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ABSTRACT:

This paper proposes a method to get semantic information of changes in bathymetric point clouds. This method aims for assigning 
labels to river ground points which determine if either the point can be compared with a reference DEM, if there are no data in the 
reference or if there are no water points inside the new Data of wet areas of the reference data. This labels can be further used to specify 
areas where differences of DEMS can be calculated, the comparable areas. The Areas where no reference data is found specify areas 
where the reference DEM will have a higher variance due to interpolation which should be considered in the comparison. The areas 
where no water in the new data was found specify areas there no refraction correction in the new data can be done and which should be 
considered with a higher variance of the ground points or there the water surface should be tried to reconstruct. The proposed approach 
uses semantic reference data to specify water areas in the new scan. An occupancy analysis is used to specify if voxels of the new data 
exist in the reference or not. In case of occupancy, the labels of the reference are assigned to the new data and in case of no occupancy, 
the label of changed data is assigned. A histogram based method is used to separate ground and water points in wet areas and a second 
occupancy analysis is used to specify the semantic changes in wet areas. The proposed method is evaluated on a proposed data set of 
the Mangfall area where the ground truth is manually labelled.

1. INTRODUCTION

The common method to look for changes in the area of the river
ground is to calculate differences of DEMs and check if the dif-
ference is significant. The test of significance is important to dis-
tinguish between geometric changes and measurement or regis-
tration errors. To create maps of geometric changes of large scale
river areas, airborne lidar bathymetrie (ALB) is widely used. The
most important classes by working with ALB data are the ground
and the water which are needed to know to correct light refrac-
tion effects between the medium air and the medium water. If
not considered, this refraction effects will result in incorrect mea-
sured river ground points. However, the recognition of the water
surface or the river ground inside the laser pulse depends on many
external conditions, e.g. water turbidity or material of the ground.
Therefore, the water segment and river ground segment can differ
between multi temporal data. There can be unrecognised water
surfaces or ground points which were not measured in the refer-
ence data. This paper proposed a method to compare multi tem-
poral ALB data as a pre-processing step for DEM calculation to
check for geometric changes. The pre-processing will search for
areas where are differences in recognising water surface and river
ground points. Considering semantic reference data a new data
set can be used to generate labels for unrecognised water pulses
inside previous water area, labels for unrecognised ground points
in the reference data and labels for areas which can be compared
using the difference of DEMs. This labels are important for the
search of significant changes because the points in the labelled
areas should be handled in different ways. If there is no recog-
nition of the water surface, there can no refraction correction be
calculated and it should either be tried to reconstruct the water
surface based on surrounding measurements or the variance of
the measured ground point should be considered as higher vari-
ances. If there is no measurement of the river ground in the refer-

∗Corresponding author

ence data, the difference of DEMs will be influenced by interpo-
lation in this areas. In case of comparable areas, the differences
of DEMs can be calculated with no additional consideration. The
proposed method is based on the creation of a voxel structure
in the two data sets. A first occupancy analysis is used to mark
areas which are outside of the water areas of the reference and
will mark uncaptured data in this “dry” areas. Inside the water
areas of the reference, a histogram of heights of all points inside
a single voxel is used to distinguish between ground points and
water points. Points corresponding to the lowest height values
are marked as ground and points corresponding to the next confi-
dence interval above the ground are marked as water. If there is
no water found, the points inside the voxel are marked as “dry”
points inside reference water area. If there are water points found,
the refraction correction is done and a second occupancy analy-
sis of the new ground points and the ground points of the refer-
ence used. If the new ground points are in unoccupied voxels of
the reference, the new points are marked as points with no ref-
erence data otherwise the new points are marked as comparable
points. Results are evaluated on a proposed benchmark data set
of the Mangfall area in Bavaria, Germany. The multi temporal
data consist of an ALB data set of a flight campaign at 2012 and
an ALB data set at a flight campaign at 2017. Furthermore, there
was a change in the scanning system between this two data sets.
The flight campaign at 2012 was done using a Riegl VQ 820G
system and the flight campaign at 2017 using a Riegl VQ 880G
system. The testing area maps a region of the Mangfall in Gmund
at the Tegernsee. This area is labelled manually with the classes
water, ground, vegetation, building and the proposed labels for
changes in water areas. Using this ground truth, the accuracy of
the proposed approach is evaluated.
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2. STATE OF THE ART

Sensors for airborne LiDAR bathymetry (ALB) are evolved in the
last decades. Today, they are widely used in the measurement of
large scale shallow water areas, e.g. rivers (???).

