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ABSTRACT

This paper describes the framework for automatic quality assessment of existing geo-spatial data. The necessary reference information
is derived from up-to-date digital aerial images via automatic object extraction. The focus is on roads, as these are amongst the
most frequently changing objects in the landscape. In contrast to existing approaches for quality control of road data, a common and
consistent modeling and processing of the road data to be assessed and the road objects extracted from the images is carried out. A
geometric-topologic relationship model for the roads and their surroundings is set up. The surrounding context objects (for example
rows of trees, or rows of buildings) support the quality assessment of road vector data as they may explain gaps in the extracted road
network. Algorithms are defined for the evaluation of existing relations between extracted objects and the database road objects and
thus quality measures are yielded. Mostly, more than one extracted object gives evidence regarding one database object. Therefore, the
gained quality measures have to be combined in order to reach an overall quality value for the respective object. In the present work two
approaches are used for this reasoning and are compared: a probabilistic one and an approach based on the Dempster-Shafer-Theory of
Evidence. Results carried out on real and simulated data show that the overall approach is both reliable and efficient. Both models for
the reasoning have major differences, however, differences between the results from both approaches only show up in some cases.

1 INTRODUCTION The adequate consideration of the statistical properties of the ex-
tracted objects is of vital importance, because only by this means
This paper describes the framework for automatic quality assesé-is possible to judge the amount of evidence the extracted ob-
ment of existing geo-spatial data. Quality comprises completejects can give regarding the quality of existing vector data. The
ness, positional accuracy, attribute correctness and temporal cdcus is on the question of how to combine the evidences given by
rectness for each object (Zhang and Goodchild, 2002). By meargxtracted objects in order to derive a quality measure for a given
of quality assessment the database objects are compared to #@4S road object. Two approaches are introduced: a traditional
reference: the positional accuracy and the attribute correctneggobabilistic one and an approach based on the Dempster-Shafer
can be checked using the extracted objects. The completeness aRigeory of Evidence.
temporal aspect is only partly considered, as only commissiofRoad and context object extraction from imagery goes beyond the
errors are identified. During a following update process, new oscope of this paper; rather the modeling and statistical reasoning
modified road objects not included in the database are extractefr an automatic quality control of given road vector data using
By this means also completeness and temporal correctness a&dch extracted objects is the topic of the present paper.
fully considered. In the present paper only the quality assessment
is addressed.
2 RELATED WORK

