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ABSTRACT

The automatic orientation and auto-calibration of image triplets and sequences is the basis for applications in visualization but also for
all tasks employing metric information from imagery. Here we propose a hierarchical approach for orientation based on image triplets
which is robust in the sense that it works with one set of parameters for a larger number of different sequences, also containing medium-
to wide-baseline images, which standard procedures cannot handle. For auto-calibration we have made tests using the absolute dual
quadric and the stratified approach based on the modulus constraint, showing that our results correspond with given calibration data,
but are not yet totally stable. Finally, we propose a simple and robust method which allows the determination of the two parameters of
the principal distance in x- and y-direction for image triplets robustly and reliably.

1 INTRODUCTION

As exemplified for instance by (El-Hakim, 2002), visualization
of real world scenes becomes more and more sophisticated. As
basis for visualization often sequences of images are taken from
unknown view points. The tedious manual determination of the
orientation can be avoided by automatic matching of points. If
more than two images are acquired with fixed parameters of the
cameras, it is at least for a general configuration theoretically pos-
sible to unambiguously upgrade the projective space defined by
the perspective images to a metric space where right angles are
defined and where one can measure relative distances. This is
called auto-calibration.

In this paper we first summarize notations in Section 2. In Sec-
tion 3 a robust approach for the automatic (projective) orientation
of image triplets is proposed. The orientation builds on the es-
timation of the trifocal tensor based on the Carlsson-Weinshall
duality and hierarchical matching including tracking through the
pyramid. Section 4 details the orientation of image sequences by
linking triplet by triplet. Old points are tracked and new points
are added. Triplet and sequence orientation are robust in that
sense that for a larger number of image triplets and sequences
reliable results are obtained with all parameters fixed including
the initial search-space set to the full image size. In Section 5
three approaches for (linear) auto-calibration are presented. Two
are based on the absolute dual quadric and the third employs the
stratified approach based on the modulus constraint. After giv-
ing results for these three approaches, we propose a simple, but
robust approach for the determination of the principal distance in
x- and y-direction for image triplets in Section 6. The paper ends
with conclusions.

2 CALIBRATION MATRIX

We use homogeneous coordinates which are derived from Eu-
clidean, i.e., metric, coordinates by adding an additional coordi-
nate and free scaling. In our notation we distinguish homoge-
neous 2D and 3D vectors x = (x1, x2, x3) and X = (X1, X2, X3,
X4), respectively, as well as matrices P (bold), from Euclidean
vectors x and X as well as matrices R (bold italics).

We model the interior orientation of a camera by principal dis-
tances αx and αy , principal point (x0, y0), and skew of the axes

s. These 5 parameters are collected in the calibration matrix

K =

[
αx s x0
0 αy y0
0 0 1

]
. (1)

Homogeneous 3D points X are mapped to image points x via x=
P X. The 3× 4 matrix P is constructed from a 3× 3 rotation ma-
trix R and the vector t representing the coordinates of the camera
in the global coordinate frame by P = K [R | t]. Where not stated
otherwise, the basic algorithms stem from (Hartley and Zisser-
man, 2000).

3 ROBUST ORIENTATION OF IMAGE TRIPLETS

3.1 Estimation of the Trifocal Tensor

While other approaches such as (Pollefeys et al., 2002) use fun-
damental matrices F and homographies between image pairs, the
later allowing to cope with planar scenes, our basic building block
for the orientation of an image sequence is the trifocal tensor T .
Its basic advantage is, that it renders it possible to linearly transfer
points from two images into a third. This allows to check a match
in two images in the third image and therefore helps to rule out
blunders. This is not possible for fundamental matrices for which
the result of a transfer is one-dimensional, i.e., the epipolar lines.

To estimate the trifocal tensor from a minimum of six point
triplets, we employ the Carlsson-Weinshall duality (Carlsson,
1995, Weinshall et al., 1995). Utilizing an algorithm which
gives a solution for a minimum number of points is important in
two ways: First, for robust estimation based, e.g., on RANSAC
(cf. below), this considerably reduces the search space. Second,
by taking the minimum number of points we implicitly take the
constraints for a tensor to be a trifocal tensor into account.

