Vehicle Detection Using LiDAR

Jacob Heapy

ESPACE - Earth Oriented Space Science and Technology
1.1 Motivation (1)

Primary Goal: The automatic detection and segmentation of vehicles in a region using data from an aerial Light Detection and Ranging (LiDAR) system.

Why Vehicle Detection?
- Critical for automated traffic monitoring in urban and non-urban areas
- Can also provide city officials:
 - Parking habits (where, when)
 - Road utilisation by vehicle type (car, van, truck)
 - Traffic flow, as described by Flow = Density x Velocity [Toth & Grejner-Brzezinska, 2005]
- All information collected can be used to improve the efficiency of current and future transportation networks
1.1 Motivation (2)

Why Aerial LiDAR?

- **Active Sensing Technique:**
 - Possible to use day and night
 - Able to penetrate vegetation coverage (ex. Tree canopies)

- **Information Content:**
 - 3D geometrical information about a scene
 - Additional information about reflective properties of surfaces

- **Motion Analysis:**
 - Linear scanning means moving objects appear deformed [Yao et al., 2011a]

- **Convenience Through Remoteness:**
 - No work crews disturb traffic flow by installing ground-based sensors
 - Cover large areas easily
1.2 Assumptions

General Assumptions Include:

- **Ground Points:**
 - Ground points form a normal distribution of height
 - Vehicles are outliers from the ground points and fit a prior height distribution
 - Ground slope at maximum 26° [Borcs & Benedek, 2015]

- **LiDAR Platform:** We have accurate knowledge of the motion and orientation of the LiDAR platform relative to the scene

- **Weather:** Data is free from interference caused by weather

- **Vehicles:**
 - Aspect ratio of vehicles is known and well defined
 - Extracted vehicles can be described by rectangularity, elongatedness, and from number and intensity of LiDAR returns
 - Rectangularity: measure of how well an object fits in a rectangular bounding box
 - Elongatedness: ratio of the short to long sides of that bounding box
1.3 Problems

General Problems Include:

- **Crowding**: Detection difficult in crowded areas like parking lots and intersections

- **Data Gaps**: Missing points in data may result from:
 - Faulty equipment
 - Poor platform control (yaw, pitch, roll)
 - Surface absorption/reflection

- **Ground Truth**: Testing accuracy against “ground truth” typically uses human interpreted “sensed truth”

- **Vehicle Size**: Small vehicles can be difficult to properly detect and lead to inaccurate velocity estimates

- **Velocities**: Slow moving vehicles can have inaccurate velocity estimates
Preliminary Overview of Methodology:

Vehicle Detection w/ LiDAR

Stationary

- Object-Based Point Cloud Analysis
 - Zhang et al., 2014
 - Eum et al., 2017
 - Yu et al. 2019

 - Grid Cell: Watershed
 - Yao et al., 2008

 - Multi-Level Marked Point Process
 - Borcs & Benedek, 2012
 - Borcs & Benedek, 2015
 - Benedek, 2017

 - Support Vector Machine
 - Zhang et al., 2013
 - Wang et al., 2017

Moving

- Motion Artifact Detection
 - Toth & Grejner-Brzezinska, 2005&2006
 - Yao & Stilla, 2011
 - Yao et al., 2011a
Stationary Vehicle Detection

- **Detection and Classification of Vehicles:**
 - Stationary vehicle detection disregards motion artifacts
 - Focus on accurately separating vehicles from complex backgrounds

- **Typical Order of Analysis:**
 1) Separate Object Points and Background
 2) Apply constraints to classify Vehicle Points
 3) Detect and segment vehicles
Preliminary Overview of Methodology:

1. Stationary
 - Object-Based Point Cloud Analysis
 - Zhang et al., 2014

2. Multi-Level Marked Point Process
 - Borcs & Benedek, 2015

3. Support Vector Machine
 - Wang et al., 2017
Stationary Vehicle Detection [Zhang et al., 2014]:

1. **LiDAR Data**
2. **Ground Surface Filtering**
 - Progressive TIN* Densification
3. **Object Classification**
 - Classify as Vehicle or Non-Vehicle.
4. **Connected Component Analysis**
 - Segment based on Fixed Distance Neighbors
5. **Vehicle Extraction**
 - Based on area, rectangularity, and elongation.

