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ABSTRACT:

In this work, we discussed how to directly combine thermal infrared image (TIR) and the point cloud without additional assistance 
from GCPs or 3D models. Specifically, we propose a point-based co-registration process for combining the TIR image and the 
point cloud for the buildings. The keypoints are extracted from images and point clouds via primitive segmentation and corner 
detection, then pairs of corresponding points are identified manually. After that, the estimated camera pose can be computed with 
EPnP algorithm. Finally, the point cloud with thermal information provided by IR images can be generated as a result, which is 
helpful in the tasks such as energy inspection, leakage detection, and abnormal condition monitoring. This paper provides us more 
insight about the probability and ideas about the combining TIR image and point cloud.

1. INTRODUCTION

In the Big Data Era, single sensor alone can hardly provide suf-
ficient information about the target. Therefore, different sensors
are used to observe the objects. With the demand of overall un-
derstanding of the cities, combining data from multiple sensors
and relate information to improve accuracy and specific infer-
ences become a hot topic (Hall, Llinas, 1997). The advantages
of geometric features of the 3D model attract researchers work-
ing on assigning 2D information to 3D data (Castanedo, 2013,
Khaleghi et al., 2013), trying to enrich 3D objects with vari-
ous properties. (Wang et al., 2017) combining InSAR point
clouds and optical image in Urban areas, (Mastin et al., 2009)
and (Chen et al., 2004) coregister optical image and Lidar
point clouds for visualization, (Weinmann et al., 2014) relate
range image to thermal image for object detection. Although
researchers presented different methods to combine thermal in-
frared images with 3D data (Weinmann, 2016, Hoegner, Stilla,
2018), seldom has been done on co-registering thermal infrared
image and mobile laser scanner (MLS) point clouds especially
in an outdoor situation.

Thermal infrared (TIR) images, acquired by thermographic
sensors, depict temperature and emission properties of objects.
Different from the optical camera, thermographic sensors de-
tect radiation in the long-infrared range of the electromagnetic
spectrum. Since all the objects with a temperature above abso-
lute zeros emit infrared radiation to the environment, thermal
infrared images enable us to observe objects, moving process
and the thermal properties without visible illumination (Zin et
al., 2007, Weinmann et al., 2014, Christiansen et al., 2014).
This property helps with thermal inspection of buildings in city
areas. The traditional method uses a series of TIR images to
inspect the energy usage of the building. The lack of (1) rapid
and low-cost data collection and modeling method; (2)measure-
ment for evaluating overall building performance; (3) adequate
integrated intelligence for component evaluation; (4)tools for
the non-expert decision maker, make it hard to provide reliable
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information (Wang et al., 2013). If a thermographic 3D model
can be generated by combining TIR images and 3D model, we
are able to deal with tasks such as (1) building inspection; (1)
energy loss detection; (2) leakage localization, and (4) other
tasks such as scene segmentation and classification.

The current strategies for thermographic 3D model generation
include: (1) generate 3D thermal model from images, or (2)
mapping 2D thermal images to 3D model or point cloud. For
the first strategy, the 3D model can be generated by recon-
structing 3D scene geometry from thermal images with struc-
ture from motion techniques (Westfeld et al., 2015). However,
the low resolution of thermal images limits the performance
of the generated thermal 3D model. A precise model can be
reconstructed by combing point cloud from RGB images and
thermal images separately (Hoegner et al., 2016). In the second
strategy, co-registering 2D thermal infrared images to 3D mod-
els or 3D point clouds can be done with known fixed relative
orientation. For automatic method, (Hoegner, Stilla, 2015) pro-
posed an automatic registration method to register the IR im-
ages to a given 3D building model. The result gives us an en-
ergy or temperature profile of the building. (Iwaszczuk et al.,
2012) try to find the best fit between the 3D model and IR im-
ages with line segments by RANSAC process. Though using a
3D model for thermal mapping gives us an overall idea of the
temperature distribution, such a simple way of expression can
hardly represent an as-built design.