The basic idea of the duality is to interchange the roles of points
being viewed by several cameras and the projection centers. If
one has an algorithm for n views and m + 4 points, then there
is an algorithm for projective reconstruction from m views of
n + 4 points. By taking into account |F| = 0, an algorithm
can be constructed for the reconstruction of the fundamental ma-
trix from two images for which seven homologous points suffice.
This means that n = 2 and m = 3 and therefore, the duality
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results into an algorithm for 3 views and 6 points. To determine
the fundamental matrix from seven points, a cubic polynomial for
which either one or three real solutions exist has to be solved.

Even though one can reduce mismatches by hierarchical match-
ing (cf. Section 3.2), there are usually far too many for an ef-
ficient least squares solution, if the knowledge about the scene
and the orientation of the cameras is weak. As our problem is of
the type that we only have relatively few parameters and a high
redundancy, RANSAC (random sample consensus) (Fischler and
Bolles, 1981) is a good choice. RANSAC is based on the idea to
select randomly minimum sets of observations. The correctness
of a set is evaluated by the number of other observations which
confirm it.

As there exist 63 combinations for six triplets, which is consider-
ably more than the 72 for seven pairs, we first calculate the corre-
spondences based on the fundamental matrices of the images one
and two as well as one and three and only then match the triplets.
For RANSAC we take into account the findings of (Tordoff and
Murray, 2002). They state, that the procedure usually used to de-
termine adaptively the number of samples for RANSAC is usu-
ally employed in a way neglecting statistical correlations. This
leads to a much too low number of samples. Even though the
correct solution would be to model the correlations, we have, as
proposed in (Tordoff and Murray, 2002), fixed the problem by
multiplying the number of samples with a larger factor (we use
500 for the fundamental matrix and 50 for the trifocal tensor),
which leads to satisfying results.

3.2 Hierarchical Matching

We significantly reduce the search space by means of a hierar-
chical approach based on image pyramids with a reduction by a
factor 2 for each level. With this not only the efficiency, but also
the robustness is improved considerably.

Highly precise conjugate points are obtained from a least-squares
matching of points obtained from the sub-pixel Förstner operator
(Förstner and Gülch, 1987). On the highest level of the pyra-
mids, which consists of about 100 × 100 pixels, no reduction of
the search space, e.g., by means of epipolar lines, is yet available.
To reduce the complexity of the matching, several measures are
taken. First, before the actual least-square matching we sort out
many points and calculate a first approximation by thresholding
and maximizing, respectively, the correlation score among image
windows. What is more, we restrict ourselves in the first image
to only a few hundred points by regional non-maximum suppres-
sion.

Because of the complexity issues detailed in the last section, we
compute on the highest pyramid level fundamental matrices and
from them the epipolar lines from the first to the second and to
the third image. After obtaining a solution for the trifocal ten-
sor on the second or (seldom) third highest level of the pyramid,
we have found that it suffices to track the points through the im-
age pyramid. For each level, we scale the point coordinates by a
factor of two and then match the point by least-squares matching
sub-pixel precisely. This was found to be much faster and equally
reliable than extracting points and matching them on each level.
The reliability issue was found to be valid even if one takes into
account the information from the levels above in the form of the
epipolar lines and if one uses the point prediction with the trifocal
tensor.

3.3 Robust Projective Bundle Adjustment

The linear solutions for the image pair or triplet presented above
have the advantage that there is no need for approximate values.

Though, the linear solution is algebraic and not geometric and
thus the precision is limited. To obtain a highly precise solution,
we compute a (projective) bundle adjustment. For this we first
calculate (projective) 3D points with a linear algorithm. The bun-
dle adjustment is split into the interleaved optimization of the 3D
points and the projection matrices. For the actual optimization
the Levenberg-Marquardt algorithm as implemented in the MIN-
PACK public domain package is used.