* Triangular Irregular Network
3.1 Method 1: Object-Based Point Cloud Analysis (2)

- **Step 1: Ground Surface Filtering**
 - Use a modified Progressive Triangular Irregular Network (TIN)
 - **Seed Points:**
 - Lowest point in a predefined grid
 - Defines the first TIN
 - Smoothing used to expand the number of seed points
 - The TIN is iterated to determine Ground Surface

- **Step 2: Point Classification**
 - Based on height from Ground:
 - Potential Vehicle
 - Non-Vehicle
 - Ground class is removed from dataset

[T] [Zhang et al., 2014]

TIN representation of a house from [Gorte, 2002]
3.1 Method 1: Object-Based Point Cloud Analysis (3)

☐ **Step 3: Connected Component Analysis**
 - Segment the points into different groups based on distance (FDN)
 - **Fixed Distance Neighbors (FDNs):**
 - Select seed points and find other points that belong to this segment
 - Assess neighbors of seed points using fixed distance
 - Add to the seed point segment if they match

☐ **Step 4: Vehicle Extraction**
 - For each segmented area, three parameters are calculated: Area, Rectangularity, and Elongatedness
 - Segmented areas classified as vehicles if they meet the following criteria:

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area</td>
<td>$2.0 < a < 15.0$ m2</td>
</tr>
<tr>
<td>Rectangularity</td>
<td>$0.6 < r < 1.0$</td>
</tr>
<tr>
<td>Elongatedness</td>
<td>$0.25 < e < 0.65$</td>
</tr>
</tbody>
</table>

Modified from [Eum et al., 2017]
3.2 Method 2: Two-Level Point Processes (1)

Stationary Vehicle Detection [Börcs & Benedek, 2015]:

- **LiDAR Data**
 - Energy-Minimizing Classification
 - Terrain, Vegetation, Clutter, Roof, Vehicle
 - Creation of 2D Class Label Map
 - Project 3D data into 2D grid with Class and Intensity
 - Energy Assignment
 - Classify using traffic segments
 - Optimization
 - Minimize Classification Energy
 - Prior Knowledge
Step 1: Classify 3D Points

- Distinguish Terrain, Vegetation, Clutter, Roof, and Vehicle
- Each class assigned an Energy Function
 - Function used to calculate how close a point is to a class in object space
 - i.e. the lower the energy, the better the class fit
- Class fit determined by height, slope, and number of reflections
 - Ex. Terrain class when $\Delta h < 50$ cm in 1 m grid length

Step 2: Projection into 2D

- Create 2D pixel lattice on terrain model
- Project LiDAR points onto pixels
- Class and Intensity based on majority points in pixel

Modified from [Börcs & Benedek, 2015]
3.2 Method 2: Two-Level Point Processes (3)

- **Step 3: Energy Assignment**
 - Use the Two-Level Marked Point Processes (L²MPP) model to assess vehicle candidates depending on energy functions.
 - **Data-Dependant Energy**: Used to evaluate proposed vehicle candidates based on
 - Center of object segment
 - Length and orientation of rectangular bounding box
 - LiDAR point intensity
 - **Prior-Term Energy**: Used to evaluate traffic segments based on
 - Predefined knowledge of vehicle populations
 - Interaction constraints between neighboring objects

 - “Evaluates the hypothesis that [point] \(p \) belongs to \(\xi \) class, marking high quality matches with lower [energy] \(\mu \) values.”
 - 0 = Perfect Match
 - 1 = No Match
3.2 Method 2: Two-Level Point Processes (4)

- **Data-Dependant Energy:** Used to evaluate proposed vehicle candidates:
 - Return intensity, length, width, center of segment