The background of this work is given by a project carried out
in conjunction with the German Federal Agency for CartographyWith the advent of highly detailed and accurate vector data sets
and Geodesy (BKG). Here a semi-automatic quality control sys{not being generalized), an automated quality control applying
tem of the official German spatial reference data is developeda direct comparison between given objects and extracted objects
Further information on this project can be found in (Busch et al. has become possible. Such vector data sets are for example avail-
2004). able in Germany (ATKIS DLMBasis), in France (BDTopo, in the
The necessary reference information is derived from up-to-dateear future to be replaced by RGE) and in Great Britain (OS Mas-
digital aerial images via automatic image analysis. The focus isermap).
on roads as these are amongst the most frequently changing ob-
jects in the landscape. In contrast to existing approaches for quan (de Gunst, 1996), a very detailed road model is formulated
lity control of road data, a common and consistent modeling andfocusing on highways). Input data from a road database is used
processing of the road data to be assessed and the road objettisiefine the search space for the road extraction. After a detec-
extracted from the images is carried out. A geometric-topologidion of road markings, these are grouped into carriageways after-
relationship model for the roads and their surrounding contextvards. This approach relies on relatively precise data as the only
objects is defined. If for instance aerial images are captured imconsistencies being handled are changes in the road properties:
summer, trees along roads hamper the road extraction as the roadditional carriageways (or a different width from the one regis-
surface is not directly visible. The extraction and explicit incor- tered in the database) and new exits are detected.
poration of those context objects in the assessment of a given rogklverification and update of the ATKIS DLMBasis is described in
database gives stronger support for or against its correctness. (Plietker, 1997). Lines are extracted in the imagery and grouped
In this paper the uncertainties inherent in existing geo-spatial datafterwards. If these lines correspond well to the given vector data
and extracted objects are modeled. The sources of uncertainty aredirection and distance, the vector data is assumed to be cor-
investigated and a statistical model for the given task is definedect. If this attempt does not give enough evidence, the next step
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consists of a verification of the assumed road object by analyzingelations as in reality. The use of those relations between roads
the region around the line (homogeneity). After this object-basednd context objects is a reasonable means for the explanation of
verification, the given network topology is exploited: if a rejected gaps in road extraction. Therefore, a geometric-topologic rela-
object is connected to two accepted objects, a new connection hyionship model for the roads and their surroundings is defined
pothesis is created considering a possible change of attributes (refer to section 4.1).
position. Results from this approach are not presented. An object model for the geometry and the uncertainty inherent
In the German WiPKA-Q5project, road objects from the DLM- in extracted objects will be given in section 4.2. This model-
Basis are verified. The verification system is restricted to opernng is a necessary requirement for the stochastic determination of
landscape areas (Gerke et al., 2004). Knowledge from the datavhether an extracted object and a given GIS road object correlate
base is used mainly in two ways: firstly, the landscape objectsvith the given relationship model. Algorithms for the calcula-
contained in the database are used to define global context réen of these measures are defined in section 5. As mostly more
gions (open landscape, forest, built-up). Secondly, road objectthan one extracted object gives evidence regarding one database
define the region of interest for the road extraction (consideringbject, an approach to reasoning must be able to collect and bal-
the nominal positional accuracy of +/- 3m) and support the groupance evidences given by the named algorithms and finally infer
ing of extracted lines as they are also used as seed vectors. Ttee quality of the given road vector data (section 6). A focus of
developed procedure is embedded in a two-stage graph-based dpis paper is on the question of whether a probabilistic (Bayesian)
proach, which exploits the connection function of roads and leadapproach serves better for this reasoning than an approach based
to a reduction of false alarms in the verification. Results showon the Dempster-Shafer Theory of Evidence.
that the approach works well in open landscape areas if the inPata from the German ATKIS DLMBasis is used as an exam-
pact from disturbing context objects is limited. ple. The transfer of the methods to similar data sets is possible
In (Goeman et al., 2005), a given road network is assessed usivgthout any problems. The function of a road object within the
image statistics. By means of a buffer overlay algorithm the dewhole road network will not be considered and exploited here.
gree of correspondence between lines extracted in imagery arithe network properties can be incorporated using an approach as
given road vectors is achieved. The quality of road extraction isntroduced in (Gerke et al., 2004). Questions concerning coor-
estimated using image information; a geometric road model is nadinate system transformations or unknown scale or orientations
used. between given objects are not treated. Therefore, all objects need
to be given in the same coordinate system.
3 APPROACH
. . - 4 MODEL
The literature review reveals that an approach fulfilling a substan-
tial quality control of road vector data does not exist. De Gunst
(1996) shows results using simulated vector instead of informa--
tion from an existing database, Plietker (1997) does not consider

imprecise road vectors at all, and Gerke et al. (2004) use th S road obi he local bi d th
vectors from the database as seeds without considering their a etween an ATKI > foad o Je_Ct't e loca co_ntext objects an .t €
xtracted road objects are given (ref. to Fig. 1). The relation-

curacy. Goeman et al. (2005) use a buffer approach for the a&xt AR .
sessment, which is generally not able to reflect the quality ver)?h'p model distinguishes between objects to be asseaded§

. e i Objedt objects which directly give evidenc&x-
well; shape and position can not be assessed separately. Morg2!"1ageway Obj _ .
over, context objects which could explain gaps in the extractecﬁraCted Road Objegiand context objectd.pcal Context Objedt

road network are considered only marginally in all recent WorksThe model is independent from the global context, i.e. the ap-

for quality control of road vector data pearance of objects in different environments. Therefore, global

The approach introduced here has two major characteristics whi@pntext knowledge must be considered by the respective object

address the deficiencies of the existing works: a) a sufficientifFXtraction algorithm.

detailed modeling of roads, context objects and the relations bell contrast to many other definitions geometry does not comprise

ween them, and b) an integrated statistical modeling and reasone posi.tilon ofan .objec.t, but the shape and orien.tation..The rela-
ing tive position of objects is modeled by the topologic relation.

