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ABSTRACT:

In this work, we present a surface-based method to extract the contours of planar building elements in the urban scene. A bottom-up 
segmentation method that utilizes global graph-based optimization and supervoxel structure is developed, enabling an automatic 
and unsupervised segmentation of point clouds. Then, a planarity-based extraction is conducted to segments, and only the planar 
segments, as well as their neighborhoods, are selected as candidates for the plane fitting. The points of the plane can be identified 
by the parametric model given by the planarity calculation. Afterward, the boundary points of the extracted plane are extracted by 
the alpha-shape. Optionally, line segments can be fitted and optimized by the energy minimization with the local graphical model. 
The experimental results using different datasets reveal that our proposed segmentation methods can be effective and comparable 
with other method, and the contours of planar building elements can be well extracted from the complex urban scene.

1. INTRODUCTION

Recently, light detection and ranging (LiDAR) technology has
been widely used for acquiring geospatial information in ur-
ban scenarios (Pu et al., 2011, Rutzinger et al., 2011). Gener-
ally, unstructured 3D point clouds are used to represent the ac-
quired geospatial information, which is usually of high density
and large volume (Lin et al., 2017). However, using individual
points to directly describe the 3D scene is not a practical so-
lution since the topological information is missing, which can-
not meet the demand of delineating the urban scene. Besides,
the large-scale point cloud is a great challenge in data process-
ing. Comparing with points, lines, edges, and contours can be
regarded as better representations delineating the scene, espe-
cially in the urban area exiting lots of regular shaped man-made
structures (Lu et al., 2019).

Detecting line segments and contours from 2D images have
been thoroughly studied and reported (Hong et al., 2015). How-
ever, to extract line segments and contours from 3D point clouds,
there is still room for improvement. To extract these line seg-
ments or contours from unstructured point clouds, there are
several different strategies, including two major ones: point-
based strategy and surface-based strategy. To be specific, point-
based strategies will directly detect those points belonging to
the edges and boundaries, and then connect them to form the
lines or contours. Classifying the whole point cloud in the fea-
ture space via designed features and classifier is one of the typ-
ical methods for extracting edge points (Lu et al., 2019). In the
last decades, a wide variety of features has been developed for
boundary/non-boundary point cloud classification. In (Maas,
Vosselman, 1999, Hackel et al., 2016), eigenvalues and eigen-
vectors derived from the covariance matrix of points coordi-
nates have been introduced to distinguish points of edges via
a binary classifier. In (Ioannou et al., 2012), the difference
of normal vectors calculated with multi-scale local neighbor-
hoods is utilized to detect those points of edges. Similarly, in
(Bazazian et al., 2015) the curvature or surface variation is also
∗Corresponding author

used to detect edge points. Besides, robust statistics reflecting
sharp features are also employed to detect edge points, such as
GaussMap (Weber et al., 2010), moving least squares (Fleish-
man et al., 2005), and spline (Daniels Ii et al., 2008). Once
the edge points are extracted, methods like Least Square Fitting
(Liu et al., 2005) or cell decomposition (Kada, McKinley, 2009)
can be applied to connect those points into complete contours
or lines. The surface-based strategy is an alternative for extract-
ing lines and contours. Since the intersection of two surfaces
can construct lines and curves, if we can find out the intersect-
ing surfaces, curves and lines can be found. The surfaces can
be achieved by segmentation or over-segmentation like region
growing (Rabbani et al., 2006) and model fitting (Nurunnabi
et al., 2012). In (Lin et al., 2015, Lin et al., 2017), the in-
tersections of planes (e.g., line-segment-half-planes) and facets
(e.g., supervoxesls) are used to extract lines. The advantage of
these methods is that there is no need to fit the lines or curves
as the intersection has embedded the topological information.
Besides, the boundary of isolated surfaces is also considered
as contours to be extracted. For the isolated surfaces, convex
hull (Lin et al., 2017), rotate calipers (Toussaint, 1983), or al-
pha shape (Edelsbrunner et al., 1983) can be used to extract the
contours. However, for surface-based methods, it is difficult
to determine the terminals of intersection lines and hard to be
applied to small surfaces (Lu et al., 2019).

