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ABSTRACT: 
 
The refinement of the features extracted from image data is a key issue in automated building extraction since feature extraction 
algorithms often result in incomplete features. This paper describes a method for the integration of image and Lidar height data, 
which leads to the refinement of initial image regions and the reconstruction of the parametric forms of roof planes. Region 
refinement is based on fitting planar surfaces to the height points that project into each image region. The number and parameters of 
the planar surfaces are used to split and/or merge the incomplete regions. Every refined region corresponds to a single plane in object 
space whose average height over the average terrain height determines whether it is a roof plane. Experiments with the proposed 
method demonstrate the capability of the method in region refinement and roof plane reconstruction. 
 
 

1. INTRODUCTION 

Image-based approaches to automated building extraction 
greatly rely on the completeness of the features extracted from 
the image data. Feature extraction algorithms, however, often 
result in incomplete features while many features are totally 
missed. The modification of feature extraction algorithms and 
the refinement of the extracted features, therefore, become key 
issues in automated building extraction. Image segmentation 
algorithms, in particular, are very likely to generate a 
partitioning of the image space that does not correspond to the 
partitioning of the object space by visible surfaces. This 
problem is generally referred to as over-segmentation and 
under-segmentation of the image data. As a consequence of 
the over-segmentation and under-segmentation problems, the 
automated system will fail to correctly reconstruct the 3D 
model of the building. 
 

Various approaches to automated building extraction deal 
with incomplete and missed image features in different ways. 
Semi-automated approaches tend to focus the interactive part 
on image interpretation, which guarantees a reliable and 
complete feature extraction by a human operator (Gruen, 
1998; Gruen and Wang, 1998). Perceptual relations between 
image features (Lowe, 1985; Wertheimer, 2001) have also 
been exploited in order to group incomplete low-level features 
into more complex high-level structures. Perceptual grouping 
methods (Boyer and Sarkar, 1999) have been widely used in 
automated building extraction for handling incomplete 
features (Dang et al., 1994; Lin et al., 1994; Bignone et al., 
1996; Krisgnamachari, 1996; Henricsson, 1998; Jayness et al., 
2003). These methods, however, concentrate on the grouping 
of image lines in most cases, and the problems in image 
regions have not been taken into account. Fuchs and Forstner 
(1995) address the over-segmentation and under-segmentation 
problems as inconsistencies in the relations between image 
features. Model-based approaches to automated building 
extraction (Fua and Hanson, 1988; Fischer et al., 1998; Gulch 
et al., 1999; Khoshelham and Li, 2004; Suveg and Vosselman, 
2004) are less influenced by incomplete and missed features 

due to the inherence of tight geometric constraints in the 
model. Nevertheless, the generation of correct model 
hypotheses in the model-based approaches depends on the 
completeness of the extracted image features. 

 
While cues derived from image data, such as interrelations 

between features, may not be sufficient to infer the correct 
partitioning of the image into homogeneous regions, data from 
other sources can be very useful for this purpose. Laser 
scanner systems provide a direct measurement of the visible 
surfaces in object space; hence, height data from such a source 
have a great potential for the refinement of image regions. 
Integration of image and height data has been a topic of 
several previous works (Ameri and Fritsch, 2000; 
Rottensteiner et al., 2004); however, the use of height data for 
the refinement of extracted image features has not been 
brought into focus. This paper describes a method for the 
integration of image and Lidar height data, which leads to the 
refinement of initial image regions and the reconstruction of 
the parametric forms of roof planes.  

 
The paper is structured in five sections. An examination of 

the over-segmentation and under-segmentation problems is 
given in the next section. Section 3 describes the method for 
the integration of image and height data, and the refinement of 
image regions. Experiments and results are shown in Section 
4. Conclusions are made in Section 5. 

 
2. CHARACTERISTICS OF SEGMENTATION 

PROBLEMS 

The goal of segmentation algorithms is to partition an image 
into a number of homogenous regions that correspond to 
surfaces in object space. There are two problems common in 
all image segmentation algorithms: 
 
- Over-segmentation: is the case where there exists a single 

surface in object space, but the algorithm partitions the 
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image of this surface into more than one region. The 
detected regions are called undergrown regions. 