- **Prior-Term Energy:** Used to evaluate traffic segments.
 - Relative orientation, overlap with other objects, interaction with the road network

Modified from [Börcs & Benedek, 2015]
Step 4: Optimization

Multiple Births and Deaths (MBD): Used to optimize both vehicle and traffic segment classification in four steps:

- **Birth Step: (Visit all pixels)**
 - With a certain probability generate a new object (birth)
 - Object gets random length, width, and orientation
 - Add new object to existing traffic segment if close, otherwise generate new traffic segment

- **Death Step:**
 - Consider energy function of each new object
 - Calculated Data-Dependant and Prior-Term Energy
 - Objects above a certain energy value removed (death)
3.2 Method 2: Two-Level Point Processes (6)

- **Step 4: Optimization continued...**

 - **Re-Arrangement:**
 - Add white gaussian noise to objects close together
 - Calculate the energy required to exchange the objects into a new group
 - Re-arrange if energy is low enough

 - **Convergence:**
 - If previous three steps do not converge, change birth and death thresholds.
 - Repeat until minimum energy achieved.

[Börcs & Benedek, 2015]
Stationary Vehicle Detection [Wang et al., 2017]:

- **LiDAR Data**
- **Terrain Classification**
 - Progressive Morphological Filter
- **Point Segmentation**
 - Objects from Non-Terrain and Blobs from Terrain
- **OCSVM Classification**
 - Classify Objects and Blobs using SVM
- **Vehicle Extraction**
 - Based on integration of Object and Blob classification

* Minimum Covariance Determinant
3.3 Method 3: One-Class Support Vector Machine-MCD* (2)

- **Step 1: Terrain Classification**
 - Low outliers (below terrain) removed by limiting lower δh to all neighbours
 - Use a Progressive Morphological Filter
 - Removes non-terrain objects based on elevation difference to neighbors

- **Step 2: Point Segmentation**
 - Objects segmented from the Non-Terrain data
 - Neighborhood Distance threshold
 - Minimum Object Points threshold
 - Blobs segmented from terrain data
 - Extract areas of missing terrain data
 - Filter out small missing areas using opening operation

* Minimum Covariance Determinant
3.3 Method 3: One-Class Support Vector Machine-MCD* (3)

[Wang et al., 2017]
3.3 Method 3: One-Class Support Vector Machine-MCD* (4)

- **Step 3: OCSVM Classification**
 - Used when only one class is of interest and a decision must be made between true and false classification
 - Build a hyperplane in Feature Space that has maximum separation between Vehicle Class and Non-Vehicle class
 - Plane is “learned” using training data of vehicle data
 - **Minimum Covariance Determinant (MCD)**
 - Used to optimize the “learned” hyperplane
 - State-of-art covariance estimator for multidimensional Gaussian data
 - Assumes data is an elliptical distribution
 - Allows for a larger class distribution than just Gaussian data

[Wang et al., 2017]
3.3 Method 3: One-Class Support Vector Machine-MCD* (5)

- **Step 3: OCSVM Classification con...:**
 - Object Classification (Non-Terrain) features
 - Area, Elongatedness, Planarity, Vertical Position, and Vertical Range
 - Blob Classification (Terrain Missing Data) features
 - Area, Max-Length, Min-Length, and Rectangularity

- **Step 4: Vehicle Extraction**
 - Combine results of Object and Blob Classifications
 - When both results agree on object, extraction complete
 - If methods disagree, preference given to method based on number of points available for classification
 - If few points available, result of Blob classification used. If many points available, result of Object classification used

* Minimum Covariance Determinant

[Wang et al., 2017]
4.1 Dataset from Zhang et al. [2014]

- **Provider**: John Chance Land Surveys (private source)
- **Sensor Type**: FLI-MAP 400 (Pulsed LiDAR)
- **Point Density**: Average 40 pts/m²
- **Area of dataset**: 40 000 m² (200m x 200m)
- **Number of Vehicles (Total)**: 136

