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ABSTRACT

This paper describes the framework for automatic quality assessment of existing geo-spatial data. The necessary reference information
is derived from up-to-date digital aerial images via automatic object extraction. The focus is on roads, as these are amongst the
most frequently changing objects in the landscape. In contrast to existing approaches for quality control of road data, a common and
consistent modeling and processing of the road data to be assessed and the road objects extracted from the images is carried out. A
geometric-topologic relationship model for the roads and their surroundings is set up. The surrounding context objects (for example
rows of trees, or rows of buildings) support the quality assessment of road vector data as they may explain gaps in the extracted road
network. Algorithms are defined for the evaluation of existing relations between extracted objects and the database road objects and
thus quality measures are yielded. Mostly, more than one extracted object gives evidence regarding one database object. Therefore, the
gained quality measures have to be combined in order to reach an overall quality value for the respective object. In the present work two
approaches are used for this reasoning and are compared: a probabilistic one and an approach based on the Dempster-Shafer-Theory of
Evidence. Results carried out on real and simulated data show that the overall approach is both reliable and efficient. Both models for
the reasoning have major differences, however, differences between the results from both approaches only show up in some cases.

1 INTRODUCTION

This paper describes the framework for automatic quality assess-
ment of existing geo-spatial data. Quality comprises complete-
ness, positional accuracy, attribute correctness and temporal cor-
rectness for each object (Zhang and Goodchild, 2002). By means
of quality assessment the database objects are compared to the
reference: the positional accuracy and the attribute correctness
can be checked using the extracted objects. The completeness and
temporal aspect is only partly considered, as only commission
errors are identified. During a following update process, new or
modified road objects not included in the database are extracted.
By this means also completeness and temporal correctness are
fully considered. In the present paper only the quality assessment
is addressed.

The background of this work is given by a project carried out
in conjunction with the German Federal Agency for Cartography
and Geodesy (BKG). Here a semi-automatic quality control sys-
tem of the official German spatial reference data is developed.
Further information on this project can be found in (Busch et al.,
2004).
The necessary reference information is derived from up-to-date
digital aerial images via automatic image analysis. The focus is
on roads as these are amongst the most frequently changing ob-
jects in the landscape. In contrast to existing approaches for qua-
lity control of road data, a common and consistent modeling and
processing of the road data to be assessed and the road objects
extracted from the images is carried out. A geometric-topologic
relationship model for the roads and their surrounding context
objects is defined. If for instance aerial images are captured in
summer, trees along roads hamper the road extraction as the road
surface is not directly visible. The extraction and explicit incor-
poration of those context objects in the assessment of a given road
database gives stronger support for or against its correctness.
In this paper the uncertainties inherent in existing geo-spatial data
and extracted objects are modeled. The sources of uncertainty are
investigated and a statistical model for the given task is defined.

The adequate consideration of the statistical properties of the ex-
tracted objects is of vital importance, because only by this means
it is possible to judge the amount of evidence the extracted ob-
jects can give regarding the quality of existing vector data. The
focus is on the question of how to combine the evidences given by
extracted objects in order to derive a quality measure for a given
GIS road object. Two approaches are introduced: a traditional
probabilistic one and an approach based on the Dempster-Shafer
Theory of Evidence.
Road and context object extraction from imagery goes beyond the
scope of this paper; rather the modeling and statistical reasoning
for an automatic quality control of given road vector data using
such extracted objects is the topic of the present paper.

2 RELATED WORK

With the advent of highly detailed and accurate vector data sets
(not being generalized), an automated quality control applying
a direct comparison between given objects and extracted objects
has become possible. Such vector data sets are for example avail-
able in Germany (ATKIS DLMBasis), in France (BDTopo, in the
near future to be replaced by RGE) and in Great Britain (OS Mas-
termap).

