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ABSTRACT:

Gravitational mass movements represent a significant hazard potential in Alpine regions. Due to climate change and an associated
increases in extreme weather events, this risk is growing. For a better predictability of such events and the monitoring of affected
areas, a precise determination of the ongoing movements is necessary. In this paper, a method for monitoring of Alpine slope
movements based on image sequences is presented. By means of SIFT features, corresponding key points in the images of different
epochs are found. Then, using forward section, the object coordinates of the points are computed. By using these coordinates
and the detected correspondences, three-dimensional motion vectors can be determined. The calculated vectors are checked for
significance based on their accuracy. The vectors found have a high spatial density compared to manually marked points and are
detected automatically. In order to detect even small-scale movements, they are determined with an accuracy of a few millimeters.
The data basis is a sequence of images of an active landslide on the Hochvogel mountain (Alps, Germany) which were taken in
2018 and 2021. On average, the calculated motion vectors show a movement of 75 mm.

1. INTRODUCTION

A significant hazard potential in Alpine regions are gravita-
tional mass movements such as landslides or rockfalls. In par-
ticular, due to the increase of extreme weather events such as
heavy precipitation expected as a result of climate change, it is
likely that such happenings may occur more frequently (Clague
and Stead, 2012). The serious consequences of such events can
be seen in the massive rockfall of Piz Cengalo, which resul-
ted not only in extensive material damage but also in fatalities
(Mergili et al., 2020). For a better prediction of the occurrence
and impact of such events, continuous monitoring of potential
hazard areas is necessary.

In order to observe the movement of slopes and crevices, rep-
resentative points are often located in the affected area to de-
termine the movement of the entire domain. These points are
often equipped with sensors such as extensometers (Malet et al.,
2002, Leinauer et al., 2020), interferometry (Delacourt et al.,
2007), time domain reflectometry (Thuro et al., 2014) or GNNS
sensors (Squarzoni et al., 2005). Alternatively, the points are
signaled with targets, which can then be measured in with sensors
like total stations (Raffl and Wunderlich, 2020). Instead of
observing single points, laser scanning systems (Kasperski et
al., 2010, Pesci et al., 2011, Mayr et al., 2019) or photogram-
metric approaches based on Structure from Motion (SfM) and
Multi-View Stereo (MVS) (Eltner et al., 2016, Warrick et al.,
2016, Kromer et al., 2019) offer the possibility to observe areal
changes so that larger areas can be surveyed efficiently.

While comparing point clouds of different epochs, the corres-
pondences between the points are unknown. To determine these,
the minimum distances between the points of the two point
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clouds are often used. The distance can be defined in differ-
ent ways (Holst et al., 2017b). One possibility is the use of
the point-plane distances (Pfeiffer et al., 2018). However, these
are often sensitive to outliers and measurement noise. A com-
mon alternative is the use of Multiscale Model-to-Model Cloud
(M3C2) distances (Dinkel et al., 2020, Holst et al., 2017a).
Here, the distance is calculated on the basis of key points and
their local normals. The key points result in a smoothing of the
point cloud, which suppresses noise. The disadvantage is that
these distances can only detect the movements along the local
normal. Changes in other directions cannot be detected. An in-
teresting method to solve this problem can be found at (Holst
et al., 2021). To compare two epochs of point clouds, they are
first converted into a 2.5D elevation model. For these rasters,
KAZE feature descriptors are calculated, from which the cor-
respondences between the epochs are derived.

An extended method is presented in this paper. The aim is the
determination of 3D motion vectors from image sequences for
the observation of Alpine slope movements. The vectors to be
determined should meet the following requirements:

• High spatial resolution compared to manually signed tar-
gets points

• Automatically detectable
• Sensitive for the detection of movements in the range of

several millimeters to centimeters
• Statistically tested for significance.