Even though RANSAC together with other measures more or less
guarantees, that the solution is valid, there is still a larger num-
ber of blunders in the data which distort the result. To get rid
of them, we have implemented a simple scheme which elimi-
nates the observations with the largest residuals as long they are
n times larger than the average standard deviation of the obser-
vations σ0 = vTv/redundancy, with v the residuals for the
observations and all observations are weighted equally. The re-
dundancy is 3∗number points−24 for the image triplet. Every
3D point is determined in three images (3 ∗ 2− 3) and one has to
determine 2∗12 parameters for two projection matrices. We have
found that a factor n of 5 to 8 times σ0 leads to reasonable results.
This is in accordance with values derived from robust statistics.

The approach was implemented in C++ making use of the com-
mercial image processing package HALCON (www.mvtec.com)
and the public domain linear algebra package LAPACK inter-
faced by the template numerical toolkit (TNT; math.nist.gov/tnt).

Figure 1 shows an example for the orientation of a triplet. The
dataset was taken from (Van Gool et al., 2002) as an example for a
wide baseline triplet which cannot be oriented by the usual image
sequence programs. Our program is not only able to orient this
triplet, but as we use the full image as search space it is possible to
do this with one and the same set of parameters for a wide range
of imagery. This is also true for the image sequence presented
below.

4 SEQUENCE ORIENTATION

4.1 Concatenation of Triplets

For the orientation of a sequence we start by orienting the first
triplet as detailed in the previous section. Then we take the next,
i.e., fourth image and orient the triplet consisting of the second,
the third, and the fourth image. The orientation of a triplet results
into three projection matrices Pi, Pi+ 1, Pi+ 2 with the canonical
matrix Pi = [I | 0], constructing their own projective coordinate
frame. For the orientation of the sequence it is necessary to trans-
form the frames of the triplets into a global reference frame. It is,
as in most approaches, also here defined by the first triplet. One
way to do this transformation is to determine a 4 × 4 projection
matrix mapping the coordinate frames.

Here, we take another direction. As we are heading towards a
(projective) bundle adjustment based on points, we base the con-
struction of the homogeneous coordinate frame on the points.
First, the points in the second and third image of the preceding
triplet, which are the same as the first and second image of the
new triplet, are transfered via the trifocal tensor for the new triplet
into the third image. In this image the coordinates for the point
are determined via least-squares matching. To transfer the coor-
dinate frame, we use the direct linear transform (DLT) algorithm.
We already have (projective) 3D points and we have new corre-
sponding 2D image points and this enables us to linearly compute
the projection matrix for the new image. The same procedure is
done for the rest of the triplets and step by step n-fold points are
generated.
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a b c

Figure 1: Wide baseline triplet from (Van Gool et al., 2002) with matched points and epipolar lines from first to second and third image.
σ0 of bundle adjustment was 0.044 pixels.

4.2 Addition of Points

The procedure in the last section does not account for the fact that
usually only a certain overlap exists between images. Thus, it is
necessary to add points which have not been visible before. It is
beneficial, to have points well distributed over the scene. Because
the geometry of the scene is not known in advance, this can only
be simulated by using points well distributed over the image. As
shown above, we use non-maximum suppression to control the
point distribution in the first image of the triplet.

When adding a new triplet, we want to avoid a lot of close-by
points. We use the fact that we already know the orientation of
the images and project all 3D points of the sequence via the pro-
jection matrices into the first two images of the new triplet. We
then take only those image points in the first two images derived
for the triplet, which do not lie in the regions defined by dilating
the projected 3D points with, e.g., a radius of 3 pixels. For the
thus determined points we linearly compute the 3D (projective)
coordinates and we are ready for bundle adjustment.

4.3 Bundle Adjustment and Tracking

Finally, we use Levenberg Marquardt non-linear optimization as
presented above in Subsection 3.3 to obtain a globally optimal
(projective) solution. For the sequence we take into account the
radial distortion. It is modeled by R([x y 1]T) ∼ [x y w]T with
w−1 = (1 + k1r

2 + k2r
4) and r2 = x2 + y2.

Also the adjustment for the sequence is done robustly.
Here, the redundancy is 2 ∗ number points in all images −
(number images − 1) ∗ 12 − number 3D points ∗ 3 − 2. The
last “2” is for the two parameters of the radial distortion.