In (de Gunst, 1996), a very detailed road model is formulated
(focusing on highways). Input data from a road database is used
to define the search space for the road extraction. After a detec-
tion of road markings, these are grouped into carriageways after-
wards. This approach relies on relatively precise data as the only
inconsistencies being handled are changes in the road properties:
additional carriageways (or a different width from the one regis-
tered in the database) and new exits are detected.
A verification and update of the ATKIS DLMBasis is described in
(Plietker, 1997). Lines are extracted in the imagery and grouped
afterwards. If these lines correspond well to the given vector data
in direction and distance, the vector data is assumed to be cor-
rect. If this attempt does not give enough evidence, the next step
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consists of a verification of the assumed road object by analyzing
the region around the line (homogeneity). After this object-based
verification, the given network topology is exploited: if a rejected
object is connected to two accepted objects, a new connection hy-
pothesis is created considering a possible change of attributes or
position. Results from this approach are not presented.
In the German WiPKA-QS1 project, road objects from the DLM-
Basis are verified. The verification system is restricted to open
landscape areas (Gerke et al., 2004). Knowledge from the data-
base is used mainly in two ways: firstly, the landscape objects
contained in the database are used to define global context re-
gions (open landscape, forest, built-up). Secondly, road objects
define the region of interest for the road extraction (considering
the nominal positional accuracy of +/- 3m) and support the group-
ing of extracted lines as they are also used as seed vectors. The
developed procedure is embedded in a two-stage graph-based ap-
proach, which exploits the connection function of roads and leads
to a reduction of false alarms in the verification. Results show
that the approach works well in open landscape areas if the im-
pact from disturbing context objects is limited.
In (Goeman et al., 2005), a given road network is assessed using
image statistics. By means of a buffer overlay algorithm the de-
gree of correspondence between lines extracted in imagery and
given road vectors is achieved. The quality of road extraction is
estimated using image information; a geometric road model is not
used.

3 APPROACH

The literature review reveals that an approach fulfilling a substan-
tial quality control of road vector data does not exist. De Gunst
(1996) shows results using simulated vector instead of informa-
tion from an existing database, Plietker (1997) does not consider
imprecise road vectors at all, and Gerke et al. (2004) use the
vectors from the database as seeds without considering their ac-
curacy. Goeman et al. (2005) use a buffer approach for the as-
sessment, which is generally not able to reflect the quality very
well; shape and position can not be assessed separately. More-
over, context objects which could explain gaps in the extracted
road network are considered only marginally in all recent works
for quality control of road vector data.
The approach introduced here has two major characteristics which
address the deficiencies of the existing works: a) a sufficiently
detailed modeling of roads, context objects and the relations bet-
ween them, and b) an integrated statistical modeling and reason-
ing.

The modeling of the relations and the concentration on statistical
models and reasoning is of elementary relevance for the assess-
ment of the quality of road vector data, because one does not
actually have a realreferencefor this task. The only references
one can use are automatically extracted objects. Therefore, an
approach which is able to statistically evaluate relations between
given road vector data and extracted objects and finally compare
them to a given model seems to be a means to overcome the obvi-
ously unsolvable problem. The approach presented here follows
the maximum likelihood/maximum support principle: if there is
more evidence for the conformance of the observations (i.e. ex-
tracted objects) and given vector data regarding the model than
against it, the respective database object is assumed to be correct
(accepted), otherwise it is assumed to be incorrect (rejected).

Objects from a highly detailed vector database like the ATKIS
DLMBasis are not generalized and thus must maintain the same

1Wissensbasierter Photogrammetrisch- Kartographischer Arbeits-
platz zur Qualiẗatssicherung (Knowledge-based Photogrammetric-
Cartographic Workspace), cf. (Busch et al., 2004)

relations as in reality. The use of those relations between roads
and context objects is a reasonable means for the explanation of
gaps in road extraction. Therefore, a geometric-topologic rela-
tionship model for the roads and their surroundings is defined
(refer to section 4.1).
An object model for the geometry and the uncertainty inherent
in extracted objects will be given in section 4.2. This model-
ing is a necessary requirement for the stochastic determination of
whether an extracted object and a given GIS road object correlate
with the given relationship model. Algorithms for the calcula-
tion of these measures are defined in section 5. As mostly more
than one extracted object gives evidence regarding one database
object, an approach to reasoning must be able to collect and bal-
ance evidences given by the named algorithms and finally infer
the quality of the given road vector data (section 6). A focus of
this paper is on the question of whether a probabilistic (Bayesian)
approach serves better for this reasoning than an approach based
on the Dempster-Shafer Theory of Evidence.
Data from the German ATKIS DLMBasis is used as an exam-
ple. The transfer of the methods to similar data sets is possible
without any problems. The function of a road object within the
whole road network will not be considered and exploited here.
The network properties can be incorporated using an approach as
introduced in (Gerke et al., 2004). Questions concerning coor-
dinate system transformations or unknown scale or orientations
between given objects are not treated. Therefore, all objects need
to be given in the same coordinate system.