To reach a better detailed expression, the point cloud is favored
as 3D model data. (Weinmann et al., 2014) proposed the
keypoint-based co-registration via the robust matching tech-
niques method to find the corresponding keypoints in intensity
image and IR image, and co-register the IR image to range im-
age applying RANSAC-based projection. (Lagüela, Armesto,
2012) extract the line segments from IR images and point cloud
separately. With the corresponding lines, the camera posi-
tion can be estimated by the RANSAC process. Though co-
registration of thermal infrared images and point cloud usually
reach a good result in indoor situations, seldom work has been
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done trying to co-register the thermal infrared image to MLS
point clouds for a large scene. To fill this gap, we proposed a
method to direct co-register the TIR image and the point cloud
by corresponding keypoints.

In this paper, we propose a direct point-based method to com-
bine the TIR images and point cloud. The idea is to calculate the
camera pose when the photo is taken based on the assumption
that the MLS point cloud provides a precise model of the study
area. Therefore, the TIR image can be regarded that it was taken
from the point cloud with a specific pose. The thermal inform-
ation for every point in the point cloud can be assigned with the
gray value of the corresponding point in the image. This work
is the first paper trying to directly co-register the TIR image and
point cloud for buildings with corresponding points in the out-
door scene as far as I know. This work demonstrated that the
point cloud and TIR image could be combined. Besides, the
generated 3D model could explain the thermal information of
3D buildings, which is helpful for thermal interpretation.

This paper is organized in the following way: the first part in-
troduces the background and state-of-art methods for 3D ther-
mographic reconstruction. In the second part, we propose a dir-
ect co-registration method based on corresponding keypoints.
Then, the results of our experiments based on the method in the
second part will be displayed. Finally, we will draw a conclu-
sion based on the results, and discuss the outlook for the topic.

2. METHOD

The proposed process is based on the assumption that the
thermal infrared images and the point cloud are generated at
the same scene at the same time. This condition ensured that
the data contains the information from the same scene, which is
the precondition for the matching process. The whole process
for the co-registration contains three steps (Figure 1).

Figure 1. Figure placement and numbering

At first, the image and the point cloud are processed separately.
Geometric calibration of TIR images is done based on the co-
ordinates of control points and image point. The preprocessing
of the point clouds targets to filter the noise, downsampling, fil-
ter the irregular objects and crop the scene. Second, keypoints
are extracted from TIR images and point clouds, and the cor-
responding keypoint pairs are selected manually. Based on the
selected point pairs, the camera position can be computed by

solving PnP (Perspective n point) problem. Finally, a thermo-
graphic 3D point cloud can be generated by indirect computing
the gray value of corresponding points in the image.

2.1 Proprocessing of TIR images and the point cloud

Camera calibration usually includes geometric calibration and
radiometric calibration. Due to the lack of accessibility to
the device, we are only able to conduct the geometric calib-
ration by using measured control points and corresponding im-
age points following the photogrammetric calibration method
(Luhmann et al., 2013). When the coordinate of control points
(Xn, Yn, Zn)(in-situ measurements) and their corresponding
image coordinates (xn, yn) are known, the intrinsic parameters
for the camera can be estimated by collinearity equation (1).

xi − x0 = cx · a11(Xi−X0)+a21(Yi−Y0)+a31(Zi−Z0)
a13(Xi−X0)+a23(Yi−Y0)+a33(Zi−Z0)

+ dx

yi − y0 = cy · a12(Xi−X0)+a22(Yi−Y0)+a32(Zi−Z0)
a13(Xi−X0)+a23(Yi−Y0)+a33(Zi−Z0)

+ dy(1)

where (X0, Y0, Z0) is the camera position, a11 to a33 are the
coefficients of a 3×3 rotation matrix, and c, x0, y0 are the para-
meters of geometric camera calibration.