To obtain points on the original resolution, we track the points
through the image. For the sequence it is possible to find points
in images where they have not been found before. We do this by
projecting all adjusted 3D points of the sequence via the adjusted
projection matrices into the images. The least-squares matching
is done pairwise taking the image of the sequence as master image
where the point is closest to the center of the image. The rational
behind this is that usually the scene is acquired in a way that
the image plane is approximately parallel to the scene’s major
structures for the center of the image.

The results for the six images in Figure 2, comprises 2 3-fold,
12 4-fold, 51 5-fold, and 98 6-fold points after robust estimation,
with σ0 = 0.13 pixels and k1 = 0.000145 ± 0.0000570 for
ten runs. The latter means, that the radial distortion cannot be

reliably determined. Therefore, we did not determine the even
more unstable k2. The points are well distributed over the scene
and are a good basis for the auto-calibration presented in the next
section.

In terms of speed it should be noted, that most of the time is
spent in reliably determining the trifocal tensor and also in the
outlier elimination in the robust bundle adjustment. The tracking
of points is relatively fast even for larger images. For six images
from the Rollei D7 metric fix-focus camera of size 2552 × 1920
the tracking of more than 200 points starting from 319 × 240
images is a matter of a few seconds. The processing of the whole
sequence took 147 seconds on average on a 2.5 GHz computer.

5 LINEAR SEQUENCE CALIBRATION

5.1 Absolute Conic and Absolute Dual Quadric

For the determination of the calibration matrix, which allows to
upgrade an affine reconstruction to metric, i.e., Euclidean, the
plane at infinity π∞ has to determined. It is a fixed plane under
any affine transformation. In affine and metric 3-space it has the
canonical position π∞ = [0, 0, 0, 1]T.

When the calibration matrix is known, a projective reconstruc-
tion {Pi, Xj} with P1 = [I | 0] can be transformed into a metric
reconstruction by a matrix H (the 3-vector p represents π∞):

H =

[
K 0

−pTK 1

]
. (2)

The absolute conic Ω∞, which we use for calibration, is a conic
on the plane at infinity π∞. In a metric frame the points on the
absolute conic Ω∞ satisfy X2

1 + X2
2 + X2

3 = 0 and X4 = 0.
Ω∞ is a fixed conic under any similarity transformation and it is
a geometric representation of the five degrees of freedom (DOF)
of the calibration matrix.

The (degenerate) dual of the absolute conic Ω∞ is a degenerate
dual quadric in 3-space called the absolute dual quadric Q∗

∞. Ge-
ometrically the latter consists of the planes tangent to Ω∞. It is
a geometric representation of the eight DOF that are required to
specify metric properties in the projective coordinate frame. π∞
is the null-vector of Q∗

∞, i.e., Q∗
∞π∞ = 0. The image of the

absolute conic (IAC) is the conic ω = (KKT)−1. Like Ω it is an
imaginary point conic, i.e., it has no real points. Its dual (DIAC)
is defined as ω∗ = ω−1 = KKT and is the image of Q∗. Once ω
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Figure 2: Six convergent images and matched points. 1 3-fold, 6 4-fold, 8 5-fold, and 166 6-fold points before and 2 3-fold, 12 4-fold,
51 5-fold, and 98 6-fold points after robust bundle adjustment (σ0 = 0.13 pixels).

and ω∗ have been estimated, also K is determined, as every sym-
metric matrix can be decomposed into an upper-triangular matrix
and its transpose by means of Cholesky factorization.

Auto-calibration based on the DIAC employs

ω∗ = PQ∗
∞PT = KKT , (3)

i.e., the absolute dual quadric Q∗
∞ projects to the DIAC. Equation

(3) is used to transfer a constraint on ω∗ to a constraint on Q∗
∞

via the known projection matrices Pi. Each element of ω∗i =

PiQ∗
∞PiT is linearly related to elements of Q∗

∞. More specific,
linear or quadratic relationships between entries of ω∗ generate
linear or quadratic relationships between entries of Q∗

∞.

