requirement for this algorithm is 
to work with both airborne and terrestrial LiDAR data in order 
to meet the requirements of the different levels of detail.

Figure 5. Planar patch normal vector (Parker, 1996)

Applying the planar segmentation to gridded data makes the 
neighbourhood search easier and allows other image based 
metrics such as texture coefficients to be calculated however 
interpolating the point data introduces some unwanted artefacts. 
Working on scattered point data introduces a computational 

overhead and requires appropriate adaptation for image based 
metrics. We experimented with a search radius of 1m.
The planar segmentation algorithm can be summarised as 
follows:
1. For each data point, locate corresponding points falling 

within the defined neighbourhood of the point based on the 
appropriate criteria.

2. For each defined neighbourhood, compute coefficients of 
the plane and from that compute the normal to the plane 
for that neighbourhood and the azimuth of the projection of 
the normal on the x,y plane.

3. Compute metrics for assessing local planarity (section 3.5) 
together with a texture descriptor for each neighbourhood 
and numerical checks for validating the least squares 
computation.

4. Data points assumed locally planar are further clustered
into consistent planar regions. 

3.4 Localised planar fitting of 3-D points

Given a defined neighbourhood {(xi,yi,zi)i=1,m} of a point, we 
want to fit a plane which satisfies the relationship:

CByAxZ            (1)

where Z represents height, A and B are slope parameters in the x 
and y direction respectively and C is the offset at the origin.
In the implementation of the algorithms, we consider two forms 
of minimisation of the residual sums. The first form minimises 
the sum of residuals in the z-direction and the other considers 
the errors measured orthogonal to the plane and requires use of 
eigensystem solvers.

3.5 Tests for local planarity

A number of metrics are computed during the point 
classification phase in order to check if the point is locally 
planar and weed out erroneous points. The numerical tests are
as follows:
 Centre point residual
For each point under consideration, the difference between the 
actual height value and the height computed using the 
determined plane parameters should be below a set threshold
(Figure 6). In our case, we set the threshold to 0.1 metres based 
on the average error computed using photogrammetric control 
points. Equations 2 and 3 mathematically describe the 
computation of plane coefficients and the centre point residual
respectively.

Figure 6. Centre point (p5) and connected neighbours
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 Eigen-analysis
The smallest eigenvalue of the dispersion matrix A (Equation 4) 
computed by reducing neighbourhood points to centre and 
taking product sums expresses the deviation of the points from 
the fitted plane. Local planarity is assumed if the smallest 
eigenvalue is less than a set threshold.

)MP()MP(A T                  (4)

where P is a matrix of neighbourhood points (xi,yi,zi) and M  the 
mean matrix. 
A threshold of 0.05 metres was used for the eigen-analysis. This 
measure of planarity works well for gridded data however a 
more useful and standardised measure for planarity testing is the 
ratio of the smallest eigenvalue to the total variance. Fransens 
(1996) employs a similar method of comparing eigenvalues of 
the covariance matrix for planarity testing of data in an octree. 

 Residual norms
For the residual vectors, the 2-norm (equation 5) is computed 
and gives a measure of the quality of fit of the model to the data 
points.

2
1

T

2
)vv(v            (5)

3.6 Connected components analysis

The next step is to determine if neighbouring sub-planes defined 
at each data point could lie on the same planar surface. Our first 
approach for clustering coplanar points was based on analysing 
the histograms of normal orientations for each building region 
of interest and using local peaks for grouping. This approach 
works well for sloped roofs and fails for flat roofs where the 
normal vector orientations can shift full circle. A more effective 
metric for coplanarity considers the distance between 
neighbouring sub-planes. For each point, the maximum distance 
between the sub-plane under consideration and surrounding 
locally planar neighbours. Points with plane distances below a 
defined threshold are then grouped into consistent clusters. The 
convex hull of each cluster is then extracted to define 
boundaries between planes. Final plane parameters for each 
cluster are determined using the RANSAC algorithm for 
robustness. The RANSAC algorithm ensures robust fitting of 
models in the presence of data outliers and requires a large 
sample of data points. To ensure convergence of the RANSAC 
algorithm, the inlier threshold is set to 0.05 metres, inlier 
percentage 75% and the maximum number of iterations 20.

3.7 Planar adjacency and 3-D lines

Planar adjacency graphs are determined for clusters found for 
each building region of interest. Adjacency is based on the 
distance between the outer boundaries of the clusters. 

Figure 7. 3-D breakline determination (adapted and modified 
from Briese, 2004)

Adjacent planes are then intersected to determine 3-D 
breaklines from LiDAR data, which are then verified and 

matched against edge lines from the orthoimage. Figure 7 
illustrates the basic concept of a 3-D line description derived by 
intersecting planar patch pairs determined on the basis of 
clustered point cloud data with the circle representing the 
support point. The handling of step edges requires further 
consideration.