The preprocessing of point clouds targets to downsampling the
data and filter the noise compared to the given TIR image. Since
the raw data contains noise, the wrong points with missing in-
formation and isolated points are removed. Then a voxel grid
filter is used to reduce the volume of data while keeping the
geometric features of the objects. These two steps are common
operations in point cloud processing. After that, we are going
to filter the unrelated objects and crop the scene regarding the
contents in the image.

The precondition for co-registration is that both data contains
corresponding components, such as points. Eliminating irrel-
evant objects, and cropping the scene based on the TIR im-
ages information are important in point cloud preprocessing.
Irregular objects such as vegetation, road marks, and pedestri-
ans usually cause the problem of nonsense keypoints. A large
number of feature points could be extracted around the vegeta-
tion, while it is hard to find corresponding feature points in the
image. Considering the complexity of the scene and the fact
that the buildings are our target, we would like to apply a seg-
mentation process and filter the irrelevant segments based on
the assumptions that the buildings can be decomposed to walls
abstracted by planes. The short wall which is perpendicular to
the front facade was also divided into several segments. The
Euclidean cluster extraction (Rusu, 2010) are first applied to
filter the small objects in the scene, and then a plane extrac-
tion by random sample consensus method (RANSAC) (Fisc-
hler, Bolles, 1981) was applied to all the objects. After can-
didate plane was detected, a Euclidean cluster extraction was
applied to filter the remaining small objects.

After removing the irrelevant objects, we would like to crop
the scene according to the information in the target TIR image.
The point cloud contains all the objects in the scene, while the
camera property restricts contents in TIR images. This step is
done under the assumption that GPS on the mobile platform
records the position when the image was taken, and the thermal
camera is mounted on the same platform with a fixed observing
orientation. A box with a fixed length of the edge is used as the
constraint for point cloud cropping.
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2.2 Keypoints extraction and point pairs generation

This step targets to extract keypoints from the point cloud and
TIR image, and manually find the corresponding point pairs for
camera pose estimation. Co-registration targets to spatial align
data such as images or point cloud, and point-based method is
the most commonly used strategy. Though this method usu-
ally requires higher computational expense, it has the potential
to achieve the greatest performance (Liggins II et al., 2017).
To enable explicit tracking of features of data to be performed,
the extracted keypoints or corners need to be discrete, reliable
and meaningful (Charnley, Blissett, 1989). Therefore the corner
points of buildings, windows, doors or similar location are ideal
keypoints candidates. Keypoints in 2D images and 3D point
clouds can be detected separately with current detector, such
as Moravec (Moravec, Elfes, 1985),SIFT (Lowe et al., 1999)
for 2D images, and Harris3D (Sipiran, Bustos, 2011) for point
cloud. Considering the correspondence requirements of 2D and
3D data, detectors with a similar principle would be preferred.
Therefore we choose Harris’ corner detector (Harris, Steph-
ens, 1988) for the image, and Harris 3D detection (Sipiran,
Bustos, 2011) for the point cloud. Note that though SIFT
can extract high quality rotation-invariant and transformation-
invariant corner points for optical images, SIFT3D detector can
hardly detect sufficient keypoints in the point cloud. Besides,
among the adapted 3D keypoints detector, Harris 3D proves to
be more robust with the evidence that detected points by Harris
3D is less likely to be appearing in other location in the same
image (Loog, Lauze, 2010).

After keypoints extraction, corresponding point pairs from TIR
images and point clouds are required for the further process.
The point pairs are selected manually in our method.

With the corresponding point pairs between thermal IR images
and the point clouds, we can compute the camera pose by solv-
ing the PnP problem. PnP is the problem of estimating the pose
of a calibrated camera given a set of n 3D points and their cor-
responding 2D projections in the image. The camera pose con-
sists of 6 degrees-of-freedom which are made up of the three
rotation variables and 3D translation variables of the camera
for the 3D coordinate system. This problem originates from
camera calibration and has many applications in computer vis-
ion and other areas, including 3D pose estimation, robotics and
augmented reality.