The underlying concept in the presented method is to perform
a feature-based co-registration between epochs for unique key
points within the images. We test and evaluate our method
on the basis of terrestrial image sequences of a the Hochvogel
mountain (Alps, Germany). The summit is characterized by a
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Figure 1. Overview of the Hochvogel mountain, a) The summit with prominent crevice, b) View of the crevice in SE direction
(expected rock fall direction), c) View of the crevice in SW direction.

large crevice which divides the summit into a stable and an un-
stable part (Figure 1). The unstable part is in danger of collapse
and there is a risk that it will fall into the valley.

2. METHOD

In this section, the individual steps of our procedure are de-
scribed in detail. An overview of the workflow is given in
Figure 2. Different epochs of overlapping image sequences
are used as input data. In addition to these, ground control
points (GCP) are given which allow a transformation of the
data into a global coordinate system. For the three-dimensional
reconstruction of the study area, the images of each epoch
are registered using bundle adjustment. For this purpose, key
points and their correspondences are calculated using SIFT
(Scale-Invariant Feature Transform) algorithm. This results in
a sparse point cloud where for every point the associated SIFT
descriptors are known. Additionally, the bundle adjustment de-
livers the internal and external camera parameters. In a next
step dense matching can be performed to obtain a more detailed
point cloud of the study area. These data form the basis for the
change analysis. However, before this can be carried out, the
data from the different epochs must be co-registered. Two dif-
ferent strategies can be used for this.

One possibility is based on the already mentioned M3C2 dis-
tances (Lague et al., 2013). These are calculated between the
dense point clouds of the individual epochs. Correspondence
and changes are determined as follows: In a first step, the
point cloud is reduced to so-called core points, which leads to
a smoothing of the point cloud and a reduction of noise. In a
second step, a local normal vector is determined for each core
point based on the points within a defined radius around the core
point. Finally, the points are projected along their normals into
the other point cloud. The distances between the core points
and the projected points are used as a measure of change. A
more detailed description of the M3C2 distances and their use
in the context of rock slope monitoring can be found in (Dinkel
et al., 2020).

The second strategy uses a feature-based matching approach for
the co-registration between the epochs. The point correspond-
ences are not determined on the basis of the point clouds, in-
stead they are computed between the images of the epochs with
help of SIFT descriptors. This enables the tracking of individual
points between the epochs, for which 3D motion vectors can
consequently be derived. This method is in the main focus of
this work. The necessary steps, especially the co-registration

and the calculation of the motion vectors will be explained in
more detail below.

2.1 Feature-based co-registration

The aim is to calculate point correspondences between the im-
ages of an epoch I and a second epoch J . For the detection and
description of these key points, we use SIFT feature descriptors
(Lowe, 1999). Beside the descriptors, the object coordinates
(sparse point cloud), as well as the positions and orientations of
the cameras are known from the 3D reconstruction step. One
possibility for the matching would be to compare the key points
and descriptors from epoch I with those of the J . This would
assume that the key points that are best suitable for bundle ad-
justment are also best suitable for co-registration. However, this
is not necessarily the case, so we use a different strategy. Each
key point of epoch I is projected into the images of epoch J .
Since we assume a movement between the epochs, the projec-
ted points are only approximately at the correct position in the
images of J . To find the correct position, we select those key
points which lie within a certain radius around the projected
points. The size of the radius is defined by the maximum ex-
pected motion. The key point at which the SIFT descriptor best
matches the descriptor from epoch I is assumed to be the cor-
responding point. To determine the similarity between these
descriptors, we use the Euclidean distance. To be more robust
against mismatches and to only select unique key points, we
apply a ratio test between the closest and the second closest
matches. According to (Lowe, 2004), we discard all matches
where the shortest distance is greater than 80% of the second
smallest distance. Following those steps we get for each point
of epoch I a list of image coordinates from epoch J . From these
we can compute the object coordinates in the epoch J using a
forward section (Section 2.2).