In the remainder of this paper it is assumed, that the internal pa-
rameters of the cameras are the same, i.e., ω∗i = ω∗j . From this
follows Pi Q∗

∞ PiT = Pj Q∗
∞ PjT. Since the parameters are ho-

mogeneous, the equality holds only up to an unknown scale and
a set of equations is generated:

ω∗i
11/ω∗j

11 = ω∗i
12/ω∗j

12 = ω∗i
13/ω∗j

13 =

ω∗i
22/ω∗j

22 = ω∗i
23/ω∗j

23 = ω∗i
33/ω∗j

33 (4)

This set of equations corresponds to a set of quadratic equations
in the entries of Q∗

∞. In the minimum case of three views, ten
equations result which yield Q∗

∞.

5.2 Auto-Calibration Using the Absolute Dual Quadric

To actually determine K, the problem is first transformed in a
way making use of the symmetries of the matrices. Instead of
ω∗ = PQ∗

∞PT we write w = Ax, where w contains the six
upper triangular entries of ω∗, x the 10 elements of the upper
triangular parts of PQ∗

∞, and A is an 6 × 10 matrix comprising
the corresponding elements of PPT. From P1 = [I | 0] one can see
that w = [w1, w2, w3, w4, w5, w6]

T = [x1, x2, x3, x5, x6, x10]T

Because ω∗ is a homogeneous matrix, we can set x10 = w6 =
Q∗

∞33 = ω∗
33 = 1. By choosing P1 as reference for equation (4),

five equations f1 to f5 of the form

f1 = x1

10∑
k= 1

A2kxk − x2

10∑
k= 1

A1kxk = 0 (5)

arise. As they are non-linear, their linearization yields an equa-
tion system Bx − f = v with B a 5 × 9 matrix and f consisting
of f1 to f5. Every projection matrix besides the first, canonical
matrix adds five equations. If there are m, with m ≥ 3 projec-
tion matrices, the number of equations is 5(m−1). By assuming
approximate values one obtains values for the vectors x and w
which gives us finally ω∗ and via Cholesky decomposition K.

Because the problem is non-linear, the solution strongly depends
on the initial values, which should therefore be chosen carefully.
As the principal point is for most cameras close to the center of
the image and the skew s can mostly be neglected, the following
approximate values are usually a good choice: x1 = 1, x5 =
(w/h)2, x2 = x3 = x4 = x6 = x7 = x8 = x9 = 0, where w
and h are the width and the height of the image, respectively.

For digital cameras one can, at least for the precision obtainable
by the above method, safely assume, that the skew is zero. This
gives the additional constraint ω∗

12ω
∗
33 = ω∗

13ω
∗
23 among the ele-

ments of a single matrix ω∗.

5.3 Stratified Auto-Calibration Using the Modulus Con-
straint

An alternative approach to the above one-step solution is to first
obtain π∞, or alternatively an affine reconstruction, and only then
upgrade it by the matrix K to a metric one. For the latter, a linear
solution exists.

For general motions of the camera and constant internal param-
eters, an effective way to compute π∞ is the so-called modulus
constraint (Pollefeys and Van Gool, 1999). It is a polynomial
equation in the coordinates of π∞. A projection matrix P can be
rewritten as [A | a]. The homography which describes the projec-
tion of points from π∞ to the image plane is H∞ = A − apT.

If we assume that the internal parameters are constant, we obtain
making use of equation (2) for cameras i and j Hi

∞ = (Ai −
aipT) = KR iK −1 and Hj

∞ = (Aj − ajpT) = KR jK −1. The
infinity homography from i to j can therefore be written as

Hij
∞ = (Ai − aipT)(Aj − ajpT) = KR j(KR i)−1 . (6)
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This shows that Hij
∞ is conjugated with a rotation matrix. There-

fore, its three eigenvalues must have the same moduli. The char-
acteristic polynomial of Hij

∞ is det(Hij
∞ − λI) = f3λ

3 + f2λ
2 +

f1λ + f0, where λi are the three eigenvalues, and fi are the four
coefficients. It was shown that the following condition, called the
modulus constraint, is a necessary condition for the roots of the
eigenvalues to have equal moduli:

f3f
3
1 = f0f

3
2 (7)