To address exsiting problems, we present a surface-based method
to extract the contours of planar building elements in the urban
scene. A bottom-up segmentation method that utilizes global
graph-based optimization and supervoxel structure is developed,
enabling an automatic and unsupervised segmentation of point
clouds. Then, a planarity-based extraction is conducted to seg-
ments, and only the planar segments, as well as their neigh-
borhoods, are selected as candidates for the plane fitting. The
points of the plane can be identified by the parametric model
given by the planarity calculation. Afterward, the boundary
points of the extracted plane are extracted by the alpha-shape.
Optionally, line segments can be fitted and optimized by the
energy minimization with the local graphical model. The inno-
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vative contributions that specific to our proposed approach are:
(1) A bottom-up point cloud segmentation method that utilizes
supervoxel structure and global graph-based optimization. By
using a supervoxel structure instead of points to organize the
entire point cloud, over-segmented supervoxels can identify the
boundaries of 3D objects. The global graphical model is con-
structed based on the geometric features of supervoxels. The
unsupervised clustering is conducted via the optimization of the
global graph. (2) A planarity-based selection and model-fitting
based refinement for the detection and extraction of planar sur-
faces is developed, which provide accurate boundaries for con-
tour extraction using alpha-shape. Unlike traditional model fit-
ting based planar extraction method, without iterative process,
our plane extraction method is more efficient and adaptive to
the real condition of urban scenes. The calculation of smooth-
ness and planarity can provide the estimation of coefficients for
the plane model.

2. METHODOLOGY

Conceptually, the implementation of our proposed plane recon-
struction method consists of two major phases: detection and
extraction of planar segments and geometric modeling of pla-
nar segments. To be specific, the first phase can be divided
into the segmentation of the point cloud and the detection of
planar surfaces. For the segmentation, we propose a bottom-
up point cloud segmentation method that utilizes supervoxel
structure and global graph-based optimization, enabling an au-
tomatic and unsupervised segmentation of point clouds. In the
subsequent step, a planarity-based extraction is conducted to
segments, and only the planar segments, as well as their neigh-
borhoods, are selected as candidates for the plane fitting. The
points of the plane can be identified by the parametric model
given by the planarity calculation. Afterward, the boundary
points of the extracted plane are extracted by the alpha-shape.
Line segments are extracted and merged by the mean-shift clus-
tering. For the geometric modeling of planes, a cell decom-
position method is adopted to get the polygon representation
of extracted planes. In Figure 1, the processing workflow is
sketched, with the core steps of involved methods and sample
results illustrated. The detailed explanation of each step will be
introduced in the following sections.

2.1 Geometric feature of supervoxels

To organize the entire point cloud into a supervoxel structure,
the space is firstly divided into a small 3D cubic grid by means
of octree partitioning, which splits each node into eight equal
child nodes, in order to generate the octree-based voxel struc-
ture.Then, the geometric feature of each supervoxel consists of
three parts: spatial position, orientation, and local geometry,
which are the unary features abstracted from the points within
it. To obtain the attribute, we firstly adopt the assumption of im-
plicit plane representation (Dutta et al., 2014) to represent the
structural patch, defining an approximate plane via the normal
vector ~Ni and centroid ~Xi of the point sets Pi within the patch
Vi.

< ~Ni, ~Xi > −dci = 0 (1)

where dci stands for the distance from the origin to the approx-
imate plane. The spatial position stands for spatial coordinates
of the centroid ~X = (x, y, z) for the points setP = {p1, p2, ..., pn}
inside the patch. The orientation represents the normal vector
~N = (nx, ny, nz) of the approximated surface formed by P .
While geometric features refer to four of the eigenvalue-based

Figure 1. Workflow of the proposed method.

covariance features (Weinmann et al., 2015) encapsulating lin-
earityLe, planarity Pe, variation of curvatureCe, and sphericity
Se, which are calculated by the eigenvalue e1 ≥ e2 ≥ e3 ≥ 0,
via the eigenvalue decomposition (EVD) of the 3D structure
tensor, namely the covariance matrix ~M ∈ R3×3 of points co-
ordinates of P .