- Under-segmentation: is the case where there exist two or 
more surfaces in object space, but the algorithm detects 
only a single region in the image of the surfaces. The 
detected region is called an overgrown region.  

 
The general approach to the correction of undergrown and 

overgrown image regions has been based on an ability of 
human brain that is often referred to as perceptual completion. 
In this approach, the incomplete features are completed so that 
the ideal interrelation is set up between them. For example, in 
terms of image edges and regions, the ideal relation is that 
there always must be an edge between two image regions. 
Therefore, if the edge does not exist, either the two regions are 
merged or the edge is added. Fuchs and Forstner (1995) 
identified various types on inconsistencies between image 
features that can be corrected by establishing the ideal 
interrelation (Fig. 1). There is, however, an ambiguity problem 
associated with perceptual completion. In many cases, the 
selection between the two possible choices is an ambiguous 
one. For example, in Fig. 2(C) there is no clue as to whether 
the edge must be removed, or the edge must be completed and 
the region split. 

 

Another approach that has been used for the correction of 
undergrown and overgrown regions is the multi-resolution 

segmentation. In this approach, the image is resampled with a 
smoothing kernel into different resolution layers, and the 
segmentation algorithm is applied to each layer. Thus, 
undergrown regions may turn out merged in a smoother layer, 
and an overgrown region might be found correctly split in a 
sharper layer. The multi-resolution approach can be regarded 
as equivalent to selecting different smoothing parameters in 
the segmentation algorithm. Aside from the practical 
complications of selecting the right resolution layer or 
parameter setting in an automated fashion, this approach might 
as well fail due to intrinsic uncertainties present in image data. 
For example, when an edge between two surfaces in object 
space does not appear in the image due to low contrast, 
lighting condition or shadow the corresponding regions will 
overgrow in the segmented image regardless of the selected 
resolution or parameter setting. On the contrary, the presence 
of shadow or an undesirable object, e.g. an antenna, can lead 
to undergrown regions in all resolutions of the segmented 
image no matter what parameter settings are used.   

 
The aforementioned problems with the segmentation of 

image data are less critical in height data. While surfaces in 
object space appear as homogenous regions in an intensity 
image, Lidar systems provide a direct measurement of these 
surfaces. In contrast, the edges of the surfaces are not 
measured accurately in Lidar height data as a result of the 
relatively low spatial resolution of the height points. Previous 
studies have shown that the segmentation of height data still 
faces the over-segmentation and under-segmentation problems 
due to measurement errors and the presence of undesirable 
objects (Hoover et al., 1996). These observations suggest that 
a combination of image and height data will result in a more 
complete segmentation of both sources. The next section 
describes the method for the refinement of image regions by 
integrating image and Lidar height data. 

 
3. REGION REFINEMENT AND ROOF PLANE 

RECONSTRUCTION 

In principle, the proposed method for region refinement is 
based on fitting planar surfaces to the height points that 
project into each image region. This is based on the 
assumption that buildings are planar objects; thus buildings 
with curved surfaces are not taken into account in this method. 
If the segmentation algorithm yields a correct partitioning of 
the image, every image region will have a single plane in 
object space that fits to its associated height points. In the case 
of under-segmentation, multiple planes will be found in the 
height points associated with the overgrown region. Similarly, 
in the case of over-segmentation, the planar surfaces found in 
neighbouring undergrown regions will be coplanar. Therefore, 
by examining the number and parameters of the planar 
surfaces found in the height data associated with every image 
region, it is possible to refine the initial segmentation by 
splitting overgrown regions and merging undergrown regions. 
This procedure can be regarded as a segmentation of height 
data guided by an initial segmentation of the image. An 
examination of the average height of the detected planes over 
the average height of the terrain provides evidence for finding 
roof planes. The reconstruction of the roof planes in this 
method is not influenced by the presence of vegetation, since 
the height data associated with vegetation regions are unlikely 
to fit in planar surfaces. The following sections describe the 
plane fitting, split-and-merge and roof determination 
processes. 

Fig. 1: Various types of inconsistencies in interrelations 
between different features (from Fuchs and 
Forstner, 1995). 