Ground Truth: Human interpretation

Modified from [Zhang et al., 2014]
4.2 Dataset from Börcs & Benedek [2015]

- **Provider**: Astrium GEO-Inf. Services Hungary (private source)
- **Sensor Type**: Aerial Discrete Return LiDAR
- **Point Density**: Average 8 pts/m²
- **Area total**: 319 000 m²
- **Number of Datasets**: 7
- **Number of Vehicles (Total)**: 1009

<table>
<thead>
<tr>
<th>Feature / Data set</th>
<th>#1</th>
<th>#2</th>
<th>#3</th>
<th>#4</th>
<th>#5</th>
<th>#6</th>
<th>#7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main road traffic</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>×</td>
</tr>
<tr>
<td>Roadside parking</td>
<td>×</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parking square</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td>×</td>
</tr>
<tr>
<td>Curved Road</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cluttered traffic</td>
<td>×</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>×</td>
</tr>
<tr>
<td>Area in 10^{-3}km²</td>
<td>46</td>
<td>65</td>
<td>39</td>
<td>47</td>
<td>37</td>
<td>39</td>
<td>46</td>
</tr>
<tr>
<td>Point num ·10⁴</td>
<td>45</td>
<td>33</td>
<td>35</td>
<td>38</td>
<td>27</td>
<td>36</td>
<td>36</td>
</tr>
</tbody>
</table>

Modified from [Börcs & Benedek, 2015]
4.3 Dataset from Wang et al. [2017]

- **Provider**: ISPRS for urban object classification *Vaihingen* (open source)
- **Sensor Type**: Leica ALS50 (Pulsed LiDAR)
- **Point Density**: Average 4 pts/m²
- **Area per Dataset**: Not specified
- **Number of Vehicles (Total)**: 287

Modified from [Wang et al., 2017]
5 Results: General Evaluation Formulas

- All three methods evaluated based on Precision, Recall, and F-Score
 - Based on TP (True Positives), FP (False Positives), FN (False Negatives)

- Precision (Correctness)
 - Error of commission (user’s accuracy)
 - How much of the classified data should we trust
 - Precision = TP/(TP+FP)

- Recall (Completeness)
 - Error of omission (producer’s accuracy)
 - How much of the actual data was classified correct
 - Recall = TP/(TP+FN)

- F-Score: “harmonic mean of precision and recall”
 - Maximum penalization for low precision or recall
 - Combined metric used in optimization
 - F-Score = 2*(Precision*Recall)/(Precision+Recall)
5.1 Results Method 1: Object-Based Point Cloud Analysis

- **Methods**
 - **Our OBPCA method**

- Tested at 3 different point densities
 - Correctness (Precision)
 - Completeness (Recall)

- **F-Score**: “harmonic mean of precision and recall”
 - F-Score = \(2 \times \frac{\text{Precision} \times \text{Recall}}{\text{Precision} + \text{Recall}}\)

<table>
<thead>
<tr>
<th>Density ((\text{pt/m}^2))</th>
<th>F-Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>82.3%</td>
</tr>
<tr>
<td>20</td>
<td>78.7%</td>
</tr>
<tr>
<td>10</td>
<td>69.4%</td>
</tr>
</tbody>
</table>

Modified from [Zhang et al., 2014]
5.2 Results Method 2: Two-Level Point Processes

<table>
<thead>
<tr>
<th>Set</th>
<th>NumV*</th>
<th>Object level F-rate %</th>
<th>Pixel level F-rate%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>D-PCA</td>
<td>h-max</td>
</tr>
<tr>
<td>All</td>
<td>1009</td>
<td>77</td>
<td>82</td>
</tr>
</tbody>
</table>

*NumV = Number of real Vehicles in the test set

Modified from [Börcs & Benedek, 2015]

- F-rate (F-score) is the “harmonic mean of precision and recall”
 - F-rate = 2*(Precision*Recall)/(Precision+Recall)

- Object Level = How well method segments objects
- Pixel Level = How well method classifies pixels **AND** segments them to objects
5.3 Results Method 3: One-Class Support Vector Machine-MCD*