One important attribute of monitored river areas is the change of
river ground points. This is used to get information about habitats
or sediment transportation (??). To create change maps of these
ground point changes the common method is to calculate differ-
ences of DEMs and specify significant differences with a statisti-
cal test (??). This method is able to distinguish between geomet-
ric changes and height differences caused by measurement errors.
This DEMs are generated based on the river ground points which
must be corrected due to light refraction effects on the water sur-
face. Therefore, the extraction of water models plays an impor-
tant role in the analysis of ALB data as well. The separation be-
tween water and ground can be performed either semi-automatic
(?) or by analysing full waveform data (?).

In practical application it can either happen that there is no water
return or the laser signal cannot penetrate the water body until
the ground. By considering mutli-temporal data the turbidity and
absorption grade of the water body can also change. Therefore, it
can either happen that there is no ground in the reference or there
is no water return in actually wet areas. This two cases should
be considered in the change detection to determine different vari-
ances of significant changes. Furthermore, marking areas where
are no water echoes in the new data can be used to try to get more
echoes of the waveform analysis in post processing. Therefore,
the semantic change labels of the proposed method could be used
to determine areas where waveform data should be analysed with
a different model or to determine different thresholds for signifi-
cant changes.

3. METHOD

The first step of the proposed approach is an occupancy analysis.
A voxel structure is defined for the reference point cloud and the
new point cloud. These voxel structures are initialised with the
same size and are calculated to the same level of detail. There-
fore, a single voxel in the new point cloud can be matched to a
single voxel in the reference point cloud. If the voxel in the new
data is occupied but unoccupied in the reference data, the points
inside the new voxel are marked as new points and therefore get
the label ”changed”. Furthermore, the occupancy analysis is used
to transfer the semantic information from the reference to the new
data. If the voxel in the reference and in the new data are oc-
cupied, the median of the classes inside the reference voxel is
assigned to the points inside the new voxel.

Furthermore, the semantic reference is used to define water areas
in the new data. New points inside the area of the reference water
model are considered as points inside river areas. Voxels con-
sisting of points inside river areas are used to generate a height
histogram. This height histogram is used to define ground and
water points in the new data. Points corresponding to the lower
confidence are marked as ground points and points corresponding
to the next confidence are marked as water points. This is shown
in Figure 1. The confidences are searched starting at the left side
of the histogram, where one confidence is defined by connected
bins holding information. The first bin which holds information
marks the beginning and the next bin without information marks
the end of one confidence. All bins of one confidence are then

Data: semantic reference data and new data
Result: new data with semantic informations
V1 = calculate voxel structure(reference);
V2 = calculate voxel structure(new data);
foreach voxel v ∈ V2 do

if v ∈ waterModelReference then
h = histogramOfHeights(v.points);
assignClassToPoints(v,h);

end
else

vref = getCorrespondingVoxel(v,V1);
if vref == occupied then

assignClassToPoints(v,medianClass(vref.points));

end
else

assignClassToPoints(v,”change”);
end

end
end

Algorithm 1: Algorithm summarise assigning class labels

used to calculate the mean and variance of the confidence inter-
val.

Data: voxel and histogram of heights
Result: assigned ground and water labels
groundFirstBin = h.firstWhere(0,number > 0);
groundLastBin = h.firstWhere(groundFirstBin, number < 1);
waterFirstBin = h.firstWhere(groundLastBin,number > 0);
waterLastBin = h.firstWhere(waterFirstBin, number < 1);
averageG,sdtG =

averageAndVariance(groundFirstBin,groundLastBin);
averageW,sdtW =

averageAndVariance(waterFirstBin,waterLastBin);
foreach point p ∈ voxel.points do

if p ∈ confidence(averageG,stdG) and isLastPulse(p)
then

p.class = ”ground”;
end
if p ∈ confidence(averageW,sdtW) then

p.class = ”water”;
else
end

end
Algorithm 2: Algorithm summarise divide ground and water

The water points of the new data are used to calculate the water
model of the new data and to correct the ground points in river ar-
eas. If no correction is possible due to missing water points, the
points are marked as not corrected. After successful correction
the river ground points are used for a second occupancy analy-
sis. If the new point is inside an occupied voxel in the reference,
the point is marked as comparable. If the river ground point is
in an area which is not occupied by reference data, the label for
”no reference” is assigned. Therefore, the label for not corrected
points shows points inside areas where in the reference data was
a recognition of water areas but in the new data was not. This
assign of change labels based on a decision tree is shown in fig-
ure 2. This decision tree only looks at ground or new points in
river areas. Since the histogram based voting for ground and wa-
ter have a higher focus to ground points, the labels ground and
change are the main labels in river areas.
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Figure 1. Schematic histogram based classification into ground
and water points

Figure 2. Scheme of the decision tree for assigning change
labels. Input are the ground points and new points in the river

area.

