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ABSTRACT: 
 
Video image detection systems (VIDS) provide an opportunity to analyse complex traffic scenes that are captured by stationary video 
cameras. Our work concentrates on the derivation of traffic relevant parameters from vehicle trajectories. This paper examines dif-
ferent procedures for the description of vehicle trajectories using analytical functions. Derived conical sections (circles, ellipses and 
hyperboles) as well as straight lines are particularly suitable for this task. Thus, it is possible to describe a suitable trajectory by a 
maximum of five parameters. A classification algorithm uses these parameters and takes decisions on the turning behaviour of vehi-
cles.  
A model based approach is following. The a-priori knowledge about the scene (here prejudged and verified vehicle trajectories) is 
the only required input into this system. One confines himself here to straight lines, circles, ellipses and hyperboles. Other common 
functions (such as clothoids) are discussed and the choice of the function is being justified.  
 
 

                                                                 
*   Corresponding author. 

 
1. INTRODUCTION 

1.1 Motivation 

Traffic management is based on an exact knowledge of the 
traffic situation. Therefore, traffic monitoring at roads and 
intersections is an essential prerequisite. Inductive loops and 
microwave radar systems are the most common detection and 
surveillance systems to measure traffic flow on public roads.  
 
VIDS that operate with real time image processing tech-
niques became more attractive during the last 15 years 
(Michalopoulos 1991), (Wigan 1992), (Setchell et al. 2001), 
(Kastrinaki et al. 2003). Traditional traffic parameters like 
presence, vehicle length, speed as well as time gap between 
two vehicles and vehicle classification (Wei et al. 1996) can 
be determined. In contrast to other sensors, the use of local 
cameras makes a two-dimensional observation possible and 
thus can determine new traffic parameters like congestion 
length, source-destination matrices, blockage or accidents 
and therefore support the estimation of travel times. Multi-
camera systems extend some limitations of single camera 
systems (e.g. occlusions, reliability) and enlarge the observa-
tion area (Reulke et al. 2008a).  
 
We proposed a framework that autonomously detects atypi-
cal objects, behavior or situations even in crowded and com-
plex situations (Reulke et al. 2008b). Extracted object data 
and object trajectories from multiple sensors have to be 
fused. An abstract situational description of the observed 
scene is obtained from the derived trajectories. The first step 
in describing a traffic scene is to ascertain the normal situa-
tion by statistical means. In addition, semantic interpretation 
is also derived from statistical information (such as direction 

and speed). Deviations of the inferred statistics are inter-
preted as atypical events, and therefore can be used to detect 
and prevent dangerous situations. These options allow the 
detection of sudden changes as well as atypical or threatening 
events in the scene. Atypical or threatening events are gener-
ally defined as deviations from the normal scene behavior or 
have to be defined by a rule based scheme. Red light runners 
and incident detection systems are an example for a self-
evident road traffic application.  
 
The trajectories of street vehicles are smooth and homogene-
ous over a large scale. Therefore, a mathematical description 
by elementary functions is appropriate for these trajectories. 
Thus, dramatic reductions of the bandwidths are achieved for 
a full scene transmission. The basic step to determine the 
driver intentions is to fit the trajectories to the analytical 
functions.  
 
This paper is organized as follows: After an overview of 
situation analysis and atypical event detection the approach is 
introduced. Then, an example installation is described and its 
results are presented. The mathematical fundamentals of the 
adaptation of formerly derived trajectories of turning vehicles 
by hyperbolas, ellipsoids, spheres and straight lines are 
sketched. The derived information is very comprehensive but 
compact and permits downcast to other representations like 
source destination matrices. The paper closes with a sum-
mary and an outlook. 
 
1.2 Situation Analysis and Atypical Event Detection 

Scene description and automatic atypical event detection are 
issues of increasing importance and an interesting topic in 
many scientific, technical or military fields where complex 
situations (i.e. scenes containing many objects and interac-
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tions) are observed and evaluated. A common aim is to de-
scribe the observed data and to detect atypical or threatening 
events. 
 
Other areas of situation analysis besides driver assistance 
(Reichardt 1995) may include traffic situation representation, 
surveillance applications (Beynon et al. 2003), sport video 
analysis or even customer tracking for marketing analysis  
(Leykin et al. 2005).  
 
(Kumar et al. 2005) developed a rule-based framework for 
behavior and activity detection in traffic videos obtained 
from stationary video cameras. For behavior recognition, 
interactions between two or more mobile targets as well as 
between targets and stationary objects in the environment 
have been considered. The approach is based on sets of pre-
defined behavior scenarios, which need to be analyzed in 
different contexts.  
 