The geometric relatiorsame shapandsame orientatioexpress
The modeling of the relations and the concentration on statisticethe fact that the course of an ATKIS road object and the respective
models and reasoning is of elementary relevance for the assesextracted object needs to be similar (shape) and that both objects
ment of the quality of road vector data, because one does ndust have the same orientation.
actually have a reakferencefor this task. The only references The topologic relation is important for this work due to the fact
one can use are automatically extracted objects. Therefore, dhat for example rows of trees (the stems of the trees) must be
approach which is able to statistically evaluate relations betweelpcated outside the carriageway given in ATKIS whereas an ex-
given road vector data and extracted objects and finally compar&acted road (the surface of the road) must be contained in the
them to a given model seems to be a means to overcome the ob¥ KIS carriageway. The topologic relations considereddise
ously unsolvable problem. The approach presented here followjoint andcontains The latter one is defined relative to the ATKIS
the maximum likelihood/maximum support principle: if there is object. Besides this qualitative topologic relation one may define
more evidence for the conformance of the observations (i.e. exside conditions. Fodisjointit is often desirable to give a mini-
tracted objects) and given vector data regarding the model thamum and a maximum distancé_nin, d-max). For example a
against it, the respective database object is assumed to be corrgewv of trees must have a minimum distance to the carriageway
(accepted), otherwise it is assumed to be incorrect (rejected). (due to security reasons) and it is also expected that trees hav-
ing a distance to the carriageway larger than a certain value are
Objects from a highly detailed vector database like the ATKISnhot suitable to explain gaps in the road extraction, i.e. they do
DLMBasis are not generalized and thus must maintain the samgot cover the road in aerial imagery. Fmntainsadditionally an
IWissensbasierter Photogrammetrisch- Kartographischer Arbeitsidentical widthof objects may be required. The relations between
platz zur Qualiatssicherung (Knowledge-based Photogrammetric-the ATKIS Carriageway Objeand theLocal Context Objecand
Cartographic Workspace), cf. (Busch et al., 2004) the respective values given in the depicted relationship model are

1 Object Classes and Relations Between Objects

the relationship model the geometric and topologic relations
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defined by experience and common knowledge. An alternativén discrete space (i.e. in the raster domain) as they are captured
way to find the measures would be to incorporate official specififrom digital imagery. If required, a conversion into Euclidean

cations, for instance from road construction.

Local Context Object

‘RowofBuildings‘ ‘ Row of Trees ‘ ‘ Convoy of Vehicles ‘
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same shape
same orientation
disjoint with
d_min=3m,
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disjoint with
d_min=1m,

same shape
same orientation
contains

space is possible.

Uncertainty In this paragraph the aspects to the uncertainty of
extracted objects are identified and a possible means to model
them statistically is shown. Though the extraction of objects is
not treated in this paper, it makes sense to have a look at possible
impacts on the object’s uncertainty. The interesting issue here is
that not all aspects found in the following have a direct impact to
the assessment of both kinds of relations. If an object is shifted
by an unknown value (sedrtual objectbelow), this shift has no
impact on the geometric relation (shape and orientation).

d_max=10m

[ According to Glemser (2001), the capture of an object can be
\ classified in three single steps: modeling, abstraction and mea-
surement. Here, the given definitions are slightly modified for 2D
image analysis and object extraction (given oriented imagery).

1 In the given context, the model for the capture comprises the ma-
same shape thematical process of mapping objects from image space to ob-
same orientation . . . . .
contains with ject space, i.e. transformation. For this approach it is presumed
same width that the respective parameters are known accurately enough, but

‘ 3D-objects such as houses or trees are also incorporated in the as-
Extracted Road Object sessment of road objects. These objects have to be given in their
projection in 2D (footprints). A resulting offset of the position in
2D has to be considered in the statistical modeling, because some
extraction algorithms do extract 3D-objects from imagery where
the height of objects above the terrain was not considered during
orthogonal projection (leading to an offset in x-y-plane).

