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Abstract: Complex geometry extraction from point clouds is an actual problem in reverse 
engineering.  Simple geometrical models (like parallelepipeds, prisms, pyramids, cones, 
spheres) were already applied in construction and machine-building modeling, but are not 
sufficient for high quality BIM now. This work, which is carried out in the context of virtual 
reconstruction of destroyed orthodox churches, presents a robust and efficient method of 
cupola (domes) and tambour geometry extraction from precise point clouds. The rich diversity 
of architectural forms, which are defined by many parameters, does not allow to consider this 
problem as a trivial duty, because usual geometry extraction methods fail for these object 
types. The new developed algorithm is presented and realized. 
 

1 Introduction  

1.1 Motivation 
Ancient cultural and science developments, accumulations of practical human experience, led to 
fantastic achievements in industrial and civil constructions. These achievements are reflected in 
various architectural forms, construction materials, and technologies. 
Simple geometrical models (like parallelepipeds, prisms, pyramids, cones, spheres) were already 
applied in construction and machine-building modeling. However, such geometrical forms are 
insufficient for modern industry requirements, which arises the need for more difficult 
mathematical models, and, therefore, the identification relations between the parameters of the 
geometrical models and the projected constructions.  
This work is carried out in the context of actual research in the virtual reconstruction of destroyed 
orthodox churches, in which the cupola (dome) geometry extraction plays an important role. The 
rich diversity of architectural forms does not allow us to consider this problem as a trivial duty. 
Analytical surfaces have a broad application in the various branches of technique and construction, 
being relevant for the geometry description of complex church components. A significantly high 
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number of parameters, which complicate a geometry detection task from a point cloud, defines 
such kind of surfaces. 
The aim of this work is the development of a robust method of automatically dome geometry 
extraction from precision point clouds. 

1.2 Related works  

Complex geometry extraction from point clouds is a current problem in reverse engineering, that 
is considered in many articles. Due to the huge number of parameters in the context of big data 
problems, which is relevant for point clouds, the usual geometry extraction methods (e.g. 
extraction of geometrical primitives with Hough Transform or RANSAC) fail in this case. 
Moreover, our research object cannot be approximated with geometrical primitives in most cases 
(unlike to e.g. ALBY & GRUSSENMEYER 2012).  
The mathematical construction of complex surfaces is one of the main objectives in engineering 
geometry. Different mathematical models and aspects of curve and complex surface 
approximation from point clouds are represented in BUREICK et al. (2016). 
A spline interpolation is very common in point cloud processing (e.g. thin plate spline in non-rigid 
texture mapping procedure (FAN et al. 2012)) and curve fitting (WANG et al. 2004). BARAZZETTI et 
al. (2016) presents a modelling of bridges by NURBS surfaces. B-spline curves are extracted from 
an input point cloud, using its point subsets as control points for a curve approximation. B-spline 
basis functions are defined on the knot vector, which is a non-decreasing sequence of real numbers 
with external elements, the knots. BELYAEVA (2014) deals in her PhD-Thesis with a development 
of mathematical surface models (vector/matrix models) and surface transformation algorithms for 
practical tasks with an application of computer geometry. In particularly, the construction of domes 
in orthogonal and cylinder coordinate systems and its approximation with cubic spline is 
considered.  
However, an important modeling objective in the context of geometry detection from big point 
clouds is the determination of the minimal number of parameters, which describe necessary 
variations of dome geometries. Therefore, the extraction of significant information (e.g. features 
points) is a crucial task.  
RUSU et al. (2008) developed a point descriptor, identifying points on planar, round, linear surfaces. 
In BUENO et al. (2016) the key points are detected using entropy values by planarity and curvature 
change. In GEVAERT et al. 2016 a maximal height difference, its standard deviation and number of 
points per bin are estimated, solving for key point extraction of an input point cloud. The bins have 
been defined from the geographical grid determined by a orthomosaic. Some algorithm, which are 
suitable for feature point detection in 2D images (Harris detector (HARRIS & STEPHENS 1988), 
SIFT (LOWE 1999; LOWE 2004)) are applicable for 3D point clouds, too.  
There are some program applications allowing a semi-automatic modeling of architectural forms, 
in which the model parameters of the structure elements are estimated from user defined keypoints 
(KIVILCIM & DURAN 2016). Such approaches basis on an a priori created library of architectural 
elements (DORE et al. 2015). DORE et al. (2015) estimated and reconstructed destroyed architectural 
elements (domes and tambours) from horizontal cuts, according to a model from elements library. 
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CANCIANI et al. (2015) used point cloud cuts to extract key points and estimate a mathematical 
model of architectural elements for its further “path-wise” reconstruction.  
According to our objectives, we want to provide a complex form reconstruction algorithm using a 
minimal parameter set, that will be suitable for incomplete data, too. 

2 Method  

The proposed method can be divided in two steps – dome block segmentation and dome/tambour  
geometry extraction. The second step is in the focus of this article and will be described according 
to the research object. 