2.2 Determination of object coordinates using forward
section

To determine the 3D coordinates of a point from a set of image
coordinates, we use a forward section. According to (Förstner
and Wrobel, 2016), the object coordinates X,Y, Z of a point
can be calculated from the corresponding image coordinates x′

and y′, as long as it was observed in at least two images. The
relationship of image coordinates and object points is described
by the collinearity equation. Additionally, the internal and ex-
ternal orientation parameters of the respective camera must be
known. In this work these are already known by the bundle
adjustment.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B2-2022 
XXIV ISPRS Congress (2022 edition), 6–11 June 2022, Nice, France

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B2-2022-1063-2022 | © Author(s) 2022. CC BY 4.0 License.

 
1064



Figure 2. Workflow for the photogrammetric monitoring of rock slope failure.

To estimate X,Y, Z, we use a least-squares optimization based
on the Gauss-Markov model. A detailed description of the used
optimization method, as well as all necessary equations are de-
scribed in (Niemeier, 2008) or (Luhmann et al., 2019), so that
we provide here only a brief overview.

The observation vector contains the image coordinates of the
images in which the point was observed. The unknown vector
contains the object coordinates. For the stochastic model of the
observations, we assume that the observations are equally ac-
curate and uncorrelated. For the apriori variance factor σ0 we
assume an accuracy of one pixel for all images. The Jacobian
matrix contains the derivatives of the observation equation with
respect to the unknowns, in this case the derivative of the col-
linearity equation according to the objects coordinates. For the
optimization, approximate values for the unknown X,Y, Z are
needed. These can be calculated by using the Direct Linear
Transformation (DLT) and the coordinates of one image pair
(Förstner and Wrobel, 2016).

We want to perform the estimation of the object coordinates
separately for several points. To make sure that the orienta-
tion parameters remain the same for all points in a first step the
stochastic model only contains the uncertainties of the image
measurements. For a realistic statement about the uncertainties
of the calculated points, however, it is necessary to consider
these uncertainties of the orientation parameters. For this pur-
pose, we introduce the parameters of the external camera para-
meters as fictive observations. This expands the observation
vector and unknown vector by the coordinates of the projection
center and the orientation angle of each camera, as well as the
stochastic model of the observation and the Jacobian matrix.
In contrast to the previous step, we use the posterior variance
factor for the stochastic model of the image coordinates. The
final uncertainties of the object coordinates result from the co
variance matrix of the estimated unknowns.

We assume that we are using a calibrated camera. This means
that the internal camera parameters have been previously de-
termined in the laboratory, for example. If this is not the case,
the optimization can easily be extended by these parameters.

2.3 Calculation of the motion vectors between the epochs

Let the vectors p = [pX , pY , pZ ]
T and q = [qX , qY , qZ ]

T be the
object coordinates of the same point seen in the epochs I and J .
The searched motion vector d is calculated from the difference
of these points and the length D is given by the norm:

d = q − p, D = ‖d‖ (1)

The uncertainty σD can be calculated from variance propaga-
tion taking into account the uncertainty of the object coordin-
ates. To check whether the calculated differences D are signi-
ficant, we perform a Student’s test (Niemeier, 2008). We check
whether the calculated differences D are significantly different
from zero in relation to the calculated uncertainty.

3. EXPERIMENTS: EXPECTED ROCK SLOPE
FAILURE HOCHVOGEL

To evaluate our method we use two different image sequences
of the summit of the Hochvogel mountain. The mountain is
located on the border between Austria and Germany and has an
elevation of 2592 m. The summit is crossed by several crevices
with a width of two to six meters and a measurable depth of up
to 60 m. The deeper parts of the crevice are filled with loose
rock, so that only the first 10 meters are visible. The crevice
divides the summit into a stable and an unstable part. The un-
stable part has a movement rate of about 2 cm per year. The
expected rock slope failure has an estimated volume of possibly
260,000 m3 (Leinauer et al., 2020).
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Figure 3. Measurement configuration. The camera (gray circle)
mounted on a stick (red line) is oriented in a way, that both

edges (yellow dots) of the crevice are visible.