4. DATA

The proposed approach is evaluated using a manually labelled
ground truth of the Mangfall area in Bavaria, Germany. The area
is captured with airborne LiDAR during two flight campaigns,
one at 2012 and another at 2017. Furthermore, there was a change
in the scanning system between this campaigns which result in
different resolutions of the point clouds. The dataset from 2012
was captured using a Riegl VQ 820G which creates a regular
scan pattern with 0.5 m ground sampling distance. The dataset
from 2017 was captured using a Riegl VQ 880G which creates
a ground sampling distance of 0.1 m along the scanline and 0.5
m between two scanlines. Furthermore, the scan systems differ
in the number of maximal recognisable return pulses in the laser
signal. The VQ820G recognise a maximum of about 4 pulses and
the VQ880G a maximum of about 8 pulses.

The chosen test area is on top of the village Gmund and shows an

area of a paper industry. This area shows structural changes in the
buildings of the industry as well as structural changes inside the
river channel. Furthermore, there are differences in water depths
between the river channels. Another difference is the amount
of recognised pulses from the river ground at the two capturing
times and the amount of recognised water pulses. Therefore, all
change classes are present in the chosen testing side.

(a) (b)

Figure 3. Overview of the LiDAR data of the test side. (a) data
from 2012, captured with a Riegl VQ 820G, (b) data from 2017,

captured with a Riegl VQ 880G.

Figure 3 shows an overview of the chosen area as intensity data
of the scan systems.

Figure 4. Overview of the semantic labels from the data of 2012,
manually labeld.

The semantic information of the data from 2012 are shown in fig-
ure 4, these semantics are manually labelled. The change labels
of the dataset of 2017 are shown in figure ??. These labels are
also manually created. It structural changes of buildings can be
seen at the new building at the bottom of the figure and some
smaller changes at the industry buildings. Especially facades and
tree stems shows the areas of newly measured points. The area
on the right of the figure shows an area where no water pulses in
the new dataset are recognised.
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Figure 5. Overview of the semantic changes from the data of
2017, manually labeld.

5. RESULTS

Since the proposed approach is based on a voxel structure, the
main influence to the accuracy is seen by the chosen voxel size.
The voxel size should be chosen dependent on the expected ground
sampling of the data. Choosing the voxel size too small has no
benefit against a point wise processing and choosing the voxel
size too big will create visible artefacts for the classification. Fur-
thermore, there is a difference for the voxel structure in case of
the first step of class assigning and in case of the search for wa-
ter and ground points in river areas. In the latter the voxels are
chosen to be not squared to hold more points along the height di-
rection. Therefore, this paper evaluates the influence of different
voxel sizes to the final accuracy of change detection.

The evaluation is separated into two parts, the first, which focus
on the detection of ground and water points and the second which
focus on the assign of final change labels. The first detection is
more critical because it directly influences the final output of the
proposed method. Furthermore, the influence of different classifi-
cation accuracy in case of ground and water points for the change
labels should be evaluated too.

The first evaluation focuses on the accuracy of the assign of refer-
ence labels to the new data set. with a used voxel size of 1 m and
a ground resolution for the height histogram of 3 m the confusion
matrix shown in table 1 was created. The evaluation focuses on
the classes change, ground and water because of their influence
to the determination of change labels.

GT change ground water

change 0.25 0.20 3e-03
ground 0.19 0.35 5e-03
water 2e-04 2e-03 1e-04

Table 1. conf Matrix preproz. 1m, enh 3m

Considering this three classes there is an unequal distribution.
The unequal distribution of this classes can be seen in the confu-
sion matrix. The confusion matrix shows also the dependencies
of the classes to each other. It can be seen that the separation be-
tween the ground and change class is not clear. The most false
negatives of ground points are labelled as change and also the
same for the points of changes. The evaluation of the confusion
matrix is shown in table 2.