The intermediate result after the mapping is called virtual object
as up to this step no concrete object definition was applied. This
happens in the abstraction step, where an operator or an algorithm
has to decide which parts of the mapped virtual object belong to a
certain object class. This abstraction can be understood as a gen-

Geometry Only elongated extracted objects are considered ireralization, and thus a notion of uncertainty is introduced. The
this approach. This enables a direct comparison of the shapd8easurements taking place on these abstracted objects propagate
(section 5.1) between those objects and GIS road objects. An efdis uncertainty. Table 1 summarizes these definitions for areal
tension to arbitrarily shaped extracted objects is possible, but thepjects and gives an idea how to model the impacts statistically,
the definition of geometric relations is ambiguous. Two compo-i-€. with which type of density function. It is important to note
nents are of importance for the assessment: the borders of tﬂeat the assumed distributions are an ideal but also reasonable
objects are used to evaluate topologic relations and the middiedew of the world. (For instance, the assumption that the final
axis is used to compare shapes and orientations. Therefore tfigéasurement can be modeled by a normal distribution).
geometric model should allow a conversion between these twdhe statistical parameters for the objects have to be given by the
representations. respective extraction operator (depending on algorithm and in-
In the object model four borderling$ », Ro1.2 and a middle-  Pput data). Often these values can just be estimated. As the al-
axis M are defined, refer to Fig. 2. The bordeks) » are op- gorithms for the assessment of the relations (next section) need
tional. The derivation of\/ from givenR_, » is explicit: both middle-axis (orientation/shape) and border (topology) the
Any Point P; € M is center of a circle with radius = 1 B; transfer of the statistical measures from the borders to the middle-
which touchesR.; and Rz2. As a separation between the bor- axis need to be done applying variance propagation. In the case
ders is explicitly given, there will be no junctions inside the middlethat the objects are not given explicitly as areas, but as middle-
axis, compared to the skeleton of a region. axis plus width (for example from road extraction), the statistical
measures for the borders also need to be estimated using variance
propagation.

ATKIS Carriageway Object

Types of
connection

——p» generalization association

Figure 1: Relationship Model

4.2 Objects: Geometry and Uncertainty

5 ASSESSMENT OF GIS OBJECTS

Any extracted objecE; gives evidence regarding the question of
whether the modeled relations between this object and the given
ATKIS road object are maintained. The methods introduced in
this section are formulated to achieve those evidence-measures
per object. The combination of all evidence given regarding one
Roads from ATKIS DLMBasis or from many road extraction al- AKTIS road object is the topic of the next section.

gorithms are modeled as middle-axes, including a constant widtlour interesting measures are identified for the assessment:

B as attribute. In this case the bordefs, » are derived by p_ : Probability that the requiregeometriaelations — shape and

means of moving/ in a perpendicular direction byB. The  orientation — are kept, given the object specific quality measures.
bordersRq1,2 are the connection between the respective start-

ing/end points of thek .1 2. Itis reasonable to define the objects p¢,: Probability that the requiretbpologicrelation is maintained,

Figure 2: Object Model - Geometry
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— —
Modeling Abstraction Measurement
(virtual object) (discrete object) (captured object)
In 2D image analysis (giveni Mapping from image space to Definition of points (pixels) Capturing of points/pixels
oriented imagery) object space to be captured (e.g. classifi-
cation/segmentation)

Impact on uncertainty Possible unknown offset of Fuzzy definition of the ob- Uncertainty in measurement

the whole segment in case ofject’s border

3D objects
Type of possible density fung- Uniform distribution, para- Mix of normal and uniform Normal distribution
tion meter (radius) depends ondistribution

possible object height and

image size
Influences ... relation topologic topologic and geometric topologic and geometric

Table 1: From image to object - possible influences on uncertainty for 2D image analysis

given the object specific quality measures.

qcov;: Length of the projection of; onto the ATKIS road ob-
ject related to the overall length of the ATKIS road object (cf.
Fig. 3). This factor is important in order to limit the impact of
E; for the quality assessment. Imagine an extracted road which Figure 3: Assessment of shape

covers 80% of the ATKIS road and the geometric and topologic

relations fit well to the model. This object should have more im- ) o

pact on the quality assessment than for example a row of tre¢depends on local variances as well as on the statistical measures

which just covers about 10% and perhaps indicates less quality.of the middle-axes. _ ) _
Based on the line-string representation, an overall orientation of

pcon;: Confidence measure: many object extraction algorithmghe given ATKIS road object and the extracted object is calcu-

apply an internal evaluation of the results. This measure shoultited, including a certainty measure (standard deviation). The

be used for the assessment. difference of both orientations needs to be zero or maximum tol-
erance value, if given. The value pf_orientation depends on

All measures are defined {0, 1]. The objectE; is only con-  whether the measured orientation difference is larger than this re-

sidered for the assessment of a given ATKIS road object if theyuired difference (i.e. it is the outcome of a significance test).