3.8 Quadric segmentation

Connected points that are not locally planar and form a 
sufficiently large size more than 1m2 are further tested for 
curvilinearity. A second degree polynomial surface is fit to the 
data points and takes the form:
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The steps in the segmentation can similarly be summarised as 
follows:
1. For each locally non-planar point, define a sufficiently 

large neighbourhood of points.
2. Use least squares to fit a quadric surface to the local 

neighbourhood of each point.
3. Compute the derivatives of the surface and the slope of the 

tangent at each point.
4. Compute curvature measures (Gaussian, Mean and 

Laplacian) using the derivative and slope of tangent.

A scale factor is applied for numerical optimisation of the 
computation. Surface modelling is considered additive and 
applied in a Constructive Solid Geometry fashion. The model 
could be extended to superquadric surface fitting for more 
generic curvilinear modelling.  

4. IMAGE DATA ANALYSIS

Image data serves to provide more accurate breaklines for 
detailed modelling, verify 3-D lines derived from LiDAR and 
allow texture mapping for photorealistic building modelling.
There are three important considerations for the integration of 
high resolution image data:
 Building localisation
Building roofline polygons are localised in the orthoimage by 
dilating the minimum bounding rectangle then projecting this 
into the image. A factor of 1.25 is applied to the areal 
dimensions of the minimum bounding rectangle. This reduces 
the search space for matching purposes.
 Edge extraction
2-D linear segments are extracted from the orthoimage using the 
Canny operator implemented in the open source computer 
vision library, OpenCV.
 Image pruning
The use of high resolution images (GSD 10cm) is required for 
higher levels of detail. A threshold is applied to remove 
spurious and short linear segments. To allow matching of the 
roofline polygons, linear segments parallel to the rooflines, 
within some tolerance, are retained for shape matching.

5.    Provisional results and discussion

This paper outlined a methodology for level of detail building 
model reconstruction following an integrated data paradigm. A 
prototype   implementation of the proposed model is in progress 
however most parts of the algorithm have been tested 
piecemeal. Figure 8 shows an orthoimage of the Portbury test 
with an area of interest linked to Figures 9 and 10 shown in red. 
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The test site contains mostly polyhedral buildings. 
Reconstruction of block models (LoD0) is achieved with 
minimal effort after processing the DSM/DTM. The planar 
segmentation algorithm (LoD1+) was applied to interpolated 
data at four grid resolutions, 1m, 0.5m, 0.25m and 0.10m in 
order to assess model sensitivity and also applied to the original 
point clouds. 

Figure 8. Orthoimage of the test site (Portbury, Bristol, UK), in 
red an area of interest linked to Figures 9 and 10

Figures 9 and 10 show colour coded normal vector orientation 
maps of the small area of interest (in red, Figure 8), derived 
from the least squares planar fitting algorithm applied over grid  
DSM data at 25cm and 10cm resolutions respectively. The grid 
data was derived from point data at 16 points/m2. 25cm 
resolution results in a more natural look whereas finer detail is 
apparent at 10cm resolution. The maps highlight planar 
surfaces, buildings in particular, very clearly. The 
reconstruction algorithms are applied to the extracted rooflines. 
Figure 11 shows an enlarged part of the study site and Figure 
12, a colour coded normal vector map in the building regions of 
interest at 0.50m resolution. The map shows an efficient 
characterisation of building plane surfaces. The choice of grid 
resolution needs to be optimised in order to average out noise 
effects, retain required building geometric detail and optimise 
the turnaround time.

The planar segmentation algorithm could in principle be applied 
to terrestrial LiDAR data to meet requirements of LoD3 and 
above in our modified schema (described in Figure 1).

Figure 9. Colour coded normal vector map of the area of 
interest shown in Figure 8 derived from a gridded LiDAR DSM 
(25cm resolution) over the area

Figure 10. Colour coded normal vector map of the area of 
interest shown in Figure 8 derived from a gridded LiDAR DSM 
(10cm resolution) over the area

Error!

Figure 11. An enlarged part of the orthoimage for the test site 
showing building regions of interest linked to Figure 12, 
different from that shown in Figure 8
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Figure 12. Colour coded normal vector map corresponding 
to image subset in Figure 11

The curvilinear segmentation algorithms have been tested over a 
different study area with appropriate building types. A 
significant level of automation in the planar and curvilinear 
segmentation has been possible. Further work is on labelling 
connected components and incorporating image edge lines into 
the segmentation and model reconstruction process. The results 
are promising. 
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