Resolution label TPR TNR acc

1 m change 0.55 0.66 0.61
ground 0.64 0.56 0.60
water 0.04 0.99 0.99

OA: 0.60

2 m change 0.43 0.81 0.64
ground 0.80 0.43 0.63
water 0.04 0.99 0.99

OA: 0.63

4 m change 0.25 0.92 0.65
ground 0.61 0.60 0.60
water 0.02 0.99 0.99

OA: 0.45

Table 2. Table of assigned classes

The table shows that all classes have a high sensitivity (TNR)
and accuracy (acc). Especially the class for water points reaches
a very high sensitivity which indicates that the approach is able
to distinguish between water and the other classes. However, the
true positive for the water class is very low, which indicates the
wrong assignment of water points. Due to the unequal distri-
bution of the classes, the recall (TPR) and the sensitivity have
extremely different values.

The influence of the chosen voxel size can be seen by degreas-
ing TP rates of the label change while the sensitivity increases.
Choosing the voxel size to greater value will increase the amount
of overlap and therefore marks fewer points as changed areas.
This is the reason why the TP rate falls. By assigning the ground
label the higher overlap results in more assigned ground points
which results in a higher TP rate. However, there are also more
false assigned ground points due to the higher sampling of the
voxel structure. Therefore, the size of the voxels affects the sen-
sitivity in a negative way. The assign of water labels is in com-
parison independent on the voxel size. This can be explained by
the use of the histogram of assignment of final water labels. The
horizontal resolution of the voxels used for histogram calculation
is chosen to be fix at 3 m. Choosing smaller voxels will miss
some water points and choosing bigger voxels will return into
histograms where no separation between the significance areas is
possible.

The second evaluation goes for the assignment of change labels.
This is also evaluated for different voxel sizes on base of the as-
signed classes. The use of the assigned classes from 1 m voxel
resolution or from 2 m voxel resolutions show vanishing influ-
ences. Therefore, the evaluation of the change labels is further
discussed in this paper on the example of assigned labels of 1 m
voxels. an example confusion matrix with a voxel size of 1 m for
assigning the change labels is shown in table 3.

GT no water no ref compareable

no water 0.01 6e-03 0.01
no ref 3e-03 2e-03 4e-03

compareable 5e-03 4e-03 0.02

Table 3. conf Matrix preproz. 1m, enh 3m, change 1m

compared to the classes, the change classes are more equally dis-
tributed. Furthermore, the candidate for false assignment are the

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-2/W7, 2019 
PIA19+MRSS19 – Photogrammetric Image Analysis & Munich Remote Sensing Symposium, 18–20 September 2019, Munich, Germany

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-IV-2-W7-9-2019 | © Authors 2019. CC BY 4.0 License.

 
12



class ”comparable”, which is assigned to ”no water”. This false
assignment is also dependent on the chosen voxel size which
is used for water model interpolation. The false assignment of
other change classes is vanishing compared to the total amount
of points. The evaluation of the confusion matrix is shown in
table 4.

Resolution label TPR TNR acc

0.5 m no water 0.56 0.96 0.94
no ref 0.08 0.98 0.97

compareable 0.41 0.95 0.93
OA: 0.88

1 m no water 0.37 0.98 0.96
no ref 0.13 0.98 0.97

compareable 0.54 0.92 0.91
OA: 0.87

2 m no water 0.20 0.99 0.96
no ref 0.18 0.97 0.96

compareable 0.61 0.89 0.88
OA: 0.84

4 m no water 0.63 0.93 0.92
no ref 0.08 0.98 0.97

compareable 0.34 0.92 0.89
OA: 0.83

Table 4. Table of change classes, preproz 1m

The evaluation shows a very high selectivity and accuracy for all
change classes. Therefore, the selection of the river areas out of
the total amount of points is accurate with the use of the reference
water model. However, the TP rate shows some differences be-
tween the change classes or between different used voxel sizes.
Furthermore, the TP rate as well as the overall accuracy show
that the classification works well for selecting seed points. The
classified water points are used for interpolating a water model.
Therefore, the weak classification of the water points still works
good enough to distinguish between the change classes.