value ofp,, is larger than zero. By this means, the valuepf

also serves as assignment criterion. 5.2 Assessment of Topologic Relations

5.1 Assessment of Geometric Relations For the examination of the topologic relations the approach pre-
sented in (Winter, 1998) is applied. In that work the topologic
The probabilityp, that the geometric relations between a givenrelations between imprecise and uncertain regions are assessed,
ATKIS road object and any given extracted object correspondonsidering any density function for the respective object’s bor-
to the model is composed of the two componens.r.,. and  ders. Winter shows that all eight topologic relations two objects
Dg—orientation. Finally, if both geometric properties are required, may undergo can be derived from the minimum and maximum
pg is the product of those two probabilities (independence is asdistance between so-called certain zones of both objects. All re-
sumed). For the assessment of geometric relations the middi¢ations modeled above can be assessed by this approach. Three
axis M of the objects is considered. Its positional accuracy isdistance classes (minus, zero, plus) are defined and based on the
given aso s, the standard deviation of a normal distribution, seegiven density functions for the object’s borders the probability for
section 4.2. the class membership of the minimum and maximum distances
are derived. All topologic relations can be mapped to a concrete
Shape D; describes the distance between a point on the exelass membership of both distances. Its probability can be cal-
tracted object” and its nadir point on the given GIS road object culated using the derived class membership probabilities. Hence,
A, cf. Fig 3. The distribution of thé); about its mean valu®  the probabilityp; that a given pair of objects maintains the mod-
is a measure for the local similarity of both shapes, calledA eled topologic relation can be achieved by this means.
theoretical value for this variance can be calculated when identhe value ofp; is also influenced by the width of the two objects
tical shapes — consideringz andos —are assumed, leading to in the case that the side conditiaentical widthis given for the
op. Hence, usingp andop, the probabilityp,—shape indicat-  relationcontains The difference of widths must be zero, but the
ing whether the measured variance of distances is identical to theertainty of the widths measure must also be considered. The
theoretical one can be calculated. probability that this difference is zero is derived, and finally leads
In Fig. 3 the coveraggcov;, defined above, can also be identi- to a new value fops.
fied: Itis the relation between the length.4f and the length of
A. A’ is the projection from¥ onto A.
6 COMBINATION OF EVIDENCE
Orientation In order to be able to calculate piecewise orien-
tations the objects need to be represented by a line-string. Thiny extracted objecE; which is assigned to a GIS road object
conversion is done by a quantization, where the sample distancé (p;;, > 0) allows a conclusio; = 1 which states thak; and
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A maintain the modeled relations. The probability of whetherFor the given task this means = m. Thus, theseé-priori-

¢ = is true p;) or false p;") depends on the collected mea- values are not considered in the calculation of #hgosteriori-

sures. The most important criterion to describe the similarity ofprobabilities. However, these non-informative priors can not re-

two objects ispy,. The other quality values serve as weighting present ignorance. An idea of whether this modeling is neverthe-

factors:a; = py, - gcov; - pcons;. less adequate for the given problem, is given with the examples.

This leads top; = py, - ; andp; = (1 — py,) -

Two hypotheses are defined: 6.2 Evidential Approach

H™: the GIS road object is correct given the observed data, i.e.

the extracted objects and the GIS road object maintain the modFhe Hint-Theory (H-T) is an approach to the Dempster-Shafer

eled relations Theory of Evidence; its fundamentals can be found in (Kohlas

H~: the GIS road object is not correct given the observed dataand Monney, 1995). The measure to what extent a hypothesis

i.e. the extracted objects and the GIS road object do not maintaiis proved by the Hint/ is called support (degree of certitude).

the modeled relations The extent to which there is no disagreement to a hypothesis is
called plausibility. The interpretations of support and plausibility

An approach combining all conclusiogs. . . {, relatedto a GIS  are very close to Dempster’s theory of upper and lower probabil-

road objectA must consider the specific probabilities and finally jty. One interesting difference from the Bayesian approach is the

infer the quality ofA, permitting an overall assessment conclu- possibility of formulating ignorance and therefore a specification

sion, i.e. approve{ " or H~. of &-priori knowledge is not required.