2.2 Construction of global graphical model

For 3D point analysis, the structure of the global graph is to rep-
resent the similarity between nodes connected with edges. In
this global graphical model, the node stands for the supervoxel
generated from points, while the edge connecting nodes are as-
signed with the weight of affinity. The structure of the graph
maters the representation of the topology of the 3D scene, to
simplify the graph structure, we built the affinity graph based on
the spatial connection between supervoxels, which is based on
the KNN graph developed in (Funkhouser, Golovinsky, 2009).
Here, the connection between supervoxels is identified by the
check of sharing boundaries.

2.3 Global graph-based clustering

In the field of computer vision, the clustering of points is also
formulated as graph construction and partitioning problems. The
graphical model can explicitly represent points with a math-
ematical sound structure (Peng et al., 2013), utilizing context
for deducing hidden information from given observations (Yao
et al., 2010). Graph-based clustering aims to divide a dataset
into disjoint subsets with members similar to each other from
the affinity matrix. In (Xu et al., 2018b), the use of the lo-
cal graph structure for the description of the 3D geometry with
the supervoxel structure has been tested. The use of the local
graph model can make the clustering process quite efficient and
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available for parallel computing when combined with region-
growing strategy. However, the local graph structure can merely
encode the local geometry information, which can hardly rep-
resent the optimal in the global scale, so that over-segmentation
frequently occurs when dealing with surfaces with irregular ge-
ometric shapes (e.g., points of vegetation). To tackle the draw-
backs of local graph model, we developed the global graph-
based clustering, which constructs a global graph model to de-
scribe the local characteristics of 3D scenes with different com-
plexities, and details of objects are preserved among the clus-
tered nodes. By clustering the nodes V into cliques C, the su-
pervoxels clustered in the same cliques will be merged into a
single segment S of points. In Figure 2, we illustrate this global
graph-based clustering process.

Once the global graph of all the supervoxels is constructed, we
can optimize the connection of each supervoxel by clustering
nodes of the constructed global graph. To this end, similarly to
work in (Xu et al., 2018b), we resolve the graph clustering prob-
lem via the adaption of the efficient graph-based segmentation
method proposed in (Felzenszwalb, Huttenlocher, 2004). After
the connections of all the voxels are identified, the connected
voxels are clustered into one segment. This clustering process is
performed repeatedly by traversing all the voxels with a depth-
first strategy. All the connected voxels are aggregated into one
segment. Additionally, a cross-validation process is required to
examine the correctness of connections. In detail, for adjacent
Vi and Vj , after segmenting the graph of Vi, if Vi is identified
as connected to Vj , then in the segmentation of graph of Vj , Vj
should be connected to Vi in turn. Otherwise, they are identified
as disconnected ones.

2.4 Extraction of planes

Once the segments are obtained, for each segment, the smooth-
ness and the curvature of the surface will be calculated by the
eigenvalue e1 ≥ e2 ≥ e3 ≥ 0 from the EVD of the 3D structure
tensor of points coordinates.

Me = (e1 − e2)/e1 (2)

Ce = e3/(e1 + e2 + e3) (3)

where Me stands for the smoothness and Ce stands for the cur-
vature. The segment with the smoothness and curvature follow-
ing given thresholds are extracted as the planar segments. Here,
the planarity is not used, because what we want to extracted
is not only evenly isotropic planes, but also those anisotropic
ones.

The supervoxels of the planar segment will be considered as
planar supervoxels, and points within these supervoxels are re-
garded as candidate points of the extracted plane. By the EVD
calculation, the centroid and the normal vector of the segment
are achieved as well, which will be used as the coefficients
of the plane model. Using these coefficients as initial values,
all the candidate points are examined by the RANSAC pro-
cess (Schnabel et al., 2007), for estimating the optimized plane
model of the planar segment. Since the initial values are ap-
proximately fitted to the plane models, the RANSAC process
can find the inliers efficiently. It is noted that, for the planar su-
pervoxels of one planar segment, the points of their neighbor-
ing supervoxels located at the outer boundary of the segment
are included as the candidate points for the refinement of the
extracted plane. This is designed for overcoming the “zig-zag”
edges caused by the voxel-based segmentation methods (Sun et

Figure 2. global graph-based clustering.

al., 2018). The coefficients of the refined plane model will be
calculated by the least square algorithm using the inliers of the
RANSAC process. At last, the method of plane grouping (Xu et
al., 2018a) is applied to merge these neighboring planes having
co-planarity.