This equation yields a constraint on the three elements of the vec-
tor p by expressing f0, f1, f2, and f3 as a function of them. By
factorization using the multi-linearity of determinants one finds
that f0, f1, f2, and f3 are linear in the elements of p. Putting
things together one can see that the modulus constraint is a quar-
tic polynomial in the three elements of p. It is a necessary, but
not a sufficient condition. Every pair of views generates a quar-
tic equation. Thus, π∞ can be determined from three views,
but only as the intersection of three quartics in three variables.
There are overall 64 solutions to these equations. While (Polle-
feys and Van Gool, 1999) use continuation, here the problem is
again solved by least-squares adjustment of the linearized prob-
lem. The solution for this is very sensitive to the given initial
values. To compensate for this, a large 3D-space of solutions is
searched through.

Once p, i.e., π∞, is known, an affine reconstruction is achieved
and the mapping from π∞ is Hi

∞ = (Ai − aipT). The abso-
lute conic lies on π∞, so its image is mapped between views by
Hi

∞. If the internal parameters are constant over the views, the
transformation rules for dual conics lead to ω∗ = Hi

∞ω∗HiT
∞.

Here, the scale factor can be chosen as unity by normalizing
det(Hi

∞) = 1. The above formula leads to six equations for
the elements of the upper triangular matrix ω∗. By combining
equations from more than two views, a linear solution is obtained
for ω∗. K is again determined via Cholesky decomposition.

5.4 Results

For the sequence of six images presented in Figure 2 we did a
calibration for ten projective reconstructions with the three cali-
bration methods, two using the absolute dual quadric and one em-
ploying the stratified solution. The second method differs from
the first by constraining the skew of the camera to be zero.

The camera used is a Rollei D7 metric camera with highly pre-
cisely known camera constant c = 7.429 mm, principal point
with xpp = 0.294 mm, ypp = −0.046 mm, and a sensor size
of 8.932 mm × 6.720 mm. This means that αx = 0.8317,
αy = 1.1055, x0 = 0.0329 and y0 = −0.0095, and no skew.

For the absolute dual quadric one obtains (six of ten runs were
successful)[

0.821 ± 0.0631 −0.0069 ± 0.00589 0.0329 ± 0.0389
0 1.1 ± 0.0718 −0.0414 ± 0.0441
0 0 1

]

With the constraint s = 0 the following result arises (five of ten
runs were successful)[

0.8 ± 0.056 0.00239 ± 0.00101 0.0377 ± 0.0382
0 1.07 ± 0.067 −0.0266 ± 0.035
0 0 1

]

The modulus constraint gives the following results (as none of
ten runs was successful for six images, the result for five images,
where three of ten runs succeeded, are given):

[
0.711 ± 0.0264 0.0106 ± 0.00874 0.092 ± 0.0857

0 1 ± 0.0495 0.00773 ± 0.0733
0 0 1

]

For this sequence the methods based on the absolute dual quadric
clearly outperform the stratified auto-calibration. The former two
are close to the ground truth, with interestingly the version with-
out the constraint on the skew performing better. Though, as will
be shown in the next section, the better performance for the meth-
ods based on the absolute quadric is valid only in this case.

6 ROBUST CALIBRATION OF IMAGE TRIPLETS

The above auto-calibration is state of the art, but has the disad-
vantage that we found our preliminary implementation to be un-
stable for image triplets. Here we present a rather simple, but
robust means for the calibration of image triplets.

We again start based on the projective, robustly optimized orien-
tation. Basically, we employ P = K [R | t]. Also in the calibrated
case P1 = [I | 0] can be chosen. From the trifocal tensor the fun-
damental matrix F12 from image one to two can be obtained and
from it the (calibrated) essential matrix is computed simply as
E12 = KTF12K. The projection matrix P2 for the second camera
defining the metric frame is obtained via singular value decom-
position (SVD) of E12 = U diag(1, 1, 0)VT, with diag(1, 1, 0)
a diagonal 3 × 3 matrix. This leads to four solutions from which
the one is chosen where the point is for both cameras in front of
them. After defining the metric coordinate frame, 3D Euclidean
points can be calculated and P3 can be determined linearly from
the 3D points via DLT.