4 MODEL

4.1 Object Classes and Relations Between Objects

In the relationship model the geometric and topologic relations
between an ATKIS road object, the local context objects and the
extracted road objects are given (ref. to Fig. 1). The relation-
ship model distinguishes between objects to be assessed (ATKIS
Carriageway Object), objects which directly give evidence (Ex-
tracted Road Object) and context objects (Local Context Object).
The model is independent from the global context, i.e. the ap-
pearance of objects in different environments. Therefore, global
context knowledge must be considered by the respective object
extraction algorithm.
In contrast to many other definitions geometry does not comprise
the position of an object, but the shape and orientation. The rela-
tive position of objects is modeled by the topologic relation.
The geometric relationssame shapeandsame orientationexpress
the fact that the course of an ATKIS road object and the respective
extracted object needs to be similar (shape) and that both objects
must have the same orientation.
The topologic relation is important for this work due to the fact
that for example rows of trees (the stems of the trees) must be
located outside the carriageway given in ATKIS whereas an ex-
tracted road (the surface of the road) must be contained in the
ATKIS carriageway. The topologic relations considered aredis-
joint andcontains. The latter one is defined relative to the ATKIS
object. Besides this qualitative topologic relation one may define
side conditions. Fordisjoint it is often desirable to give a mini-
mum and a maximum distance (d min, d max). For example a
row of trees must have a minimum distance to the carriageway
(due to security reasons) and it is also expected that trees hav-
ing a distance to the carriageway larger than a certain value are
not suitable to explain gaps in the road extraction, i.e. they do
not cover the road in aerial imagery. Forcontainsadditionally an
identical widthof objects may be required. The relations between
theATKIS Carriageway Objectand theLocal Context Objectand
the respective values given in the depicted relationship model are
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defined by experience and common knowledge. An alternative
way to find the measures would be to incorporate official specifi-
cations, for instance from road construction.

Figure 1: Relationship Model

4.2 Objects: Geometry and Uncertainty

Geometry Only elongated extracted objects are considered in
this approach. This enables a direct comparison of the shapes
(section 5.1) between those objects and GIS road objects. An ex-
tension to arbitrarily shaped extracted objects is possible, but then
the definition of geometric relations is ambiguous. Two compo-
nents are of importance for the assessment: the borders of the
objects are used to evaluate topologic relations and the middle-
axis is used to compare shapes and orientations. Therefore the
geometric model should allow a conversion between these two
representations.
In the object model four borderlinesRL1,2, RQ1,2 and a middle-
axisM are defined, refer to Fig. 2. The bordersRQ1,2 are op-
tional. The derivation ofM from givenRL1,2 is explicit:
Any Point Pi ∈ M is center of a circle with radiusr = 1

2
Bi

which touchesRL1 andRL2. As a separation between the bor-
ders is explicitly given, there will be no junctions inside the middle-
axis, compared to the skeleton of a region.

Figure 2: Object Model - Geometry

Roads from ATKIS DLMBasis or from many road extraction al-
gorithms are modeled as middle-axes, including a constant width
B as attribute. In this case the bordersRL1,2 are derived by
means of movingM in a perpendicular direction by1

2
B. The

bordersRQ1,2 are the connection between the respective start-
ing/end points of theRL1,2. It is reasonable to define the objects

in discrete space (i.e. in the raster domain) as they are captured
from digital imagery. If required, a conversion into Euclidean
space is possible.