2.5 Contour extraction from planar segments

For extracted planar segments, 3D points set P3 will be firstly
projected to the 2D plane of this segment with the transforma-
tion matrix ~T . Here, the transformation is defined by the bound-
ing box of segments and the vertical direction. With the alpha-
shape algorithm, these projected 2D points set P2 will provide
the 2D contourB2 of the segments. Then, the points of 3D con-
tour B3 of the segment can be achieved by ~T−1B2. Here, the
alpha shape algorithm (Edelsbrunner et al., 1983) has been used
in determining the boundaries from points of a 2D segment es-
pecially the boundaries of convex objects. In our case, the alpha
shape algorithm can reduce the redundancy of the initial linear
structure which can benefit the subsequent linear extraction and
refinement. For the alpha shape algorithm, an alpha value (0
< α < ∞) is a parameter imposing the precision of the final
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boundary. A large value (α→∞) results in the alpha boundary
of a convex hull while a small value (α → 0) means that ev-
ery point can be the boundary points. In Figure 3, we illustrate
the boundary points detected by the alpha shape algorithm with
different alpha values.

Figure 3. (a) Points of a planar segment. (b) and (c)
Extracted contours with different alpha values.(d) Fitted

line segments.

2.6 Detection of line segments (Optional)

Given the points of segments contours from the previous steps,
we perform the RANSAC algorithm (Fischler, Bolles, 1981) to
fit the potential line segment candidates. The reason of choos-
ing RANSAC is due to that it can generate more complete line
segments and more robust to noise and outliers than other meth-
ods like point-to-point vectors. In order to reduce the effects of
outliers and fine structures such as irregular bumps and craters
in the 2D floor plan, we discard the lines whose supporting
points are less than a threshold of nr . We define L = {lk|k ∈
1, ...,m} as the detected line segment candidates from the con-
tour points sets B3. For each line segment l, all the neighboring
line segments having similar orientation angles in a give neigh-
bor region will be regarded as the neighboring set N(l). In
Figure 4, we illustration of the selection of neighboring set in
the neighborhood.

Figure 4. Neighboring set N1 = {l1, l2, l3} of a line
segment l1.

To eliminate the redundant line segment candidates and obtain
the real and concise line segment representation, we further re-

fine the orientations of fitted line segments, so that the refined
line segments can be merged into complete lines with smooth
connections. Similar to the approaches (Poullis, 2013), we re-
fine the detected line segment using the regularization of ori-
entations. To regularize orientation of line segments. We can
convert the problem of determining line orientations to a clas-
sification (i.e., a labeling task) problem of assigning lines with
predefiend orientations, which can be formulated as an opti-
mization of labels and then solved by Graph Cuts algorithm
(Kolmogorov, Zabih, 2004). To be specific, for each line seg-
ment, the orientation θp is directly achieved by direction pa-
rameters of its line model. Here, we make an assumption that
line segments constructing the same polygon may only have a
limited number of orientation angles (i.e., labels in the energy
function). In other words, edges are encouraged to be parallel
or perpendicular with longer ones (Xie et al., 2017). Moreover,
we also assume that the refined angles should not have a large
deviation from its initial angles (Xie et al., 2017).