The data used are parts of larger data sets obtained during pho-
togrammetric measurement campaigns in 2018 and 2021. In
this work we use 30 images for each epoch showing the un-
stable part of the summit. All image were captured by using
a Sony Alpha 7RII camera with 42 megapixels and 25 mm fo-
cal length. To capture the images of the inside of the crevice
and of inaccessible areas, the camera was mounted on a stick
with a length of about 7 m. The camera was moved parallel to
the crevice and images were taken approximately every 0.5 m,
so that an overlap of approx. 80 % between the images was
achieved.

For the camera and for each camera position, the parameters
of the external orientation are determined by means of bundle
adjustment using the Pix4D c© software. For each calculated
value, the corresponding accuracy is indicated. Using the same
software we also compute a sparse and dense point cloud ac-
cording to Figure 2. Since this is a commercial software, not
all necessary partial results can be exported. For the feature-
based matching between the epochs, we recalculate the SIFT
descriptors of the sparse point cloud using OpenCV (Bradski,
2000).

The images used in this work were captured in such a way, that
they contain parts of the stable and unstable area of the summit
(Figure 3). To transform the image position into a global co-
ordinate system, temporary targets were installed on the stable
side of the summit. These are used as (GCP) during the bundle
adjustment. The coordinates from GCPs were measured by us-
ing a GNSS receiver and a total station with an accuracy of 4
mm.

4. RESULTS AND DISCUSSION

In the following, we first discuss the results of the correspond-
ence determination between the epochs. Then, the results of
the computed motion vectors are shown. Finally we compare
the motion vector with the M3C2 distances.

4.1 Correspondence recognition between the epochs

In Figure 4, the results of the correspondence recognition are
shown. Since we are only interested in the movement of the un-
stable part, the points in the foreground and background were
manually cut out. The yellow dots in Figure 4a show all key
points in an image from 2021. The points are distributed over
the entire side wall of the crevice. However, it can be seen
that smooth rock areas have significantly more points than areas

Figure 4. Calculated point correspondences between epochs.
a) The yellow dots mark all potential key points of the 2021
epoch. The red dots mark the key points detected between
epochs. b) Matched key points in an image of 2018 epoch.

covered with debris or snow. Moreover, highly reflective sur-
faces barely show points. A total of 13000 potential key points
were found for the image of 2021. Of these, only 1500 points
were recognized in the images of 2018. In Figure 4a–b, these
points are marked in red. This low number can mainly be
explained by the strict testing of the uniqueness of the point,
where many of the points were rejected during the matching.
Furthermore, some points cannot be detected due to changes
caused by erosion or snowfall.

4.2 Resulting motion vectors

The motion vectors can be calculated from the object coordin-
ates of the points and the known point correspondences. In or-
der to obtain a good redundancy for the calculated points and,
thus, a low uncertainty, we consider only the points which could
be observed in at least 10 images in each epoch.

The length of these vectors is shown in the histogram in Fig-
ure 7. On average, the points have a motion of about 73 mm.
The distribution of the points shows that most of the points are
distributed around this value. Assuming a movement rate of
approx. 20 mm per year (s. Section 3), the result is in line
with the expected motion during three years. However, some
outliers with significantly higher movements can also be recog-
nized. From a geological point of view, it can be assumed that
the sidewall moves constantly in one direction. Therefore, it
can be assumed that there are still a few outliers in the data.
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Figure 5. Estimated motion vectors between the epochs 2018 and 2021. Red arrows belong to significant and blue arrows to non
significant vectors. The point cloud of 2021 calculated using Pix4D is also shown for illustration. The length of the vectors is scaled

by a factor of 3.

Figure 6. Detailed view of the results of the change analysis using different strategies, a) Motion vectors calculated from the M3C2
distances and their local normals, b) Motion vector obtained by the proposed method.
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Figure 7. Histogram of the length of the motion vectors D in
millimeters. The red line shows the mean length.