For the metric bundle adjustment there are in general six param-
eters to be optimized per projection matrix: three translations in
vector t and three rotations represented implicitly in the matrix
R. To make the problem well-behaved, rotations are represented
via quaternions, e.g., (Förstner, 1999). Because the relative ori-
entation of the first pair is defined by five parameters, e.g., three
rotations and two translations, there are eleven parameters to be
optimized for the triplet.

The unconstrained optimization of the parameters of the calibra-
tion matrix leads to local maxima and thus to unsatisfactory re-
sults. Therefore, another way was chosen. We assume that the
principal point is approximately in the center of the image and
that the ratio principal distance in x- and y- direction is approx-
imately the ratio of the width and the height of the image. We
further assume that standard principal distances range from 0.5
to 2.5. Then the idea is to just sample the principal distance in
x-direction, αx logarithmically by 2.5 ∗ 0.95n with 0 ≤ n ≤ 30
and taking the σ0 of the of the least squares adjustment as crite-
rion. For the αx resulting in the lowest σ0, αy is varied starting
from 1.15 ∗ αx with 1.15 ∗ αx ∗ 0.98n and 0 ≤ n ≤ 15.

First of all, the approach gave a result for all runs of the exper-
iments presented here, but also in all other experiments. For
the first triplet of the sequence presented in Figure 2, αx =
0.778 ± 0.020 and αy = 1.079 ± 0.033 were obtained. This
is in accordance with the given calibration data for the Rollei D7
metric camera as well as the results for the sequence of six im-
ages presented above. For the absolute dual quadric including
the constraint, that the skew is zero, the result for three images
is also reasonable, but without the constraint on the skew and for
stratified auto-calibration the result is much worse.
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a b c d

Figure 3: a) Disparity map (non-overlapping and occluded areas marked in red/gray) and b) - d) visualization based on calibration
(occluded areas in black) for the cathedral example from (Van Gool et al., 2002)

For Figure 1 we do not have ground-truth for the calibration. We
have obtained αx = 2.37 ± 0.11 and αy = 1.93 ± 0.14 for
ten runs. Both methods based on the absolute dual quadric gave
no result at all for the ten runs. The stratified auto-calibration
gave a totally different result for two runs and for the rest αx =
2.18 ± 0.10 and αy = 1.91 ± 0.06 which is for αy in good
accordance, but for αx there is a larger difference. Similar results
were obtained also for a larger number of other image triplets.
Figure 3 shows the visualization of the image triplet after auto-
calibration. The disparity map in Figure 3 a has been computed
based on a improved version of (Zitnick and Kanade, 2000).

7 CONCLUSIONS

We have shown methods for the orientation as well as for the
auto-calibration of image triplets and sequences. The methods
for (projective) orientation are robust in that sense that they gen-
erate results, which can be reproduced, with one set of parameters
for a larger set of images. The cameras can have a considerably
larger baseline than usual video sequences. The results for the
auto-calibration of sequences were shown to be correct also in
relation to known calibration data, but they are still preliminary
in that sense, that they cannot be reliably reproduced. The meth-
ods based on the dual quadric perform better for the sequence,
while the stratified auto-calibration gives reasonable results for
some triplets, where the former methods fail.

For the triplet we have introduced a simple procedure, which
yields acceptable results which can be robustly reproduced and
are in accordance with given calibration data and the other ap-
proaches. Though, this procedure does not give the coordinates
of the principal point and will very probably fail, if the principal
point is farther away from the image center. On the other hand,
this is no problem for most practical applications.

The next thing to be done is the (metric) bundle adjustment of the
image sequence using the linearly obtained calibration matrix as a
start value. Further ideas go into the direction to use the cheirality
inequalities presented in (Hartley and Zisserman, 2000) to reduce
the search space for the modulus constraint. And finally, it is
probably very useful to implement the approach for constrained
auto-calibration proposed by (Pollefeys et al., 2002).
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