6.1 Probabilistic Approach In H-T a so-called frame of discernmetis defined which con-

o . . . tains all possible answers to a certain question. A Hins de-
The combination of the give§; can be done using an Bayesian fined as the quadruplel — (2, P,T,0); Q — (w1 wim)

H H - ’ ) ) ’ - st rym
a%%ogcgi'silrt;gugﬂ)zﬁeigug?\?gﬁnzsretwglge(ts i? ;;i?sailtrall(: Sz:sgs'presents the set of all possible interpretations of the informa-
(unknowns) is fixed:© = {6, — H* 0, — H~} and¢ has Ton contained in the Hint. Each interpretation permits restricting

L _ the possible answers to a non-empty suti¥et;) of ©. These
the constant ValL.J.e.l' Th;eprlorl-dlstr!b utionsr (¢;) can also be setsI'(w; ) are called focal sets of the Hint. The precision of ev-
given as probabilitiesr(0;) = m; for j = 1, 2.

- S ry interpretationv; is represented in its probabilipy € P. The
The condlthnal pmtiab'“t'ef .for the correctness of the Statemengrobabilities for the interpretations given by one Hint must sum
& = 1 are given byp,” andp; :

to 1.
P& =116 = o) =
p(&=1=H") =

— ot
Dg; - Qi =Py

a ) B Here® contains both hypothese&® = {H*, H~}. Any given
—Pg;i) X =Py

conclusions; = 1 can be interpreted as a Hint, cf. Table 2.

The&; are assumed to be independent, therefore the combined Q| 1 | p
probabilities for the correctness éf andfd, are: Wl | {H7} Par - i = DT
n w, | {H"} (1= pg;) i =p;
w(ér, ... €nl6y) = [ o(&i16) WP |0 | 1-pf) —pw;) =1
i=1
Finally, thea-posteriori-probability for the unknowrts and 6, Table 2: Hint#;
is:
(0i]¢ &) w(&1, ..., En]0i)ms The last interpretation) represents the ignorance. By means
i|Cl---Qn =

of applying Dempster’'s Rule all Hints referring to a GIS road

w({l,...,§n|61)7r1+w(£1,...,§n\92)7r2 ) - ! -
object can be combined into an overall Hint:

Whether a given GIS road object is accepted depends on the ful-
fillment of 7(01|&1 ... &) > m(62]&1 ... €n) and the attainment Horom = (. (Hora ®IB) DI D Hy...) D H,
of a given minimum total coverage percentage.

Finally, the supportp and plausibilitypl for both hypotheses can
Remarks Two issues remain unanswered so far if the Bayesiarbe de)r/ived' Pporp P w P

approach is applied: The choice of tagriori-probabilities and
the consideration of ignorance. Both issues are closely related.
The given pieces of evidengé™ andp; must be allocated com-
pletely to the possible hypotheses in this Bayesian framework,

although in most cases one extracted object cannot describe t%milar to the probabilistic approach, the final decision of whether

glrjsat“r?é S\Iht(r)lli \ggjcél; g':'\%eL;S;grliSprrgggbci)lﬁjiggtaiz :L;iggg;?: a given GIS road object is accepted depends on the fulfillment of
. the condition thatp(H™) > sp(H ™) and the attainment of a

order to give an idea about the GIS road quality. This is an inte- . -

resting issue here: the given object should be assessed objectivgl)yen minimum total coverage.
and the final result should be independent from assumptions con-
cerning the quality. Regarding the choicegpriori probabilities,
Jeffreys (1961) states (citing from (Kass and Wasserman, 1996)):

Two sets of ATKIS road data have been prepared: set A only

sp(HY) =
pl(HT)

pwi. ) sp(H™) = plwa. )
1—sp(H™),pl(H") =1—sp(H")