Based on these two assumptions, we first define a set of orien-
tation angles Φ for all the line segments. Then, for each line
segment l, a candidate line segments set L is generated sharing
the same center of line but having different orientation angles
in Φ. Afterward, the cost function encoding both the smooth-
ness between neighbors and the degrees of line orientations is
constructed, which is similar to the work of (Xie et al., 2017).
By solving this cost function, we can determine regularized ori-
entation angles of line segments. Here, the cost function is give
as follows:

E =
∑

p∈P,θ∈Φ

λ ·D(p, θ) +
∑

(p,q)∈N

S(θp, θq) (4)

In this cost function, θ stands for the initial orientation angle
of a given line segment. The data term is defined by line fit-
ting residuals. D(p, θ) denotes the residual when comparing
the orientation of the line segment to the regularized orienta-
tion. Here, this residual is measured by calculating the distance
between the points of the line segment to the regularized line,
which is illustrated as follows (Xie et al., 2017):

D(p, θ) =
∑
oi

l⊥(oi, θ) (5)

where, oi is the ith point in line segment p, while l⊥(oi, θ) de-
notes the perpendicular distance from point oi to line segment
p having orientation angle of θ. In the smooth term, which pe-
nalize adjacent line segments having large differences between
initial orientation angles, N is the neighboring set of a line seg-
ment in Fig. 4. Here, λ balances the weights of the data term,
which is a scale factor. Here, δ is the normalization angle value
calculated by θ of all line segments in N . For considering the
right angle connection between lines, we also make augmenta-
tion of initial orientation angles in both perpendicular and diag-
onal directions.

S(θp, θq) = e
−(θp−θq)2

δ2 (6)

After the minimization of this cost function with Graph-Cut, the
labeling result are translated to the corresponding orientation
angles. Those line segments with the same orientation angles
are merged to form a new one and corners are the intersection
of two unparalleled or perpendicular line segments.
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3. EXPERIMENTAL RESULTS

3.1 Testing datasets

To test our proposed method, we use two different datasets
from both mobile laser scanning (MLS) and terrestrial laser
scanning (TLS). The MLS dataset is measured at the Arcis-
strasse along the main entrance of Technical University of Mu-
nich (TUM) city campus, which covers about an area of around
29000 m2 and has been already displayed in Figure 5a. Fraun-
hofer Institute of Optronics originally acquires this dataset, Sys-
tem Technologies and Image Exploitation (IOSB) (Gehrung et
al., 2017). Two Velodyne HDL-64E acquires the used point
clouds mounted at an angle of 35◦ on the front roof of the vehi-
cle.

The TLS point clouds are from the large-scale point cloud clas-
sification benchmark dataset published on www.semantic3d.net
by ETH Zurich (Hackel et al., 2017), which covers a wide va-
riety of diverse building scenes like churches, streets, squares,
villages, and castles. Specifically, two point clouds of different
scenes are tested (see Figure 5b and Figure 5c): one is scanned
in the area of the cathedral of St. Gallen, whereas the other one
is measured in the area of a town square. A clipping process is
also conducted to remove the irrelevant and distant parts in the
point cloud of the scene. For the original point cloud shown in
Figs. 5b and c, the color represents the intensity of laser reflec-
tions, with brighter color showing stronger intensities. In our
current work, the intensity of the point is not involved. Noise
and outliers are kept in the datasets.

The MLS dataset is also used for a brief evaluation of seg-
mentation performance. Manual segmentation from (Xu et al.,
2018c) is used as references (see Figs. 5d- 5g) in a way similar
to the work in (Vo et al., 2015). Namely, each reference dataset
are segmented independently by persons who are familiar with
point cloud segmentation work. Then, automatic segmentation
results will be compared against two reference datasets of the
same scene individually. For the reference datasets 1, there are
in total 101 and 66 segments obtained for the scenes of St.
Gallen cathedral and Townsquare, respectively. While for the
reference datasets 2, there are 100 and 84 segments obtained
for the scenes of St. Gallen cathedral and Townsquare, respec-
tively.

In the experiments, all the algorithms are implemented via C++
with the help of PCL 1.8.0. The Graph Cuts algorithm for
optional line refinement is achieved via the GCO-v3.0 library
(Kolmogorov, Zabih, 2004, Boykov, Kolmogorov, 2004). All
experiments run on an Intel i7-6700 CPU @ 3.4GHz and with
32.0 GB RAM. The parameters we used are set emprically.