Fig. 2: Ambiguity problem in perceptual completion. 
A. The region is split because the edge is 
strong; B. The regions are merged because 
the edge is weak; C. An ambiguous case. 
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3.1 Plane fitting process 

A last echo Lidar DSM is used as the height data in this 
process. The height points from the DSM are projected into 
image regions, provided that orientation parameters are given. 
A robust regression method based on the least median of 
squares (LMS) is used for fitting planar surfaces to the height 
points in each image region. The height points that do not fit 
in the plane are treated as outlier points in the LMS estimator. 
Therefore, it is possible to detect multiple planes in the height 
data by iteratively applying the robust plane fitting algorithm 
to outlier points. The LMS estimator has a breakdown point of 
50%; hence it can deal with half of the data points as outliers. 
 

The detection of outliers in the LMS-type regression relies 
on the Random Sample Consensus (RANSAC) paradigm 
(Fischler and Bolles, 1981). The RANSAC algorithm 
is based on the selection of a number of sets of 
samples from the data (trial estimates). The number 
of the trial estimates is significantly reduced by 
specifying a confidence probability that at least one 
sample contains no outlier points. The plane 
parameters are calculated for every random sample 
(containing three data points), and the sample for 
which the median of the squared residuals (of all 
points) is minimum is selected as the best sample. 
The final plane is estimated using all inlier points, 
and is accepted if the standard deviation of its 
residuals does not exceed a maximum acceptable 
tolerance. The above steps are iteratively applied to 
outlier points until no new planes are found, or the 
number of the remaining points is not sufficient for 
plane fitting. Fig. 3 illustrates the process of plane 
fitting in an overgrown region. 

 
3.2 Split-and-merge process 

As mentioned above, in an ideal segmentation every 
image region is associated with a single plane in 
object space (assuming buildings are composed of 
planar faces). However, due to the over-segmentation 
and under-segmentation problems, in practice the 
region-plane correspondence does not exist, and 
multiple planes might be found in a single region, or 
multiple regions might be associated with a single 
plane. In the split-and-merge process, the results of 
the plane fitting process are used to detect overgrown 
and undergrown regions, and split and merge them 
respectively.  
 

Overgrown regions are simply identified as regions in 
which multiple planes are found. Although only the detected 
planes are used in the reconstruction stage, image regions can 
as well be refined. An overgrown region is split by finding for 
each pixel the nearest height point and the plane that particular 
height point belongs to. 
 

In order to merge undergrown regions it is necessary to 
establish adjacency relations between the image regions. The 
topology of image regions is most often represented in a graph 
structure where the graph nodes represent image regions, and 
arcs denote the adjacency relation between regions. Planar 
surfaces found in every pair of adjacent regions are examined 
to determine whether they are coplanar. The coplanarity check 
is based on the discrepancies between the slopes of planar 

surfaces in adjacent regions, and the vertical distance between 
the two planes. If these values do not exceed a maximum 
tolerance, then the adjacent region-planes will be found 
coplanar and thus merged. 

 
Every refined region is stored along with the parameters of 

its associated plane and the coordinates of the height points 
used for the computation of that plane. The coordinates of a 
height point include a height derived from the DSM and a 
height derived from the DTM. To determine the average 
height of a plane over the average terrain height the above two 
height values are subtracted and the results are averaged over 
the region. If the value of the average height difference is 
greater than a threshold, the plane is classified as a roof plane. 
A threshold of 3m to 4m is often convenient, since building 
roofs are unlikely to have a lower height. 

 
4. EXPERIMENTS 

The method was tested with a set of Lidar data consisting of 
an orthoimage with 1m resolution, a last echo DSM and a 
DTM both with 0.5m resolution. The planimetric and 
altimetric accuracy of the DSM height points were 0.5m and 
0.15m respectively. The location of the dataset is the city of 
Memmingen in southern Germany. Two cutouts were selected 
from the suburban area of the city. The images were 
segmented using a watershed algorithm with a smoothing 
parameter of 13.  