Similar to the optical image, thermal IR images are generated
by a camera with the perspective projection following Equation
2:

ui = K[R|t]Xi (2)

In the equation above, ui is the coordinate of point in the image,
K is the camera intrinsic matrix, R and t describe the rotation
and transformation of the virtual camera for local laser scanner
coordinate system. Xi is the coordinate of corresponding 3D
points in the world coordinate space.

After the image calibration, we got the intrinsic parameters of
the thermal IR camera and distortion coefficients. Our task is
to get the rotation matrix R and the transformation matrix t
for each IR image. A Efficient PnP algorithm (Lepetit et al.,
2009) is adapted. The idea of Efficient PnP method is first to
express the n 3D points with four virtual control points, and
then compute the camera pose by estimate the coordinates of
these control points in the camera referential.

At first, each 3D point can be expressed by a linear combin-
ation of four spatial points which are not on the same plane.
Suppose that we have four control points in the world coordin-
ates namely cj , j = 1, ..., 4, so any known reference points Pi

in the world system can be expressed by:

pwi =

4∑
j=1

αijc
w
j , with

4∑
j=1

αij = 1 (3)

Here, αij are the homogeneous barycentric coordinates which
are uniquely defined for different spatial points. Note that the
reference point in the camera coordinate system can be ex-
pressed as pci

∑4
j=1 αijc

c
j .

In the camera coordinate system, we have:

wi

xiyi
1

 = Kpci = K

4∑
j=1

αi,jc
c
j (4)

where the wi are scalar projective parameters, pii = 1, ..., n
are the corresponding image points of reference points. The
unknown parameters are the twelve control point coordinates
(Xc

j , Y
c
j , Z

c
j )j=1,...,4 and n projective parameters wii=1,..,n.

Extending the camera matrixK and control points, a linear sys-
tem can be formed.

Mu = 0 (5)

where u = [(cc1)
T , (cc2)

T , (cc3)
T , (cc4)

T ]T is a 12-vector of un-
knowns, and M is a 2n× 12 matrix.

Based on the form of Equation5, the solution belongs to the null
space of M , and can be expressed as:

u =

N∑
i=1

βivi (6)

where the set vi are the columns of the right-singular vector of
M corresponding to the N null singular values of M . Consid-
ering all the situations, the value of N can range from 1 to 4.
Based on the assumption that the Euclidean distance between
control points must be constant no matter what coordinate sys-
tem is used, a small number of quadratic equations can be gen-
erated. The strategy to pick the best solution is to compute all
the four situations and keep the one that yields the smallest re-
projection error (with Equation 7).

err =
∑
i

dist2(K
[
R|t
] [pwi

1

]
, ui) (7)

where dist(m̃, n) is the 2D distance between homogeneous co-
ordinates of point m and point n. With this step, the rotation
matrix and transformation will be estimated.

2.3 3D model generation

Thermal 3D model generation is the last step in the whole
process, which targets to reconstruct the 3D point cloud with
thermal information. Since the camera pose was estimated in
the previous step, we can get the thermal information of points
in the point cloud by project them to the 2D image plane and
find the corresponding image points intensity. Considering the
generated image coordinates are not usually located in the pixel
grid, a bilinear interpolation was adapted.
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3. EXPERIMENTS

The study area is the TUM City Campus
(48.1493◦N, 11.5685◦E) located in the center of Mu-
nich. The MLS laser scanners and the thermal camera are the
sensors we need for data acquisition. The sensors are mounted
on the MODISSA(Mobile Distributed Situation Awareness
(Borgmann et al., 2018)) platform (in Figure 21) together with
a GPS to provide the location information of the vehicle. The
sensor system for MLS point clouds observation composes of
two Velodyne HDL-64E. It has 360◦ Horizontal FOV, 26.9◦

vertical FOV, and very high data rate. The angular resolution
reaches 0.08◦ in azimuth and −0.4◦ in the vertical direction.
All the objects within 120m range can be observed with up to
2.2 million points per second. The measurements have been
georeferenced using post-processed data of an inertial naviga-
tion system. The infrared image sequences were acquired with
an uncooled microbolometer Jenoptik IR-TCM 640 with a field
of view of 65.2◦ × 51.3◦, which was mounted crosswise to
the driving direction. The images are provided as 16 bit-TIFFs
with lossless compression (LZW) with the size of 640 pixel
×480 pixel. Besides, a file provides additional information
about the car position when a specific image is taken.