Uncertainty In this paragraph the aspects to the uncertainty of
extracted objects are identified and a possible means to model
them statistically is shown. Though the extraction of objects is
not treated in this paper, it makes sense to have a look at possible
impacts on the object’s uncertainty. The interesting issue here is
that not all aspects found in the following have a direct impact to
the assessment of both kinds of relations. If an object is shifted
by an unknown value (seevirtual objectbelow), this shift has no
impact on the geometric relation (shape and orientation).
According to Glemser (2001), the capture of an object can be
classified in three single steps: modeling, abstraction and mea-
surement. Here, the given definitions are slightly modified for 2D
image analysis and object extraction (given oriented imagery).
In the given context, the model for the capture comprises the ma-
thematical process of mapping objects from image space to ob-
ject space, i.e. transformation. For this approach it is presumed
that the respective parameters are known accurately enough, but
3D-objects such as houses or trees are also incorporated in the as-
sessment of road objects. These objects have to be given in their
projection in 2D (footprints). A resulting offset of the position in
2D has to be considered in the statistical modeling, because some
extraction algorithms do extract 3D-objects from imagery where
the height of objects above the terrain was not considered during
orthogonal projection (leading to an offset in x-y-plane).
The intermediate result after the mapping is called virtual object
as up to this step no concrete object definition was applied. This
happens in the abstraction step, where an operator or an algorithm
has to decide which parts of the mapped virtual object belong to a
certain object class. This abstraction can be understood as a gen-
eralization, and thus a notion of uncertainty is introduced. The
measurements taking place on these abstracted objects propagate
this uncertainty. Table 1 summarizes these definitions for areal
objects and gives an idea how to model the impacts statistically,
i.e. with which type of density function. It is important to note
that the assumed distributions are an ideal but also reasonable
view of the world. (For instance, the assumption that the final
measurement can be modeled by a normal distribution).
The statistical parameters for the objects have to be given by the
respective extraction operator (depending on algorithm and in-
put data). Often these values can just be estimated. As the al-
gorithms for the assessment of the relations (next section) need
both middle-axis (orientation/shape) and border (topology) the
transfer of the statistical measures from the borders to the middle-
axis need to be done applying variance propagation. In the case
that the objects are not given explicitly as areas, but as middle-
axis plus width (for example from road extraction), the statistical
measures for the borders also need to be estimated using variance
propagation.

5 ASSESSMENT OF GIS OBJECTS

Any extracted objectEi gives evidence regarding the question of
whether the modeled relations between this object and the given
ATKIS road object are maintained. The methods introduced in
this section are formulated to achieve those evidence-measures
per object. The combination of all evidence given regarding one
AKTIS road object is the topic of the next section.
Four interesting measures are identified for the assessment:
pgi : Probability that the requiredgeometricrelations – shape and
orientation – are kept, given the object specific quality measures.

pti : Probability that the requiredtopologicrelation is maintained,
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Modeling Abstraction Measurement
(virtual object) (discrete object) (captured object)

In 2D image analysis (given
oriented imagery)

Mapping from image space to
object space

Definition of points (pixels)
to be captured (e.g. classifi-
cation/segmentation)

Capturing of points/pixels

Impact on uncertainty Possible unknown offset of
the whole segment in case of
3D objects

Fuzzy definition of the ob-
ject’s border

Uncertainty in measurement

Type of possible density func-
tion

Uniform distribution, para-
meter (radius) depends on
possible object height and
image size

Mix of normal and uniform
distribution

Normal distribution

Influences ... relation topologic topologic and geometric topologic and geometric

Table 1: From image to object - possible influences on uncertainty for 2D image analysis

given the object specific quality measures.

qcovi: Length of the projection ofEi onto the ATKIS road ob-
ject related to the overall length of the ATKIS road object (cf.
Fig. 3). This factor is important in order to limit the impact of
Ei for the quality assessment. Imagine an extracted road which
covers 80% of the ATKIS road and the geometric and topologic
relations fit well to the model. This object should have more im-
pact on the quality assessment than for example a row of trees
which just covers about 10% and perhaps indicates less quality.

pconi: Confidence measure: many object extraction algorithms
apply an internal evaluation of the results. This measure should
be used for the assessment.

All measures are defined in[0, 1]. The objectEi is only con-
sidered for the assessment of a given ATKIS road object if the
value ofpti is larger than zero. By this means, the value ofpti

also serves as assignment criterion.