All determined movements are tested for significance. The av-
erage accuracy of the computed motions used for testing is ap-
prox. 8 mm. The minimum and maximum accuracy achieved
is about 4 mm and 19 mm. At a confidence interval of 95 %,
about 8 % of the computed motions were assigned to be non-
significant and therefore rejected.

The 3D motion vectors are shown in Figure 5 and Figure 6b.
In red are the vectors identified as significant and in blue are
the rejected vectors. For illustration purposes, a point cloud of
the rock surface from 2021 is also shown. When looking at the
vectors, it can be seen that the motion have a constant length
and direction. This is especially true for the vectors belonging
to solid and large rock structures. Vectors belonging to loose
boulders or debris-covered areas deviate from this direction. As
also shown in the histogram (Figure 7), a few outliers can be
recognized.

4.3 Comparison of M3C2 distances and motion vector

In this section we compare the results of the motion vectors with
the results of the M3C2 distances. To that aim, we calculate the
M3C2 distances between the dense point cloud from 2018 and
2021 (Section 2). To compare the methods we take these core
points of the M3C2 distances, which have the closest distance
to the points of the motion vectors. For a subset of the points
the results can be seen in Figure 6a. The corresponding mo-
tion vectors are shown in Figure 6b. A clear difference can be
observed in the orientation of the vectors. The majority of the
vectors of the M3C2 distances point in a similar direction, but
overall the result is significantly more inhomogeneous than the
calculated motion vectors. Furthermore, it is noticeable that the
points on the upper side of the sidewall point downwards due to
their local normal direction. As expected, these points are not
suitable to directly reflect the main direction of motion of the
slope.

Differences also arise if you consider the length of the vectors.
For this purpose, the differences of the calculated displacements
for each point are given in Figure 8. It can be seen that, with
the exception of some outliers, the M3C2 distances are always
smaller than the length of the calculated motion vectors. In the
median they deviate from each other by −0.01 m. This result
was expected, considering that the M3C2 distances can only
reveal the differences in the direction of their local normals. All
in all, it can be stated that the calculated motion vectors seem

to be better suited to describe directly the amplitude as well as
the direction of the motion.

Figure 8. Difference of the M3C2 distances compared to the
length of the computed motion vectors. The horizontal green

line marks the median of the differences.

5. CONCLUSION AND OUTLOOK

This paper presents a method for the calculation of 3D motion
vectors for the monitoring of rock slope failure from image se-
quences. The key points between two epochs were computed
automatically, as well as their associations. By means of for-
ward section, the object coordinates in both epochs could be
calculated and, thus, the motion of the points could be determ-
ined. Finally, the length of the calculated vectors were statist-
ically analyzed for their significance. The described method is
suitable to detect movements of a few centimeters. However,
there are still some outliers in the data. Furthermore, the de-
tection of key points is strongly related to the characteristics
of the surface. Only a few key points are detected for loose
blocks and debris-covered areas. Future works should address
this problem.

ACKNOWLEDGEMENTS

This study is part of the AlpSenseRely research project, which
is funded by the Bavarian State Ministry of the Environment
and Consumer Protection (StMUV TUS01UFS-76976). We
would like to thank J. Leinauer (TUM Landslides), L. Raffl
(TUM Geodesy) who helped with organization and fieldwork.

REFERENCES

Bradski, G., 2000. The OpenCV Library. Dr. Dobb’s Journal of
Software Tools.

Clague, J. J., Stead, D., 2012. Landslides: types, mechanisms
and modeling. Cambridge University Press, Cambridge.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B2-2022 
XXIV ISPRS Congress (2022 edition), 6–11 June 2022, Nice, France

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B2-2022-1063-2022 | © Author(s) 2022. CC BY 4.0 License.

 
1068



Delacourt, C., Allemand, P., Berthier, E., Raucoules, D., Cas-
son, B., Grandjean, P., Pambrun, C., Varel, E., 2007. Remote-
sensing techniques for analysing landslide kinematics: A re-
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