7 RESULTS

...if there is no reason to believe one hypothesis
rather than another, the probabilities are equal .. . if we
do not take the prior probabilities equal we are express-
ing confidence in one rather than another before the
data are available ...and this must be done only from
definite reason.
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contains objects with a correct geometry. For set B the correct
objects have been rotated in order to obtain incorrect geometries.
Each set contains 125 ATKIS road objects. The width of the road
objects is given as an attribute in ATKIS. In both sets not all val-
ues for the width are correct. It is also a purpose of this test to
check if the approach is able to find the incorrect ones.
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The extracted road objects are obtained by the approach presented Consider maximum likelihood/support:
in (Gerke et al., 2004). The examples are restnc_ted tc_> open land- Bayesian Evidential
scape areas, because the road extraction algorithm is not able to Combination Combination
reliably extract roads in built-up areas. The parameters are trim- green [ yellow || green [ yellow
med for a very strict road extraction, because the influence from SET A: correct ATKIS road objects
artifically inserted road segments (due to automatic gap bridging) ident widthregno [ 125 | 125 [ 125 | 121
. ident. widthreqyes | 109 | 109 [ 109 | 102
should pe very low. Those gaps are qften caysed by yegetgtlon SET B: incorrect ATKTS road objects
and the intention of the following experiments is to test if explic- ident. widthreqno | 14 | 18 [ 14 | 15
itly inserted context objects give adequate evidence. The rows ident. widthreqyes | 12 | 16 || 12 | 13
of trees representing context objects here are captured manually o
(line representation). As the positions of the stems are crucial ... and minimum total coverage of 90%:
for the topologic relation, the width is set fiom. In Table 3 . I
L . . . Bayesian Evidential
the a;sumed statistical properties o_f all mvo_lved ok_)Jec_t clgsses Combination Combination
are given, where\ stands for the radius of uniform distribution green [ yellow || green [ yellow
ando for the standard deviation of a normal distribution, given SET A: correct ATKIS road objects
in [m]. The values given for the extracted roads are related to the ident. widthreqno [ 81 [ 89 T 81 [ 87
d sample distance of the used imagery, whictvis The ident. widthregyes | 68 | 76 [ 68 [ 72
grc_Jun_ . samp g_ Y: . SET B: incorrect ATKIS road objects
reliability of all extracted and captured objegicon is set tol. ident. widthreqno | 0 | 3 [ 0 | 3
Thewidthis also observed by the road extraction algorithm. ident. widthreqyes | 0 [ 3 [ 0 | 3
Modelin Abstrac-  Measure- .
‘ 9 tion ment Table 4: Assessment results for 125 ATKIS road objects. Upper
ATKIS road object - A=3 - half: number of objects wher& ™ is more likely, lower half:
Extracted Roads A=05 0=05 number of objects, wher& ™ is more likely and total object’s
Rows of Trees A=3 A=2  0=03 coverage is larger than 90%

Table 3: Statistical properties of objects for experiments ]
image of Fig. 4. The three rows of trees cover about 96% of

the ATKIS road object. The row of trees in the middle gives evi-
In Table 4 the results for the assessment are shown. The first edence against the correctness of the ATKIS object as both shapes
periment (upper half) was carried out to analyze if the maximumdiffer significantly;p, is 0.03 (cf. Tab. 5). Moreover, it covers
likelihood, respectively the maximum support rule does reflectabout 51% of the ATKIS object. As; is higher than the; from
the object quality. In practice the decision on whether a GIS roadhe other two objects it is reasonable to reject the ATKIS object.
object is accepted or rejected is made based on this rule and on thellowing the Bayesian approach, the ignorance contained in the
requirement that a minimum overall coverage has to be reached.

. : ) Row of trees-No.|  pg; Pt qcov;
Therefore in the second experiment (lower half) this threshold 1 (lef) 0.93 0.11 0.31
has been set to 90%. The results shown are not only separated by 2 (center) 0.03 0.25 0.51
the type of applied reasoning (Bayesian/Evidential) but also by 3 (right) 0.55 0.11 0.15

the type of objects giving the evidencgreendenotes that just Table 5: Quality measures from rows of trees (cf. bottom object
the extracted road objects are consideyaiipwdenotes that the in Fig. 4)

context objects (rows of trees) were additionally included in the . . . . .
assessment. Moreover the experiments have been applied twig@Servations is allocated uniformly tf both Hypothesis, this leads
for each set of ATKIS data: with and without the requirement that"€"e t0 @ maximum probability foff ", although the measured

the widths of the extracted road object and the given ATKIS roadEVidences do not support this decision. In contrast, in the Ev-
object need to be equal. idential approach the ignorance is propagated through the mea-

sures (overall ignorance from the rows of trees for the object is
1—sp(HY) —sp(H") =1-0.06 - 0.11 = 0.83) and thus

The results allow a closer look at some aspects: : T .
the maximum support rule leads to a rejection of the respective

Efficiency: When identity of the widths is not required for every :
object from set A the probability foF* is higher than forrr~  ATKIS object. . , ,