OCSVM-MCD

Modified from [Wang et al., 2017]

- 2 LiDAR Datasets: (ISPRS Vaihingen at 4 pts/m²)

- F-rate (F-score) is the “harmonic mean of precision and recall”
 - F-rate = 2*(Precision*Recall)/(Precision + Recall)

<table>
<thead>
<tr>
<th>Dataset</th>
<th>F-Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>95.1%</td>
</tr>
<tr>
<td>II</td>
<td>91.6%</td>
</tr>
</tbody>
</table>

* Minimum Covariance Determinant
6.1 Discussion Method 1: Object-Based Point Cloud Analysis (1)

Shortcomings of Method:

- **Sensitive to Density:** Method is sensitive to changes in point-cloud density.
 - F-Score reduced 13% by change from 40 to 10 pt/m²
 - For LiDAR, 40 pt/m² can be impractical for large areas

- **Difficulty with Vegetation:** Method is unable to detect vehicles under vegetation

Violated Assumptions:

- **Shape of Return:** As point density decreases, small defining features disappear.
 - Criteria for “vehicle” is too broad, resulting in incorrect segmentation and false positives
 - Due to reliance on strict definitions of Rectangularity and Elongatedness

What this Method Delivers:

- Vehicle detection from **high density** LiDAR data, in **non-vegetated** regions, with an **F-Rate** of ~82%

[Zhang et al., 2014]
Proposed Improvements to Method [Eum et al., 2017]:

- Decision algorithm for detection
 - Same ground filtering and connected component analysis (segmentation) as Zhang et al. [2014]
 - Fixed violations due to reliance on strict elongatedness and rectangularity:
 - All thresholds removed
 - Detection using complex decision tree algorithm
 - Decision tree created from training data
 - Considers vehicle’s area, elongatedness, and rectangularity in horizontal and vertical

- Shows that Object-Based Point Cloud Analysis can be improved and should not be dismissed as a topic

- Eum at al. [2017] still relied on 20 pt/m² and managed an F-score of 85%, not addressing all issues with method

6.1 Discussion Method 1: Object-Based Point Cloud Analysis (2)
6.2 Discussion Method 2: Two-Level Point Processes (1)

Shortcomings of Method:
- Dependence on number of returns and intensity of returns
 - If data is not available, the accuracy is affected
 - Vehicles of different compositions may have different return intensities
 - Ex. Vehicles with glass roofs (Teslas, Mercedes, etc.)

Violated Assumptions:
- None

What this Method Delivers:
- Vehicle detection from LiDAR data that considers **intensity and number of returns**, in all urban regions, with an object-level **F-Score** of ~97%
- **Traffic segments** based on vehicle group orientation
- Expandable ability to detect **rooftop parking** and **vehicle motion**

[Börcs & Benedek, 2015]
Further Evaluation: [Börcs & Benedek, 2015]

☐ To test the robustness of method and assumptions, authors evaluated:

❖ Relevance of Energy Terms
 ▪ Method evaluation performed five times, each time removing a different energy term (example: return intensity)
 ▪ Removing an energy term reduces the number of equations to be optimized
 ▪ F-Score calculated from each different evaluation, showing how detection accuracy depends on the energy term
 ▪ Method was least sensitive to the intensity return energy term (4% reduced), most sensitive to the bounding box energy term (31% reduced)

❖ Dependence on Point Cloud Density
 ▪ Evaluation performed on downscaled point cloud of 4 pts/m²
 ▪ F-Score reduced 4% at object level and 3-7% at pixel level
6.3 Discussion Method 3: One-Class Support Vector Machine-MCD* (1)

Shortcomings of Method: [Wang et al., 2017]
- Difficulty with Vegetation: Method is unable to consistently detect vehicles under vegetation
- Close Vehicles: Method tends to group close vehicles into one larger vehicle

Violated Assumptions:
- None

What this Method Delivers:
- Vehicle detection from low density LiDAR data, in non-vegetated regions, with an F-Score of ~93%
 - Allows for data with gaps/missing regions
 - Does not require information on intensity or number of returns

* Minimum Covariance Determinant
Further Evaluation:

- To test the robustness of OCSVM-MCD as a classifier, authors evaluated it using seven benchmark UCI datasets used for testing classification algorithms.
- In each benchmark, method was compared to OCSVM without the MCD and the FOCSVM as classic classification methods.
- OCSVM-MCD outperformed both other methods in each benchmark test.