Choosing higher voxel sizes will result in a decreasing TP rate
of the ”no water” class but an increasing TP rate of the class
”comparable”. The constant selectivity value at different sizes
show that the TP rates results from a lower false assignment of
the class ”comparable”. Considering the calculation of the new
water model, the higher voxel size will result in a greater neigh-
bourhood for interpolation. Therefore, more gaps are filled and
more intersection points are calculated which leads to smaller ar-
eas of ”no water” points. Table 4 shows also the effect of big
interpolation neighbourhoods by the voxels size of 4 m. If the in-
terpolation neighbourhood is too big, the resulting resolution of
the voxel structure will lead to more false assignments as in the
case of the class assignment.

The ground truth for the semantic labels in the new data is shown
in figure 6. Figure 7 shows the results of assigning the refer-
ence labels. Furthermore, figure 7 shows the influence of dif-
ferent voxel sizes. It can be seen that bigger voxel resolutions
result into more homogeneity inside the class but also to expand-
ing class borders. The main classes to focus on for the change
detection are the classes ground and water which can be success-
ful detected. There are very few water echoes in the new data
set but the proposed histogram based method is able to find good
seeds even at a sparse distribution of water echoes.

Figure 6. GT for assigned labels.

Figure 7. Result for assigning reference labels. Shown are the
results of different voxel sizes, from top to down: 1 m, 2 m, 4 m.

The Ground truth of the change labels can be seen in figure 8.
The most appearing labels are ”comparable” and ”no water”.

Figure 9 shows the influence of different voxel sizes for the as-
signment of these change labels. The voxel resolution influences
the neighbourhood of points to which are the labels assigned as
well as the interpolation neighbourhood for the water model. The
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Figure 8. GT for assigned labels.

Figure 9. Result for assigning change labels. Shown are the
results of different voxel sizes, from top to down: 0.5 m, 1 m, 4

m.

influence of the water model can be seen by a higher amount of
no water points. Due to the sparse distribution of water points the
water model gets sparse, too. The sparse model leads to a lower

amount of intersections, which can be seen by the count of “no
water“ labels in the case of small voxels. The case of a voxel size
of 1 m shows the influence of interpolation for the water model.
The sparse distributed seeds of water points are used to calculate
an interpolated model which leads to shrinking amount of no wa-
ter points. Only the areas which have no seeds are still marked
as no water. Considering the larger voxel size, the influence of
the neighbourhood for assignment is seen by the footprints of the
voxels at the class borders.

6. CONCLUSION

This paper proposes a method to create semantic information
about change areas in river beds. These semantics include compa-
rable regions, regions without reference data and regions without
water echoes in reference water areas. The proposed method uses
semantic information of reference data to distinguish between ar-
eas outside of water areas and the water areas. A voxel structure
is used to check for occupied voxels inside the reference and the
new data. Occupied voxels in both data are used to transfer the se-
mantic information of the reference to the new data. At the same
step, new points in the new data set can be labelled as change if
they correspondent to unoccupied voxels in the reference. The
water points of the reference are used to determine water areas
in the new data where a histogram based approach is used to
distinguish between water and ground points. Choosing bigger
voxels for the transfer of semantic information will lead to ex-
panding class borders. In contrast, choosing smaller voxels will
lead to missing class assigns and therefore more false positives
for changes.

For the second step, the new assigned water points are used to
generate the new water model and to check for intersection of
the corresponding laser beams of river ground points to the new
water model. If no intersection is found, the river ground point
below the old water model is marked as ”no water”. If reference
ground points are found near to the new ground point, the point
is marked as ”comparable” else as ”no reference”. Evaluations
show that even with a weak classification, high accuracies of the
change labels are reachable if good seeds of ground and water
points are found. The change labels reach an overall accuracy of
more than 87 percent even with an overall of 60 percent for the
classification. The voxel size should also be chosen not too small
and not too big. Bigger voxels have the same effect of expanding
class borders like in case of the transfer of semantic information.
Smaller voxels lead to smaller interpolation neighbourhood for
the water model and therefore a lower count of intersections.

The change labels could be used in the future to support a sig-
nificance check for DEM differences. The label ”comparable”
marks areas which are safe to process with a difference of DEMs.
The label ”no reference” can be seen as additional information
where interpolation for the DEM calculation happens and there-
fore the calculated geometry can be different to the true one. The
most critical areas are the ones of the label ”no water”, for the
test of significance, the variance of the point coordinates should
be considered as higher, because of the light refraction. But if
information about the sediment transport and the geometry are
needed, these areas should be used to look for additional water
points.
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