(first row) for every object. This number decreases when idenR€liability: Even though the probability for the ‘wrong’ Hypoth-
tity of the widths is required (second row). In the simulation of €SiS iS higher than for the correct in some cases, all incorrect ob-

a practical application case where the threshold for the minimunifCts have been rejected in the second experiment (green). Some
overall coverage is set to 90%, the number of accepted Objedgcorrect objects have been accepted if the rows of trees are incor-

decreases to about 65% (green) and to about 70% (yellow). jRorated (yellow), because althoug_h the ATKIS road datase_t has
most cases this can be explained by the road extraction algorithf{€N rotated, some rows of trees fit well enough to some objects.

and the chosen parameters: in order to reduce false positive ex-

tractions the contrast between roads and background objects must 8 CONCLUSIONS AND OUTLOOK

be relatively high for road detection. The upper image in Fig. 4

shows a typical example: only about 23% of the ATKIS road ob-This paper describes a framework for the assessment of exist-
ject are covered by extracted road object, the rows of trees covéng road databases. In contrast to existing works, it includes a
about 54% of the AKTIS road object. The probability of hypoth- detailed statistical and relation modeling of all involved objects.
esisH* and the support for this hypothesis is higher thanHor Regarding extracted objects, not only road objects are considered,
if extracted objects are considered and if rows of trees are incombut also context objects which are able to explain deficient road
porated. However, this object was rejected as the overall coveragetraction are incorporated in the quality assessment.

is less than 90%. Results show that the goals striven for have been reached: high
Bayesian vs. Evidential Reasoningin some cases where con- reliability and efficiency. The differences arising from using a
text objects are involved the Evidential Approach seems to bgrobabilistic or an Evidential approach for the combination of
more stringent, but in fact these are discrepancies due to the diévidences given by extracted objects are explainable by the dif-
ferent handling of ignorance. An example is given with the lowerferent kind of handling ignorance contained in the observations.
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digitized row of trees )
(yellow) ATKIS road object
(blue)

extracted road objeéts
(green)

digitized row of trees
No .3

digitized row of trees
No .1

ATKIS road object
(blue)

" digitized row of trees

No .2
extracted road objects
(green)
Measure Object 1 (upper) Object 2 (lower)
Extracted roads
Total coverage 0.23 0.22
T(HT)& .. &) Im(H |1 .. &) ~1/~0 ~1/~0
sp(HT) | sp(H™) 0.029/0.0041 0.03/0.003
Rows of trees
Total coverage 0.53 0.96
m(HY . &) I m(H |ér .. &) 0.96/0.04 0.94/0.06
sp(HT) | sp(H™) 0.034/0.024 0.06/0.11
Extracted roads and rows of trees
Total coverage 0.76 0.98
a(HT)& .. &) Im(H |1 .. &) ~1/~0 ~1/~0
sp(HT) | sp(H™) 0.06/0.03 0.09/0.11

Figure 4: Exemplary results for three objects, probability / support values separated by type of extracted object. Values smaller than
1-1078 are listed as< 0, values larger thah — 1 - 10~% are listed ass 1.

In case the observations are quite balanced regarding the questiGtemser, M., 2001. Zur Bécksichtigung der geometrischen
whether the ATKIS road object is correct, this different model- Objektunsicherheit in der Geoinformatik. PhD thesis, Deutsche
ing is the crucial factor; the Evidential approach is more realisticGeoditische Kommission. Series C, Vol. 539.

(correct) here. )

The examination of context object extraction algorithms is notGoeman, W., Martinez-Fonte, L., Bellens, R. and Gautama, S.,
treated in this paper, but nevertheless a very important issue ft005. Using Image Statistics for Automated Quality Assessment
the future. of Urban Geospatial Data. In: IAPRS, \ol. 36. 8/W27.

The presented results are not only interesting for road data assess-, . .

ment, also an efficient automatic road data update benefits froieffreys, H., 1961. Theory of Probability. 3. edn, Oxford Univer-
. ) stlg/ Press.

this approach: one may assume that new roads are connected

the existing ones. The quality values gained here can be directli5ss R, E. and Wasserman, L., 1996. The selection of prior
incorporated into this process. distributions by formal rules. Journal of the American Statistical
Association 91(435), pp. 1343-1370.
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