Fig. 4 illustrates the process of region refinement and roof 
plane reconstruction for the Memmingen 1 cutout. As can be 
seen, the initial segmentation of the image (Fig. 4A) includes a 
significant number of overgrown and undergrown regions 
(Fig. 4C), which are refined by using the planar surfaces found 

Fig. 3: The plane fitting process. A. An aerial image of a building; B. The 
initial segmentation of the image with the height points 
projected from the DSM to an overgrown region; C. Two planes 
are detected in the height points belonging to the overgrown 
region. Points in red belong to the first plane, points in blue 
belong to the second plane and points in black fit in neither of 
the planes; D. The height points in 3D view. 
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in height data (Fig. 4D). The application of the method to the 
Memmingen 2 cutout is shown in Fig. 5. Again, in most cases, 
the method is able to split overgrown regions, merge 
undergrown regions and separate roof planes from non-roof 
planes. 
 

The performance of the method in terms of the 
completeness of the detected roof planes is summarized in 
Table 1. In total, out of 37 roof planes in the Memmingen 1 
cutout, 32 planes are correctly detected. This rate is 23 out of 
27 for the Memmingen 2 cutout. It is worth noting that planar 
surfaces that correspond to dormers and skylights are also 
considered as roof planes a long as their sizes are sufficiently 
large so that the projected height points form a plane. In other 
words, the level of detail for the reconstructed roofs is limited 
by the resolution of height data. 

 
From the figures it can be observed that the performance of 

the method is not influenced by vegetation unless a roof plane 
is entirely covered by a tree canopy. But on the other hand, 
skylights and other small objects on the roofs that result in 
excessive over-segmentation of the image into very small 
regions have led to failure in a number of cases. There are also 
a few cases where the boundaries of a refined roof region do 
not conform to the boundaries of its associated plane. This is 
due to the inaccuracy of the height points on the boundaries of 
the roofs. These points have been detected as outliers, and thus 
left out in the plane fitting process. In general, the boundaries 
of the refined regions do not correctly show the boundaries of 
the roofs. Accurate extraction of roof boundaries are discussed 
elsewhere (Khoshelham, 2004).  

 
The reconstructed roof planes were found to be within an 

acceptable range of accuracy. Since ground control points 
were not available for the location of the experiment, a 
number of checkpoints were derived from the DSM of the 
Memmingen 1 cutout in order to assess the accuracy of the 
reconstructed roofs. The altimetric accuracy of the 
reconstructed roof planes for the Memmingen 1 cutout was 
found to vary between 0.06m to 0.48m. 

 
5. CONCLUSIONS 

In this paper a method was presented for the refinement of 
image segmentation and reconstruction of parametric roof 
planes by integrating image and Lidar height data. The 
robustness of an image-based building reconstruction system 
greatly relies on the completeness of the features extracted 
from the images. Thus, by employing the region refinement 
process described in this paper one can expect a higher level 
of robustness in the reconstruction stage. Also the parametric 
roof planes reconstructed in this process can be effectively 
used in the final modelling step. In model-driven approaches 
to building reconstruction, the number and parameters of these 
roof planes can be used to guide the search for the right 
parametric models in a database of building models. In data-
driven approaches, the method can be employed in 
conjunction with a boundary extraction algorithm to 
reconstruct the buildings with generic polyhedral models. In 
general, it can be concluded that integration of image and 
height data has a significant potential to reduce the 
complexities involved in building reconstruction, and improve 
the overall robustness of an automated building reconstruction 
system. 
 

Table 1: Completeness evaluation of the region refinement 
and roof reconstruction method. 

 Memmingen 
1 

Memmingen 
2 

Total number of roof planes 37 27 

Number of detected planes 33 24 

Number of missed roof planes 5 4 

Number of planes wrongly 
detected as roof 1 1 

 

 
A 

 
B 

 
C 

 
D 

Fig. 4: The process of region refinement and roof 
plane reconstruction for Memmingen 1 
cutout. A. Orthorectified aerial image of 
the scene; B. Last echo DSM of the scene; 
C. Initial segmentation of the image; D. 
refined regions and detected roofs. 
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A 

 
B 

 
C 

 
D 

Fig. 5: The process of region refinement and roof 
plane reconstruction for Memmingen 2 
cutout. A. Orthorectified aerial image of 
the scene; B. Last echo DSM of the scene; 
C. Initial segmentation of the image; D. 
refined regions and detected roofs. 
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