2.1 Pre-segmentation of dome blocks 
The algorithm, considered in CHIZHOVA ET AL. 2016, bases on the idea, that there is a certain 
number of domes of orthodox churches (e.g. 1, 3, 5, 7, 9, 33). The quantity of domes is determined 
by orthodox construction canons. Our duty is to segment the point set Px,y,z into subsets Pi,, which 
may belong to every type but also to a single dome. The number of such subsets corresponds to 
the possible number of the domes.  
We consider horizontal cuts of the treated church point cloud, which are covered with an 
orthogonal grid. In each layer, at different heights, containing the point cloud cut of the dome and 
the grid, distances between grid nodes and cut points are estimated. If some points have almost an 
equal distance to the grid nodes, these points are assumed as a dome/tambour with a circular 
horizontal projection. A user defined deviation of the distances gives an “index of detection 
quality”, which maximal value allows to state, that the bottom of the dome block has been 
detected.  

 

Fig. 1: Segmentation process of dome blocks (dome with tambour) 
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2.2 Mathematical modelling and point cloud simulation of domes 
In this research, the mathematical model of the dome should consider the specific properties of 
point cloud analysis as well as the classification and storage procedure of recognized objects. 
Therefore, it is necessary to reduce a space dimension, in which an analysis is carried out, and to 
minimize a set of model parameters, keeping its generality. As a basic form of a dome, we will 
choose the most common onion form, which can be considered more universal in relation to other 
domes forms (e.g. oval domes). Besides, it is necessary to consider such types of domes (and its 
tambours) like ripped or “umbrella” domes, which are divided at the base into curved segments, 
which follow the curve of the elevation.  

 
Fig. 2: Different types of domes and tambours 

 

Obviously, the onion domes have an axial symmetry, being a surface of rotation, which are defined 
completely by a planar profile curve (meridian). 
Therefore, the modeling of a dome form can be considered as a selection of a planar parametric 
curve, setting the meridian. Let's direct the abscissa axis along the dome axis from its basis to its 
top, then a radius of the dome cuts on different heights will be stored on the ordinate axis. Moving 
along the dome axis, the radius of its cut increases at first, reaching a maximum, then decreases, 
concerning an axis on its top. Obviously, there is a crease point between a maximum and top. 
This kind of geometrical forms is described usually with parametric third order Bezier curves or 
cubic splines. However, in our case, this representation form cannot be used, because a parameter 
set of Bezier curve includes not only the points on this curve but external point too, setting its 
tangent and providing only directional information (a curve does not pass through these points).  
Obviously, the reconstruction procedure of a tangent to the dome surface in the point cloud will 
have an error, which is bigger as an error by the definition of point coordinates on the dome surface. 
But a specific feature of the Bezier curves is, that the allocation of parametric tangents has more 
influence on a curve form as the coordinates of a points on this curve.  
Moreover, a standard set of tangent segments with coordinates of its end points cannot be used in 
our case, because it will complicate a procedure of object classification and storage. A tangent 
setting with normalized vectors can solve as makeshift, but it will not improve a situation with 
error determination.  
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An application of a cubic spline is problematic in this case, too. It is known, that cubic spline 
parameters significantly depend on a piecewise-defined interval or its knots, building this spline. 
An effective classification will be interfered through a problem to offer a spline composition, 
uniform for all reconstructed dome forms. 
Obviously, all listed above problems are insoluble in case of a geometry reconstruction from 
incomplete data, if a dome is partially destroyed or scanned with a big error. 
Assuming enough simple prerequisites, it is possible to approximate a dome profile curve with a 
third degree polynomial, which coefficients are determined by coordinates of four reference points. 
In this case, the coefficient values or polynomial roots will be invariant concerning the choice of 
these reference points that allows using of polynomial coefficients or its roots as form parameters 
by object classification and storage. 
Following points are chosen as reference (features) points: 

- Dome basis: a point on the junction from the tambour to the dome (Р0(х0,у0)); 
- Equator: a point on the maximal radius of the profile curve (Р1(х1,у1)); 
- The crease point by the function change of the profile curve (Р2(х2,у2)); 
- The point on the dome top (Р3(х3,у3 = 0)) 

 

Fig. 3: Reference points on dome profile to be detected 

 

Obviously, a point Р3 corresponds to one of the polynomial roots; therefore, a dome top can be 
chosen as one of the polynomial parameters and coefficients a, b, c of the second order polynomial 
as residual parameters. In this case, a profile curve model can be defined as 

f(x)=(ax2+bx+c)(x-x3) 

This model was investigated during extensive computing experiments, in which course it has 
become clear that the cubic polynomial is not suitable due to wrong approximation of Р3 point 
vicinity. In particular, a condition of the profile contact with dome axis is violated, but it cannot 
be permitted by the construction rules of domes. Thus, a polynomial order has been raised to the 
fourth without increasing the parameter number for faults elimination. It is possible, if the 
difference (х-х3) will be squared. 
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Thus, the model can be defined by multiplication of second order polynomial to squared 
difference:  

f(x)=(ax2+bx+c)(x-x3)2 

Due to x3-root multiplicity, the total number of parameters will remain equal to four; it is necessary 
to determine three residual unknown model parameters a, b, c (x3 is already known). All calculation 
formulas have been received using a computer algebra system and exported into the C++ 
programming language. It allows to construct a generator for the simulation of domes point clouds. 
The program realization of the test data generator and geometry analyzer is made in a cross-
platform integrated environment of software development (IDE) Qt5 using the PCL library version 
1.8. 