Figure 2. The MODISSA platform from Fraunhofer IOSB.

3.1 Proprocessing of TIR image and point cloud

The calibration of TIR images required coordinates of control
points and corresponding image point coordinates. The control
points are measured in-situ with a total station. Then we recor-
ded the coordinates of corresponding image points in the IR im-
age. The principle point is located at (257.78, 246.37). Besides,
the radial distortion coefficients are k1 = 0.206, k2 = −0.885)
and tangential distortion coefficients are p1 = −0.007, p2 =
−0.006). The result indicates that Barrel radial distortion dom-
inate in our TIR images.

After computation of intrinsic parameters and distortion para-
meters, we rectified the images. For example, Figure 3(a) is the
corresponding rectified image of Figure 3(b). We found that the
quality of images is significantly improved since the curvature
of lines, especially the boundary of the roof area is getting more
straight. However, the distortions are not fully rectified in some
areas such as a downright corner. It is caused by (1) the sparse
control points in the corner due to the occlusion by tree leaves,
and (2) the difficulty to find the sharp corner points in the TIR
image.

Figure 4 shows the original point clouds of target study areas.
Geometric information of the scene is precisely described with

1 c© Image Copyright 2019, Fraunhofer IOSB

Figure 3. Image calibration. (a) Example of orginal image. (b)
Corresponding rectified image.

a large amount of 3D points. Besides, many trees are in the
scene between buildings in South East direction. The pre-
processing of point clouds targets to reduce the volume of the
dataset and filter the irrelevant objects. Comparing with the
original point clouds (Figure 4), the point clouds after segment-
ation deleted the crown of trees and most of the building walls
and the ground remains. After the first Euclidean cluster seg-
mentation, the vegetation with less dense crowns is removed.
Then, by applying a plane segmentation, the ground and build-
ing walls are detected. After the final Euclidean cluster seg-
mentation, most of the vegetation is removed. This process re-
duces the possible wrong keypoints on the tree crowns. Since
the TIR image recorded by the camera with certain FOV and
the device is fixed on the vehicle with a certain orientation, we
crop the point clouds based on the car position information at
last. The size of the cropping box was fixed with proper spa-
tial volume to include all the related objects. Figure 5 shows an
example of a reduced point cloud. The result clearly shows the
geometry of building from the whole scene.

Figure 4. Original Point clouds

3.2 Keypoints extraction

The keypoints extraction targets to detect feature points in the
image and point cloud as candidate points for the following co-
registration. Figure 6 shows the detected keypoints in TIR im-
ages, and most of the corners are detected. However, we found
that the keypoints are not isolated but clustered together. The
features in thermal infrared images are usually different from
those in the optical images. Intensity images in the visual do-
main typically provide sharp contour with abrupt changes of
properties. Thermal infrared images which record thermal ra-
diation of entities in the infrared spectrum rises the problem of
low geometric resolution and blurry features especially in lines
or contours. The temperature of observed objects and materi-
als with different emission properties are the cause for different
looks. Note that, even two objects with the same temperature
may appear distinctive in thermal infrared images due to ma-
terials with various emissivity coefficients (Weinmann, 2016).
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Figure 5. Point clouds after segmentation. (a) Result after the
first Euclidean cluster extraction. (b) Segmentation after plane
segmentation by Sample Consensus method. (c) Final result

after segmentation. (d) An example of scene cropping.

Temperature, the signal of energy distribution, usually distrib-
utes continuously. The phenomena gives a blurred boundary of
objects in the images. Besides, the tracks of objects with high
temperature can be visible in the form of energy in thermal im-
ages, which could be noise. The differences in thermal infrared
images and optical images make it difficult to extract keypoint
with image operators.