5.1 Assessment of Geometric Relations

The probabilitypg that the geometric relations between a given
ATKIS road object and any given extracted object correspond
to the model is composed of the two componentspg−shape and
pg−orientation. Finally, if both geometric properties are required,
pg is the product of those two probabilities (independence is as-
sumed). For the assessment of geometric relations the middle-
axis M of the objects is considered. Its positional accuracy is
given asσM , the standard deviation of a normal distribution, see
section 4.2.

Shape Di describes the distance between a point on the ex-
tracted objectE and its nadir point on the given GIS road object
A, cf. Fig 3. The distribution of theDi about its mean valuēD
is a measure for the local similarity of both shapes, calledsD. A
theoretical value for this variance can be calculated when iden-
tical shapes – consideringσE andσA –are assumed, leading to
σD. Hence, usingsD andσD, the probabilitypg−shape indicat-
ing whether the measured variance of distances is identical to the
theoretical one can be calculated.
In Fig. 3 the coverageqcovi, defined above, can also be identi-
fied: It is the relation between the length ofA′ and the length of
A. A′ is the projection fromE ontoA.

Orientation In order to be able to calculate piecewise orien-
tations the objects need to be represented by a line-string. This
conversion is done by a quantization, where the sample distance

Figure 3: Assessment of shape

depends on local variances as well as on the statistical measures
of the middle-axes.
Based on the line-string representation, an overall orientation of
the given ATKIS road object and the extracted object is calcu-
lated, including a certainty measure (standard deviation). The
difference of both orientations needs to be zero or maximum tol-
erance value, if given. The value ofpg−orientation depends on
whether the measured orientation difference is larger than this re-
quired difference (i.e. it is the outcome of a significance test).

5.2 Assessment of Topologic Relations

For the examination of the topologic relations the approach pre-
sented in (Winter, 1998) is applied. In that work the topologic
relations between imprecise and uncertain regions are assessed,
considering any density function for the respective object’s bor-
ders. Winter shows that all eight topologic relations two objects
may undergo can be derived from the minimum and maximum
distance between so-called certain zones of both objects. All re-
lations modeled above can be assessed by this approach. Three
distance classes (minus, zero, plus) are defined and based on the
given density functions for the object’s borders the probability for
the class membership of the minimum and maximum distances
are derived. All topologic relations can be mapped to a concrete
class membership of both distances. Its probability can be cal-
culated using the derived class membership probabilities. Hence,
the probabilitypt that a given pair of objects maintains the mod-
eled topologic relation can be achieved by this means.
The value ofpt is also influenced by the width of the two objects
in the case that the side conditionidentical widthis given for the
relationcontains. The difference of widths must be zero, but the
certainty of the widths measure must also be considered. The
probability that this difference is zero is derived, and finally leads
to a new value forpt.

6 COMBINATION OF EVIDENCE

Any extracted objectEi which is assigned to a GIS road object
A (pti > 0) allows a conclusionξi = 1 which states thatEi and
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A maintain the modeled relations. The probability of whether
ξi = is true (p+

i ) or false (p−i ) depends on the collected mea-
sures. The most important criterion to describe the similarity of
two objects ispgi . The other quality values serve as weighting
factors:αi = pti · qcovi · pconi.
This leads to:p+

i = pgi · αi andp−i = (1− pgi) · αi

Two hypotheses are defined:
H+: the GIS road object is correct given the observed data, i.e.
the extracted objects and the GIS road object maintain the mod-
eled relations
H−: the GIS road object is not correct given the observed data,
i.e. the extracted objects and the GIS road object do not maintain
the modeled relations

An approach combining all conclusionsξ1 . . . ξn related to a GIS
road objectA must consider the specific probabilities and finally
infer the quality ofA, permitting an overall assessment conclu-
sion, i.e. approveH+ or H−.