3.2 Point cloud segmentation

We first test our proposed global graph-based clustering method
on the reference datasets, which has been mentioned and used
in (Xu et al., 2018c). The voxel sizes used in our is set to 0.1m,
and seed resolutions of supervoxels in our proposed method,
Locally Convex Connected Patches (LCCP), and Supervoxel
and graph-based segmentation (SVGS) are both set to 0.25 m.
The size of the neighborhood for aggregating the supervox-
els is set to 0.5m. The threshold for graph segmentation is
set to 0.85. In Table 1, we provide the comparison of results
using the local graph structure (i.e., unsupervised hierarchical
clustering) and the global graph structure (i.e., global graph-
based clustering). As shown in the table, it is clear that the

Figure 5. Testing datasets. Original point clouds of (a)
Arcisstrasse, (b) St. Gallen, and (c) Town square.

Reference 1 of (d) St. Gallen and (e) Town Square.
Reference 2 of (f) St. Gallen and (g) Town Square.

new global graph-based clustering method has comparable per-
formance as the unsupervised hierarchical clustering method,
but it seems that the result of global graph-based clustering
can provide better recall values, especially for the tests of us-
ing the scene Town square. This reveals that the global graph-
based clustering method prefers to generate under-segmented
segments, but the accuracy of found boundaries of segments
still needs to be improved. When clustering the global graphi-
cal model, the inner difference of a clique is less essential com-
pared to the difference between cliques of different objects, re-
sulting in a better ability of clustering points from the same
object but having irregular shapes (e.g., bushes, flowers, and
window frames). Benefiting from this advantage, global graph-
based clustering is quite suitable for applying on datasets with a
scene of mixture objects, namely urban scenes containing build-
ings, vegetation, and vehicles. In Figure 6a, we illustrate the re-
sult of segmenting the MLS dataset of the area near Arcisstrasse
of TUM city campus using global graph-based clustering. This
dataset is contaminated with outliers and points of moving vehi-
cles and pedestrians. As seen from the figure, major structures
like facades, ground surface, vehicles, tree stems, and walls are
well separated. Considering the semantic labels obtained in the
semantic labeling step, we can easily extract individual building
structural components from the entire scanned point cloud.

In addition, the framework of global graph-based clustering can
be elegantly applied to any kind of elements from different data
structures. For example, we can directly regard each voxel as
a node in the graphical model without conducting the super-
voxelization process. The weighted edges between nodes are
determined by the affinity of geometric features of connecting
nodes. In Figure 6, we display an example of using voxels as
basic elements under the global graph-based clustering frame-
work. Compared with our former voxel-based method, the op-
timization at the global scale can provide a good ability of clus-
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Table 1. Comparison of segmentation results using global graph-based clustering (global graphical model) and the
unsupervised hierarchical clustering (local graphical model).

Test scenes global graph-based clustering Unsupervised hierarchical clustering
Pr Re F1 Pr Re F1

St. Gallen (Ref1) 0.7004 0.7563 0.7273 0.8769 0.6352 0.7367
St. Gallen (Ref2) 0.7134 0.6571 0.6841 0.7381 0.5988 0.6612

Town square (Ref1) 0.5911 0.8369 0.6928 0.6840 0.6847 0.6843
Town square (Ref2) 0.5841 0.8126 0.6796 0.6904 0.6510 0.6701

Figure 6. Comparison of segmentation results using. (a)
Original point clouds, (b) segmentation results using
method from (Xu et al., 2018b), and (c) segmentation

results using voxel-based global graph-based clustering.

tering points of objects with irregular shapes, and at meanwhile,
preserve the boundaries of objects well. This phenomenon can
be clearly observed from the comparison of segmented flowers
and fences on the balcony shown in Figs. 6b and 6c. For our for-
mer voxel-based method, the flowers can only be clustered as
a set of small cliques of points without completeness. In con-
trast, when utilizing the voxel-based global graph-based clus-
tering method, all the flower clusters can be separated neatly.
The point densities are also critical for the segmentation. How-
ever, by using voxel structure to organize the point cloud, the
geometry of points within the voxels can be represented by the
approximated plane (Xu et al., 2017), which can help us to re-
sist the unevenly distributed points.