In order to find the keypoints which are more close to the corner
of the building, we tried different parameters settings. Figure
6 and Table 1 are the results of 2D Harris’ corner detection,
which includes window size, operator size, and free parameter
k. We found that when operator size is smaller than 9, seldom

keypoints will be extracted. We fix the operator size to 9 and
focus on the window size. In Table 1, we set the window size
as 3 pixels, 5 pixels, and 7 pixels. When the window size is
getting larger, the detected keypoints increased. Considering
The blurred boundaries of the objects in TIR images, a larger
window size is required to find the gradient difference.

Figure 6. Detected harris keypoints in TIR image. (a) Original
image (b) keypoints for test 1. (c) keypoints in test 2. (d)

keypoints in test 3.

Nr. window size operator size k point number
1 3 9 0.05 2911
2 5 9 0.05 8090
3 7 9 0.05 17421

Table 1. Parameter settings for keypoint detection in IR images.

Figure 7 shows the detected keypoints in the point cloud. Most
of the keypoints are located on the corner of the window frame
or along the edge. However, some keypoints are detected on
the wall. The cause of keypoints along the window edge is the
uneven distribution of points on the boundary. The noise on the
wall is due to the missing points or uneven point density.

Table 2 shows different parameter settings for 3D Harris point
detector and Figure 7 are figures of the corresponding points
distribution. The radius is the spatial constraint for the neigh-
boring points and threshold is the value to filter the corner from
non-corner points by the response. The radius constraint the
considered local area for each point. Considering the voxel size
is 0.1 for the point clouds, the radius should be larger than this
value. In Table 2, we found that when radius decrease from
0.3 to 0.15, fewer points are detected from Figure 7(a) to 7(c).
However, when the radius r is set to be too small, as in Figure
7(c), the detected points usually include sort of noise(lots of
wrongly detected keypoint on the wall) due to lack of enough
neighbor points. Comparing test 2 and test 4, when threshold θ
is getting larger, fewer keypoints are detected. In order to have
enough keypoints along the boundary or in the corner (best to
be in the corner), we set the parameters as r = 0.2, θ = 0.01.

Comparing the keypoints detected in the TIR image (Figure 6)
and the point cloud (Figure 7), we found that the detected key-
points which seems related are not on the same location: (1)
The image keypoints are located on both side of the window.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-2/W7, 2019 
PIA19+MRSS19 – Photogrammetric Image Analysis & Munich Remote Sensing Symposium, 18–20 September 2019, Munich, Germany

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-IV-2-W7-235-2019 | © Authors 2019. CC BY 4.0 License.

 
239



Figure 7. Harris keypoints in the point cloud. (a) keypoints in
test 1. (b) keyypoints in test 2. (c) keypoints in test 3. (d)

keypoints in test 4.

Nr. radius(r) threshold(θ) point number
1 0.3 0.01 86
2 0.2 0.01 204
3 0.15 0.01 666
4 0.2 0.02 60

Table 2. Parameter setting for Harris 3D keypoints.

In the point cloud, most of them appear on the left side of the
window. (2) The keypoints in the image are in the inner frame
of the window surrounding the glasses, while the keypoints on
the point clouds close to the wall corner, the outer frame of the
window. Therefore, we need to be careful when we select the
corresponding keypoints.

3.3 Camera pose estimation and 3D model reconstruction

After keypoints extraction, we could select corresponding point
pairs for pose estimation. Based on the requirements, at least
four point pairs are needed. The distribution of points is im-
portant. It’s important not to have all the keypoints on the same
plane. Figure 8 shows a range image generated by the point
cloud with the estimated pose. Comparing with the correspond-
ing rectified images, the range image record the building from
similar observing orientation. The difference is due to the miss-
ing data and inaccurate distortion coefficients.