6.1 Probabilistic Approach

The combination of the givenξi can be done using an Bayesian
approach, although some questions remain (see remarks below).
Here a discrete problem is given, as the set of possible values
(unknowns) is fixed:Θ = {θ1 = H+, θ2 = H−} andξ has
the constant value 1. Thèa-priori-distributionsπ(θj) can also be
given as probabilities:π(θj) = πi for j = 1, 2.
The conditional probabilities for the correctness of the statement
ξi = 1 are given byp+

i andp−i :

p(ξi = 1|θ1 = H+) = pgi · αi = p+
i

p(ξi = 1|θ2 = H−) = (1− pgi) · αi = p−i

The ξi are assumed to be independent, therefore the combined
probabilities for the correctness ofθ1 andθ2 are:

w(ξ1, . . . , ξn|θj) =

nY
i=1

p(ξi|θj)

Finally, theà-posteriori-probability for the unknownsθ1 andθ2

is:

π(θi|ξ1 . . . ξn) =
w(ξ1, ..., ξn|θi)πi

w(ξ1, ..., ξn|θ1)π1 + w(ξ1, ..., ξn|θ2)π2

Whether a given GIS road object is accepted depends on the ful-
fillment of π(θ1|ξ1 . . . ξn) > π(θ2|ξ1 . . . ξn) and the attainment
of a given minimum total coverage percentage.

Remarks Two issues remain unanswered so far if the Bayesian
approach is applied: The choice of theà-priori-probabilities and
the consideration of ignorance. Both issues are closely related.
The given pieces of evidencep+

i andp−i must be allocated com-
pletely to the possible hypotheses in this Bayesian framework,
although in most cases one extracted object cannot describe the
quality of the whole given ATKIS road object as it seldom cov-
ers the whole object. Thus̀a-priori probabilities are introduced in
order to give an idea about the GIS road quality. This is an inte-
resting issue here: the given object should be assessed objectively
and the final result should be independent from assumptions con-
cerning the quality. Regarding the choice ofà-priori probabilities,
Jeffreys (1961) states (citing from (Kass and Wasserman, 1996)):

. . . if there is no reason to believe one hypothesis
rather than another, the probabilities are equal . . . if we
do not take the prior probabilities equal we are express-
ing confidence in one rather than another before the
data are available . . . and this must be done only from
definite reason.

For the given task this meansπ1 = π2. Thus, thesèa-priori-
values are not considered in the calculation of theà-posteriori-
probabilities. However, these non-informative priors can not re-
present ignorance. An idea of whether this modeling is neverthe-
less adequate for the given problem, is given with the examples.

6.2 Evidential Approach

The Hint-Theory (H-T) is an approach to the Dempster-Shafer
Theory of Evidence; its fundamentals can be found in (Kohlas
and Monney, 1995). The measure to what extent a hypothesis
is proved by the HintH is called support (degree of certitude).
The extent to which there is no disagreement to a hypothesis is
called plausibility. The interpretations of support and plausibility
are very close to Dempster’s theory of upper and lower probabil-
ity. One interesting difference from the Bayesian approach is the
possibility of formulating ignorance and therefore a specification
of à-priori knowledge is not required.

In H-T a so-called frame of discernmentΘ is defined which con-
tains all possible answers to a certain question. A HintH is de-
fined as the quadrupleH = (Ω, P, Γ, Θ); Ω = (ω1, . . . , ωm)
represents the set of all possible interpretations of the informa-
tion contained in the Hint. Each interpretation permits restricting
the possible answers to a non-empty subsetΓ(ωi) of Θ. These
setsΓ(ωi) are called focal sets of the Hint. The precision of ev-
ery interpretationωi is represented in its probabilitypi ∈ P . The
probabilities for the interpretations given by one Hint must sum
to 1.

HereΘ contains both hypotheses:Θ = {H+, H−}. Any given
conclusionξi = 1 can be interpreted as a HintHi, cf. Table 2.

Ω Γ P
ω+

i {H+} pgi · αi = p+
i

ω−i {H−} (1− pgi) · αi = p−i
ωΘ

i Θ 1− p(ω+
i )− p(ω−i ) = 1− αi

Table 2: HintHi

The last interpretation (ωΘ
i ) represents the ignorance. By means

of applying Dempster’s Rule all Hints referring to a GIS road
object can be combined into an overall Hint:

Hc1...n = (. . . (Hc12 ⊕ H3)⊕ H4)⊕ H5 . . . )⊕ Hn

Finally, the supportsp and plausibilitypl for both hypotheses can
be derived:

sp(H+) = p(ω+
c1...n), sp(H−) = p(ω−c1...n)

pl(H+) = 1− sp(H−), pl(H−) = 1− sp(H+)

Similar to the probabilistic approach, the final decision of whether
a given GIS road object is accepted depends on the fulfillment of
the condition thatsp(H+) > sp(H−) and the attainment of a
given minimum total coverage.