(Yung et al. 2001) demonstrate a novel method for automatic 
red light runner detection. It extracts the state of the traffic 
lights and vehicle motions from video recordings.    
 
1.3 Image and Trajectory Processing 

The cameras deployed cover overlaid or adjacent observation 
areas. With it, the same road user can be observed using dif-
ferent cameras from different view positions and angles. The 
traffic objects in the image data can be detected using image 
processing methods.  
 
The image coordinates of these objects are converted to a 
common world coordinate system in order to enable the 
tracking and fusion of the detected objects of the respective 
observation area. High precision in coordinate transformation 
of the image into the object space is required to avoid mis-
identification of the same objects that were derived from 
different camera positions. Therefore, an exact calibration 
(interior orientation) as well as knowledge of the position and 
view direction (exterior orientation) of the camera is neces-
sary.  
 
Since the camera positions are given in absolute geographical 
coordinates, the detected objects are also provided in world 
coordinates.  
 
The approach is subdivided into the following steps. Firstly, 
all moving objects have to be extracted from each frame of 
the video sequences. Secondly, these traffic objects have to 
be projected onto a geo-referenced world plane. Afterwards, 
these objects are tracked and associated to trajectories. One 
can now utilize the derived information to assess comprehen-
sive traffic parameters and to characterize trajectories of 
individual traffic participants.  
 
1.4 Scenario 

The scenario has been tested at the intersection Rudower 
Chaussee / Wegedornstrasse, Berlin (Germany) by camera 
observation using three cameras mounted at a corner building 
at approximately 18 meters height. The observed area has an 
extent of about 100x100 m and contains a T-section. Figure 1 
shows example trajectories derived from images taken from 
three different positions. The background image is an ortho-
photo, derived from airborne images. 

 
Figure 1. Orthophoto with example trajectories 

 
The aim is the description of the trajectories by functions 
with a limited number of parameters. Source destination 
matrices could be determined at these crossroads through 
such parameters without any further effort. A classification 
approach shall be used here. 
 

2. PROCESSING APPROACH 

2.1 Video Acquisition and Object Detection 

In order to receive reliable and reproducible results, only 
compact digital industrial cameras with standard interfaces 
and protocols (e.g. IEEE1394, Ethernet) are deployed.  
 
Different image processing libraries or programs (e.g. 
OpenCV or HALCON) are available to extract moving ob-
jects from an image sequence. We used a special algorithm 
for background estimation, which adapts to the variable 
background and extracts the desired objects. The dedicated 
image coordinates as well as additional parameters like size 
and area were computed for each extracted traffic object. 
 
2.2 Sensor Orientation 

The existing tracking concept is based on extracted objects, 
which are geo-referenced to a world coordinate system. This 
concept allows the integration or fusion of additional data 
sources. The transformation between image and world coor-
dinates is based on collinearity equations. The Z-component 
in world coordinates is deduced by appointing a dedicated 
ground plane. An alternative is the use of a height profile. 
Additionally needed input parameters are the interior and 
exterior orientation of the camera. For the interior orientation 
(principal point, focal length and additional camera distor-
tion) of the cameras the 10 parameter Brown distortion 
model (Brown 1971) was used. The parameters are being 
determined by a bundle block adjustment.  
 
Calculating the exterior orientation of a camera (location of 
the projection centre and view direction) in a well known 
world coordinate system is based on previously GPS meas-
ured ground control points (GCPs). The accuracy of the 
points is better than 5 cm in position and hight. The orienta-
tion is deduced through these coordinates using DLT and the 
spatial resection algorithm (Luhmann 2006). 
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2.3 Tracking and Trajectories 

The aim of tracking is to map observations of measured ob-
jects to existing trajectories and to update the state vector 
describing those objects, e.g. position or shape. The tracking 
is carried out using a Kalman-filter approach.  
The basic idea is to transfer supplementary information con-
cerning the state into the filter approach in addition to the 
measurement. This forecast of the measuring results (predic-
tion) is derived from earlier results of the filter. Conse-
quently, this approach is recursive. 
 
The initialization of the state-vector is conducted from two 
consecutive images. The association of a measurement to an 
evaluated track is a statistical based decision-making process. 
Errors are related to clutter, object aggregation and splitting. 
The decision criteria minimize the rejection probability.  
 
The coordinate projection mentioned in the last paragraph 
and the tracking process provides the possibility to fuse data 
acquired from different sensors. The algorithm is independ-
ent of the sensor as long as the data is referenced in a joint 
coordinate system and they share the same time frame.  
 