 

Fig. 4: Generated point clouds of domes 

2.3 Extraction and reconstruction of the dome geometry 

A detection procedure of dome the geometry consists of the following steps: 

- Point cloud regularization; 
- Definition and refining of dome axis coordinates; 
- Profile curve extraction; 
- Definition and refining of model parameters. 

2.3.1 Point cloud regularization 
Point cloud regularization allows reducing a point cloud capacity to values according to given 
spatial resolution and – therefore – modeling accuracy that relieves excessive calculations and 
increases the program efficiency. Moreover, it allows to eliminate the potential irregularity of the 
input point cloud. This procedure splits the point cloud space with cubic voxel grids. Further, all 
points in each voxel have been replaced with their centroides, which coordinates are defined by 
the average of such point coordinates. 
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However, in case of incomplete input data, it can be insufficiently for the construction of the profile 
curve. In particular, this procedure does not guarantee that the centroid of the considered layer will 
coincide surely with the center of the circle, being a dome cut in this layer. 

2.3.2 Dome axis extraction 
On the next step, a layered bottom-up “scanning” of the grid will be carried out for the dome axis 
definition and creation of its array. All horizontal grid layer, which include at least three points, 
will be analyzed with the following algorithm: 

1) At first, a projection of all layer points to the plane z=0 will be calculated; 
2) Then the initial proximity of the center and the circumcircle of these points will be defined. 

Three points will be chosen for this purpose according to the following rule: at first we 
choose two points in the point set, lying on the maximal distance from each other, then we 
find a third point, which is maximal distant from each of the first two points. Based on this 
data, the center coordinates and radius of the circle, set by the chosen points, are calculated. 
Such procedure allows to increase the definition accuracy of the initial parameter proximity 
in case of incomplete input data. 

3) Further, circle parameters are specified by the conjugate gradient method for the 
minimization of the sum of squared distances from the circle to all points in this layer. The 
calculated coordinates of the circle center are accepted as dome axis coordinates in this 
layer and saved for a subsequent averaging on all analyzed layers. 

4) Then we search for maximum and minimum distances from this center to the layer points. 
It is necessary for detecting of possible polygonal forms in the dome cut.  
A maximal distance is accepted as radius of  regular polygon’s circumcircle and saved in 
the array element of profile curve according to an analyzed layer.  
A minimal distance is considered as the incircle radius of the same polygon using for the 
assessment of polygon sides number (n) with the following formula: 

n=1800/arccos(Rmin/Rmax) 

Besides, an angle, which set a direction on the first found maximum, will be estimated in polar 
coordinate system. 
Further, these parameters are specified by conjugate gradient method for deviation’s minimization 
of all layer points from constructed polygon. The calculated values will be stored for the 
subsequent averaging on the analyzed layers, which is carried out separately for dome and 
tambour. 

5) After the “scanning” of the layers, which are important for the analysis, we build up an 
array containing information about layer height, maximal cut radius in the layer and 
polygon parameters. Average coordinate values of cut centers are accepted as dome axis 
allocation. 

Then, an array analysis will be carried out for the parameter assessment of profile curve.  
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2.3.3 Profile extraction and model definition 
A profile curve and its first derivative, defined by numerical differentiation, are needed for steady 
searching of reference (feature) points. A second derivative of profile curve could be useful for 
point P2 search, but preliminary experiment shows, that an error of its values, defined by a 
numerical method, is very big due to noise with accidental outliers.  

Therefore, only the function and its first derivative are analyzed. Array recognition is carried out 
according to increasing layer height. 

The following feature points are detected from function and derivative analysis: 

1) the point P0 is detected by the maximal value of first derivative; 
2) the point P1 is detected by the maximal value of the function; 
3) the point P2 is detected by the minimal value of first derivative and 
4) the point P3 is detected by the maximal height value of dome point cloud. 

 

 
Fig. 5: Derivative analysis of extracted profile curve  

The model parameters a, b, c, x3 are calculated from the coordinates of found points and specified 
by a least squares method. Thus, a profile curve will be constructed based on this data. 

 
Fig. 6: Reconstructed profile curve from point cloud  
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In the final step, the averaging of polygon parameters is carried out for the dome and the tambour. 
A cut is polygonal, if the number of sides 2 < n < 14. In all other cases it will be considered as a 
circle. 
For the simplification of the classification problem, it could be better to store profile curve 
parameters instead of the coordinates of reference (feature) points. For this purpose, it is necessary 
to normalize coordinates of these points on the dome height, which is defined by the optimization, 
to repeatedly calculate and store profile parameters based on this normalization. 

3 Conclusion 

This article presents a robust and efficient method of the automatic extraction and reconstruction 
of complex geometrical cupola forms from point clouds. An example has been shown. 
Practically, a calculation of the second derivation is not necessary because of oscillations of 
discrete point cloud. The algorithm shows a good geometry reconstruction in practical application. 
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