7 RESULTS

Two sets of ATKIS road data have been prepared: set A only
contains objects with a correct geometry. For set B the correct
objects have been rotated in order to obtain incorrect geometries.
Each set contains 125 ATKIS road objects. The width of the road
objects is given as an attribute in ATKIS. In both sets not all val-
ues for the width are correct. It is also a purpose of this test to
check if the approach is able to find the incorrect ones.
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The extracted road objects are obtained by the approach presented
in (Gerke et al., 2004). The examples are restricted to open land-
scape areas, because the road extraction algorithm is not able to
reliably extract roads in built-up areas. The parameters are trim-
med for a very strict road extraction, because the influence from
artifically inserted road segments (due to automatic gap bridging)
should be very low. Those gaps are often caused by vegetation
and the intention of the following experiments is to test if explic-
itly inserted context objects give adequate evidence. The rows
of trees representing context objects here are captured manually
(line representation). As the positions of the stems are crucial
for the topologic relation, the width is set to1 m. In Table 3
the assumed statistical properties of all involved object classes
are given, where∆ stands for the radius of uniform distribution
andσ for the standard deviation of a normal distribution, given
in [m]. The values given for the extracted roads are related to the
ground sample distance of the used imagery, which is1 m. The
reliability of all extracted and captured objectspcon is set to1.
Thewidth is also observed by the road extraction algorithm.

Modeling Abstrac-
tion

Measure-
ment

ATKIS road objects - ∆ = 3 -
Extracted Roads - ∆ = 0.5 σ = 0.5
Rows of Trees ∆ = 3 ∆ = 2 σ = 0.3

Table 3: Statistical properties of objects for experiments

In Table 4 the results for the assessment are shown. The first ex-
periment (upper half) was carried out to analyze if the maximum
likelihood, respectively the maximum support rule does reflect
the object quality. In practice the decision on whether a GIS road
object is accepted or rejected is made based on this rule and on the
requirement that a minimum overall coverage has to be reached.
Therefore in the second experiment (lower half) this threshold
has been set to 90%. The results shown are not only separated by
the type of applied reasoning (Bayesian/Evidential) but also by
the type of objects giving the evidence:greendenotes that just
the extracted road objects are considered;yellowdenotes that the
context objects (rows of trees) were additionally included in the
assessment. Moreover the experiments have been applied twice
for each set of ATKIS data: with and without the requirement that
the widths of the extracted road object and the given ATKIS road
object need to be equal.

The results allow a closer look at some aspects:
Efficiency: When identity of the widths is not required for every
object from set A the probability forH+ is higher than forH−

(first row) for every object. This number decreases when iden-
tity of the widths is required (second row). In the simulation of
a practical application case where the threshold for the minimum
overall coverage is set to 90%, the number of accepted objects
decreases to about 65% (green) and to about 70% (yellow). In
most cases this can be explained by the road extraction algorithm
and the chosen parameters: in order to reduce false positive ex-
tractions the contrast between roads and background objects must
be relatively high for road detection. The upper image in Fig. 4
shows a typical example: only about 23% of the ATKIS road ob-
ject are covered by extracted road object, the rows of trees cover
about 54% of the AKTIS road object. The probability of hypoth-
esisH+ and the support for this hypothesis is higher than forH−

if extracted objects are considered and if rows of trees are incor-
porated. However, this object was rejected as the overall coverage
is less than 90%.
Bayesian vs. Evidential Reasoning:In some cases where con-
text objects are involved the Evidential Approach seems to be
more stringent, but in fact these are discrepancies due to the dif-
ferent handling of ignorance. An example is given with the lower

Consider maximum likelihood/support:

Bayesian Evidential
Combination Combination

green yellow green yellow
SET A: correct ATKIS road objects
ident. width req.:no 125 125 125 121
ident. width req.:yes 109 109 109 102
SET B: incorrect ATKIS road objects
ident. width req.:no 14 18 14 15
ident. width req.:yes 12 16 12 13

... and minimum total coverage of 90%:

Bayesian Evidential
Combination Combination

green yellow green yellow
SET A: correct ATKIS road objects
ident. width req.:no 81 89 81 87
ident. width req.:yes 68 76 68 72
SET B: incorrect ATKIS road objects
ident. width req.:no 0 3 0 3
ident. width req.:yes 0 3 0 3

Table 4: Assessment results for 125 ATKIS road objects. Upper
half: number of objects whereH+ is more likely, lower half:
number of objects, whereH+ is more likely and total object’s
coverage is larger than 90%

image of Fig. 4. The three rows of trees cover about 96% of
the ATKIS road object. The row of trees in the middle gives evi-
dence against the correctness of the ATKIS object as both shapes
differ significantly;pg is 0.03 (cf. Tab. 5). Moreover, it covers
about 51% of the ATKIS object. Aspt is higher than thept from
the other two objects it is reasonable to reject the ATKIS object.
Following the Bayesian approach, the ignorance contained in the

Row of trees - No. pgi pti qcovi

1 (left) 0.93 0.11 0.31
2 (center) 0.03 0.25 0.51
3 (right) 0.55 0.11 0.15

Table 5: Quality measures from rows of trees (cf. bottom object
in Fig. 4)

observations is allocated uniformly to both Hypothesis, this leads
here to a maximum probability forH+, although the measured
evidences do not support this decision. In contrast, in the Ev-
idential approach the ignorance is propagated through the mea-
sures (overall ignorance from the rows of trees for the object is
1 − sp(H+) − sp(H−) = 1 − 0.06 − 0.11 = 0.83) and thus
the maximum support rule leads to a rejection of the respective
ATKIS object.
Reliability: Even though the probability for the ’wrong’ Hypoth-
esis is higher than for the correct in some cases, all incorrect ob-
jects have been rejected in the second experiment (green). Some
incorrect objects have been accepted if the rows of trees are incor-
porated (yellow), because although the ATKIS road dataset has
been rotated, some rows of trees fit well enough to some objects.

8 CONCLUSIONS AND OUTLOOK

This paper describes a framework for the assessment of exist-
ing road databases. In contrast to existing works, it includes a
detailed statistical and relation modeling of all involved objects.
Regarding extracted objects, not only road objects are considered,
but also context objects which are able to explain deficient road
extraction are incorporated in the quality assessment.
Results show that the goals striven for have been reached: high
reliability and efficiency. The differences arising from using a
probabilistic or an Evidential approach for the combination of
evidences given by extracted objects are explainable by the dif-
ferent kind of handling ignorance contained in the observations.
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Measure Object 1 (upper) Object 2 (lower)
Extracted roads
Total coverage 0.23 0.22
π(H+|ξ1 . . . ξn) / π(H−|ξ1 . . . ξn) ≈ 1 / ≈ 0 ≈ 1 / ≈ 0
sp(H+) / sp(H−) 0.029 / 0.0041 0.03 / 0.003
Rows of trees
Total coverage 0.53 0.96
π(H+|ξ1 . . . ξn) / π(H−|ξ1 . . . ξn) 0.96 / 0.04 0.94 / 0.06
sp(H+) / sp(H−) 0.034 / 0.024 0.06 / 0.11
Extracted roads and rows of trees
Total coverage 0.76 0.98
π(H+|ξ1 . . . ξn) / π(H−|ξ1 . . . ξn) ≈ 1 / ≈ 0 ≈ 1 / ≈ 0
sp(H+) / sp(H−) 0.06 / 0.03 0.09 / 0.11

Figure 4: Exemplary results for three objects, probability / support values separated by type of extracted object. Values smaller than
1 · 10−8 are listed as≈ 0, values larger than1− 1 · 10−8 are listed as≈ 1.

In case the observations are quite balanced regarding the question
whether the ATKIS road object is correct, this different model-
ing is the crucial factor; the Evidential approach is more realistic
(correct) here.
The examination of context object extraction algorithms is not
treated in this paper, but nevertheless a very important issue for
the future.
The presented results are not only interesting for road data assess-
ment, also an efficient automatic road data update benefits from
this approach: one may assume that new roads are connected to
the existing ones. The quality values gained here can be directly
incorporated into this process.
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