The resulting trajectories are then used for different applica-
tions e.g. for the derivation of traffic parameters (TP). 
 
2.4 Trajectory analysis 

A deterministic description method for trajectories shall be 
introduced below. The functional descriptions for these tra-
jectories should be as simple as possible and permit a 
straightforward interpretation. Linear movements will be 
described by simple straight lines.  
 
Numerous suggestions of possible functions for curve tracks 
by functional dependencies have been made in the literature. 
Clothoid (Liscano et al. 1989) or G2-Splines (Forbes 1989) 
are curves whose bend depends of the arc length. Alterna-
tively, closed functions like B-Splines, Cartesian polynomi-
als fifth degree or Polarsplines (Nelson 1989) can be used as 
well. A common approach to approximate vehicle-based 
trajectories is to employ clothoids. Those functions derived 
from the fresnel integral are highly non linear. They are fun-
damental in road and railroad construction. Due to urban 
constraints the tracks of intersections and curves cannot fol-
low the curve of a clothoid whose shape is regarded as a 
trajectory that is especially comfortable to drive. Because 
there are only partial approximations of clothoids, they do 
not fit into the set of elementary functions that shall be re-
garded in this work. Moreover, the given trajectory has to be 
subdivided into parts in order to apply a clothoidal approxi-
mation. (Anderson et al. 1979) have proposed a description 
of tracks by hyperbolas. The great advantage is that the de-
rived parameters clarify directly geometric connections and 
permit a categorization and derivation of important features 
of the trajectories. A hyperbola is able to replicate straight 
lines as well as turning trajectories.  
 
The hyperbola fit serves as an example and is described next. 
The approach is based on least-square fitting of geometric 
elements. The equation for a hyperbola with semi-major axis 
parallel to the x-axis and semi-minor axis b parallel to the y-
axis is given by 
 

2 2

2 2 1x y
a b

− =  
(1) 

 
The parametric equation is given by 
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Commonly the hyperbola is rotated and shifted: 
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Wherein mx,, my are the centre coordinates, the angle ϕ is the 
bearing of the semi-major axis. The implicit form of the hy-
perbola can be written as a general polynomial of second 
degree: 
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The following equations describe the conversion of the im-
plicit to the hyperbola parametric form: 
 

 Bearing of the semi-major axis 
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The parameter determination is based on the number of ob-
servations n, which are related to the functional model. The 
number of observations n has to be greater than the number 
of unknown parameters. 
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This can also be written as follows: 
 

l A x= ⋅  (12) 

 
The observation vector l is replaced by the measured obser-
vation and a small residuum ν. Therefore, the unknown vec-
tor x is replaced by the estimates with the result: 
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This result is known as a least-square adjustment, based on 
the L2 norm. This approach is not able to decide between 
hyperbola and ellipsoid. (Fitzgibbon et al. 1996) and (Fitz-
gibbon et al. 1999) describe an attempt for the inclusion of 
additional conditions by integration of a constraint matrix. 
Hence it is possible to reduce the resulting solution space so 
that the type of the object function (ellipse, hyperbole) can be 
steered. (Harlow et al. 2001) and (Harker et al. 2008) enlarge 
Fitzgibbon’s approach by decomposition of the Scattermatrix 
in the square, linear and constant part. The parameter esti-
mate becomes equivalent to the eigenvalue problem. This is a 
direct solution method. The approach determines an ellipse 
as well as two hyperboles. Figure 2 shows examples for the 
hyperbola and ellipse fit. 
 

  
Figure 2. Example fits for two tracks and classification 

 
3. CLASSIFICATION 

3.1 Class definition  

The traffic objects are identified within the image data and 
trajectories are derived from it. The trajectories are fitted to 
curves and their parameters are classified with the corre-
sponding functions. For the classification the same data set is 
used for all function classes.  
 
A part of the data set is used to train a classifier which in-
tends a class assignment for the trajectory with the parame-
ters. The other part serves for the verification.  