When the camera pose was computed, we can generate a 3D
point cloud with thermal information. Figure 9 shows the 3D
thermographic point cloud in false color and the referenced cor-
responding TIR image. The constructed model shows a similar
thermal distribution of building facade, and represent it in a 3D
model. By checking the window frame and the geometric fea-
tures of the point cloud, the data matches. From the constructed
point cloud, we can easily tell the temperature/emission dis-
tribution of the building and find some clues for the possible
thermal phenomenon. For example, there is a yellow area un-
der the small window on the right down side of the wall. Be-
sides, all the windows on the left sides are relative lighter green,
which indicates a higher temperature compare to the wall. If a
sequence of TIR images is applied, we will be able to generate
a 3D thermographic point cloud recording the thermal inform-
ation of the building in all aspects, which could be helpful in
thermal distribution representation, energy inspection, leakage
detection, and even monitoring the temperature changes.

Figure 8. Pose estimation. (a) Range image generated by the
point cloud and computed camera pose(the color if related to the

depth of the point to the image plane). (b) Corresponding
rectified image.

3.4 Verification

Since we have no as-built model or precise pose information to
check the accuracy of the result, we re-project the convex hull
points extracted from the wall plane segments (depict the con-
tour of building boundary) to the corresponding image. The res-
ult is given in Figure 10. The locations for walls and windows
are almost the same in general (with some shift) by comparing
the outline of windows and doors, but not perfect match in all
the areas especially on the edge of the image. We find that the
closer to the image center, the better it matches. The possible
reason mainly lies in the estimation of distortion parameters,
and probability form the error in pose estimation.

4. DISCUSSION AND OUTLOOK

In this paper, we proposed a process that directly co-registrate
TIR image and the point cloud with corresponding keypoints.
A 3D point cloud with thermal information is generated, which
could help with energy inspection, thermal information inter-
pretation, and leakage localization. Our work demonstrates that
it is possible to direct combining TIR image and the point cloud
without additional information such as 3D model or optical im-
ages. Considering the whole process, several aspects may in-
fluence the co-registration result. The first is the difficulty in
selecting isolated and reliable key-points in TIR images. Due
to the blurry property of the TIR image, the detected key-points
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Figure 9. 3D thermographic model. (a) Generated model with
false color. (b) Corresponding rectified image with false color

(blue-low temperature, red-high temperature).

Figure 10. Varification

are clustered around the corner which is hard to manually loc-
ated the precise location. The inaccurate coordinate of key-
points would introduce errors in corresponding point pair se-
lection, which cause impact on the accuracy of the estimated
camera pose. The second aspect is the precision of camera cal-
ibration. The intrinsic parameters of the camera and the distor-
tion coefficients for image rectification are calculated by cam-
era calibration, which requires equally distributed image points
and corresponding control points. Due to the limited field of
view by the thermal camera, no sufficient control points could
be observed in the image especially in the corner. The estimated

camera pose will be influences by imprecise point coordinates
from rectified images. Another aspect is the density of point
clouds. Since point clouds are acquired by the Mobile laser
scanner, which can be regarded as a discrete sampling of the
scene, it is not able to record the coordinates of all the corners
in the scene. Therefore, we could only find the approximated
location of the corner points. The inaccurate coordinates of cor-
responding key-points will lead to lousy pose and influence the
final result.

This work can be regarded as a test of combining TIR images
and the MLS point cloud, and several problems could be stud-
ied in future work, such as automatic combination, improve-
ment of the model accuracy. This paper not only demonstrates
the possibility of direct combining TIR images and the point
cloud but also provide us some ideas for further researches in
the following aspects: (1) Precisely locate the keypoints in TIR
images;(2) Other ways to extract keypoints in the point cloud
and TIR image; (3) Automatically find the corresponding key-
points in the point cloud and TIR images; (4) Considering the
point-based method is limited by the selection of keypoints in
the data, is there any other method for data combination, such
as object-based method; (5) The application of thermographic
3D point cloud in energy inspection and object tracking.
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