[Wang et al., 2017]

<table>
<thead>
<tr>
<th>Dataset</th>
<th># Features</th>
<th># Objects</th>
<th># Train Targets</th>
<th># Test Objects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biomed</td>
<td>5</td>
<td>194</td>
<td>102</td>
<td>25/67</td>
</tr>
<tr>
<td>Breast</td>
<td>9</td>
<td>699</td>
<td>367</td>
<td>91/241</td>
</tr>
<tr>
<td>Heart</td>
<td>13</td>
<td>303</td>
<td>123</td>
<td>41/139</td>
</tr>
<tr>
<td>Import</td>
<td>25</td>
<td>159</td>
<td>71</td>
<td>17/71</td>
</tr>
<tr>
<td>Ionosphere</td>
<td>34</td>
<td>351</td>
<td>180</td>
<td>45/126</td>
</tr>
<tr>
<td>Sonar</td>
<td>60</td>
<td>208</td>
<td>89</td>
<td>22/97</td>
</tr>
<tr>
<td>Arrhythmia</td>
<td>278</td>
<td>420</td>
<td>190</td>
<td>47/183</td>
</tr>
</tbody>
</table>

* Minimum Covariance Determinant
Recall the Primary Goal: “The automatic detection and segmentation of vehicles in a region using data from an aerial LiDAR system.”

- Do the methods achieve this goal? Yes, ...to a certain degree.

- **Method 1**: Not comparable, due to reliance on high density LiDAR
 - Detection and Segmentation: At 10 pts/m², F-Score is 69%

- **Method 3**: Does well in achieving goal.
 - LiDAR Data: Accounts for degraded LiDAR data, uses only point cloud
 - Detection and Segmentation: At 4 pts/m², F-Score is 93%
 - Region: Not capable of detection in regions with dense vegetation

- **Method 2**: Achieves goal.
 - LiDAR Data: Uses all aspects of LiDAR data (intensity, return number)
 - Detection and Segmentation: At 8 pts/m², F-Score is 97%
 - Region: Capable of detection in regions with dense vegetation
7 Opinion: Vehicle Detection with LiDAR (1)

☐ **Is it possible?**
 ☐ Yes, Methods 2 & 3 show that vehicle detection is possible with F-scores in mid- to high-90% range under “reasonable” assumptions:
 ▪ Approximate size, shape, and LiDAR signal response of vehicles

☐ **What is it useful for?**
 ☐ Single pass vehicle detection or short-term (<1 day) traffic monitoring.
 ☐ NOT very useful for long-term traffic monitoring when airborne.

☐ **New Research.**
 ☐ 2019 - Yu et al.: Object Extraction using 3D Point Clouds
 ▪ Extract light poles, trees, and vehicles from mobile LiDAR (MLS)
 ▪ Method used for vehicle detection, but also applied to other classification data
 ☐ 2017 - Benedek: Marked Point Process
 ▪ Analyzed buildings from aerial images, automated PCB quality control using images, and vehicle detection from ALS and MLS supplemented with RGB
Future of this Field?

- Object detection and classification using LiDAR
 - Many objects simultaneously (not just vehicles)
 - Both mobile and aerial LiDAR (MLS and ALS)

- Vehicle detection using LiDAR will be a biproduct of mapping for the purpose of extracting whole scenes of objects

- LiDAR will be used in conjunction with other methods (like optical imagery) to improve classification

From [Yu et al., 2019]

From [Benedek, 2017]
References (1)

References (3)