3.3 Plane extraction

Based on the segmentation result, we conduct the extraction of
planes from these segments. In this step, the smoothness and the
curvature thresholds are both set to 0.01. Whereas the thresh-
old of RANSAC fitting is set to 0.1m. In Table 2, we give the
numbers of extracted planar segments for the aforementioned
three testing datasets, reporting that finally there are 10, 27, and
17 planes extracted from the above-mentioned testing scenes,
respectively.

Table 2. Number of extracted planes.

Scenes TUM St. Gallen Town square
Original points 1886937 3336659 2359831

Supervoxels 17559 14537 21016
Segments 1057 371 308

Initial planes 10 48 20
Merged planes 10 27 17

In Figure 7, the illustration of extracted planes is given. As seen
from the table and the figure, we can find that the major planar
structures of the scene are extracted, and small planar segments
have been merged into a large complete surface. However, the
merging step is a double-blade sword, which can optimize the
completeness of the extracted plane and at the meanwhile, the
merging is counterproductive to the separation of co-planar ob-
jects, for example, the facades of two houses in Figure 7c are

merged as one large facade. In addition, when using RANSAC
to refine the planar segment, the fitting threshold is crucial to
the number of extracted planes. In some cases (e.g., the left
facade in Figure 7b), multiple overlapped planes may be gener-
ated from points of the same planar object.

3.4 Contour extraction

Once the planes of the major structures are extracted, the con-
tour hulls are extracted by the use of the alpha-shape algorithm.
Here, the alpha value is set to 0.1m for the datasets of scenes
Town Square and St. Gallen, while for the dataset of the scene
Arcissstrasse, the alpha value is set to 0.2 m. In Figure 7, we
illustrate the extracted contour hulls of planes in these three
scenes. As shown in the figure, the extracted contour hulls
have covered salient boundaries of the planar object. However,
for the area with unevenly distributed densities of points, espe-
cially in the scene Arcisstrasse, the data of which is measured
by MLS, the extracted hulls follow the patterns formed by the
scanning lines instead of the borders of the object. In Table 3,
we give the numbers of extracted contours and contour points.

Table 3. Number of contour points.

Scenes TUM St. Gallen Town square
Original points 1886937 3336659 2359831

Extracted contours 10 27 17
Contour points 26253 26814 18078

4. CONCLUSION

In this work, we present a surface-based method to extract the
contours of planar building elements in the urban scene. A
bottom-up segmentation method that utilizes global graph-based
optimization and supervoxel structure is developed, enabling
an automatic and unsupervised segmentation of point clouds.
Then, a planarity-based extraction is conducted to segments,
and only the planar segments, as well as their neighborhoods,
are selected as candidates for the plane fitting. The points of the
plane can be identified by the parametric model given by the
planarity calculation. Afterward, the boundary points of the ex-
tracted plane are extracted by the alpha-shape. Optionally, line
segments can be fitted and optimized by the energy minimiza-
tion with the local graphical model. The experimental results
using different datasets reveal that our proposed segmentation
methods can be effective and comparable with other method,
and the contours of planar building elements can be well ex-
tracted from the complex urban scene. In the future, we will try
to improve the method, so that no only the contours of planes
can be extracted can be extracted, but also those of irregular
surfaces. Moreover, the feature representation (e.g, for lines or
curves) removing redundant information with dimension reduc-
tion (Hong et al., 2018) or projecting to low dimensional space
(Huang et al., 2019),or transferring to other domain (Tong et al.,
2015), will also be considered in our further studies, in order to
extract those essential and representative structural features.
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Figure 7. Illustration of segmentation results using global graph-based clustering. (a) Segmentation result of the TUM
scene (Arcisstrasse), (b) segmentation results of the Town Square scene, and (c) segmentation results of the St. Gallen

scene. Illustration of extracted planes. (d) Extracted planes of the TUM scene (Arcisstrasse), (e) extracted planes of the
Town Square scene, and (f) extracted planes of the St. Gallen scene. Illustration of extracted hulls. (g) Extracted hulls of

the TUM scene (Arcisstrasse), (h) extracted hulls of the Town Square scene, and (i) extracted hulls of the St. Gallen
scene.
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