 
Figure 3. Visualisation of the different traffic lanes (classes) 

of the scene 
 
Seven classes were defined based on the scene (figure 3) and 
the traffic lanes:  
 
No From To Class Abbreviation 
1 Wegedorn Rudower right-turn WRR 
2 Wegedorn Rudower left-turn WRL 
3 Rudower Rudower east-

direction  
RO 

4 Rudower Rudower west-
direction 

RW 

5 Rudower Wegedorn right-turn RWR 
6 Rudower Wegedorn left-turn RWL 
7 No class membership No_Class 
 

Table 1. Class definition for the observed scene 
 
The used data set consists of 414 trajectories. Trajectories 
which are part of the classification process need to have a 
minimal length of 10 m and a minimal number of points of at 
least 6 points. The class No_Class consist of trajectories of 
pedestrians, bicyclists and erroneous tracks caused by errors 
in image processing and tracking. It is inadmissible that two 
driving directions are assigned to one trajectory. Relying on 
the shape only, opposite directions is merely to distinguish, 
since their functional parameters are similar. To achieve the 
distinction the approximate same path of the trajectory and 
the fitted function is determined. With this, the direction of 
the trajectory can be determined as an additional feature. 
Hence it direction can be distinguished between close lanes 
trajectories with opposite directions.  
 
3.2 Classification method 

A classifier determines the class affiliation with the charac-
teristic of item-specific features. These features are repre-
sented as a vector in a multidimensional feature space. The 
features correspond to the parameters which have been de-
termined by the approximation.  
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A rectangle classifier and a modified k nearest neighbours 
(KNN-) classifier are used. The result of the classification 
shall be unambiguously.  
 
k-nearest neighbours algorithm (KNN) is a method for classi-
fying objects based on closest training examples in the fea-
ture space. 
 
The rectangle classification (also cuboid classification) is a 
distribution free, nonparametric and supervised classification 
method (see figure 4). 
 

 
Figure 4. A simple rectangle classification in a 2D feature 

space 
 
The KNN classification needs a training data set. It is a non-
parametric method for the estimate of probability densities. 
The operation of the classifier is steered by k (number of 
regarded neighbours, a free selectable parameter) and δ (used 
metric).  Figure 5 shows the approach. 

 
Figure 5. Visualization of the KNN classification. The k=7 

nearest neighbour are used. The object g is as-
signed to the class B 

 
The metric δ defines the reliable determination of the dis-
tances to adjacent elements. The result of the classification 
depends substantially on the density of the learning set and 
the choice of the metric. Here the Mahalanobis distance was 
used. 
 

4. RESULTS 

 To-
tal 

N
C 

WR
R 

WR
L 

R
O 

R
W 

RW
R 

RW
L 

Ref 414 62 117 59 72 26 33 54 
Circ 414 62 119 59 68 21 34 51 
Elli 410 51 117 58 72 28 34 50 
Hyp 410 51 117 58 72 28 34 50 
Str   413 50 125 56 70 28 35 49 
 
Table 2. Summary of complete occurrence and the class oc-

currence of different trajectory types. Ref – refer-
ence, Circ – circle, Elli – ellipse, Hyp – hyper-
bola, Str - straight lines 

 

A data set of 414 different trajectories (Total) has been proc-
essed using different functions within the test data set. A total 
of 62 trajectories could not be classified (NC). A summary is 
given in table 2. 
 
The results shall be represented in greater detail by the hy-
perboles in the following. 
 
4.1 Hyperbola 

Figure 6 shows examples of the approximation of hyperbo-
les. 
 

 
 

Figure 6. Approximation of hyperboles 
 
In addition to the parameters of the conical sections the di-
rection of motion was uses for the classification. Figure 7 
shows the plot of the rotational angle ϕ (X) and the delta in 
degrees (φ) where the trajectory adapts to the hyperbola: 
 

 
Figure 7. Classification results  
 
Class  Cuboid Classifier KNN-Classifier 

Total 92.9% 97.8% 

No_Class 84.3% 98.0% 

WRR 95.7% 99.1% 

WRL 93.1% 99.0% 

RO 97.2% 99.5% 

RW 96.4% 96.4% 

RWR 85.3% 91.2% 

WRL 92.00% 94.0% 
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Table 3. Comparison of results for hyperbolas fits achieved 
by Coboid and KNN-Classifier   

Figure 7 shows a clear separation of the feature space. A high 
classification rate is achieved by both elementary classifiers 
(see table 3). 
 

5. CONCLUSION AND OUTLOOK 

Table 3 affirms a high reliability on these elementary func-
tions, with respect to the used basic classification methods. 
Mistakes within the classification mostly reside due to scene 
behaviour that occurs fairly rare (e.g. car turning at the inter-
section) or is not modelled by the underlying functions (e.g. 
pedestrians or cyclists crossing in very custom patterns). The 
shown approaches have been tested and verified in a real-
time environment with a multi-camera system. 
 
The system shall to automatically observe the traffic on 
crossroads in future. For example source-destination depend-
ences can be determined with that. 
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