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This paper presents new and improved methods of depth estimation and camera calibration for visual
odometry with a focused plenoptic camera.
For depth estimation we adapt an algorithm previously used in structure-from-motion approaches to

work with images of a focused plenoptic camera. In the raw image of a plenoptic camera, scene patches
are recorded in several micro-images under slightly different angles. This leads to a multi-view stereo-
problem. To reduce the complexity, we divide this into multiple binocular stereo problems. For each pixel
with sufficient gradient we estimate a virtual (uncalibrated) depth based on local intensity error mini-
mization. The estimated depth is characterized by the variance of the estimate and is subsequently
updated with the estimates from other micro-images. Updating is performed in a Kalman-like fashion.
The result of depth estimation in a single image of the plenoptic camera is a probabilistic depth map,
where each depth pixel consists of an estimated virtual depth and a corresponding variance.
Since the resulting image of the plenoptic camera contains two plains: the optical image and the depth

map, camera calibration is divided into two separate sub-problems. The optical path is calibrated based
on a traditional calibration method. For calibrating the depth map we introduce two novel model based
methods, which define the relation of the virtual depth, which has been estimated based on the light-field
image, and the metric object distance. These two methods are compared to a well known curve fitting
approach. Both model based methods show significant advantages compared to the curve fitting method.
For visual odometry we fuse the probabilistic depth map gained from one shot of the plenoptic camera

with the depth data gained by finding stereo correspondences between subsequent synthesized intensity
images of the plenoptic camera. These images can be synthesized totally focused and thus finding stereo
correspondences is enhanced. In contrast to monocular visual odometry approaches, due to the calibra-
tion of the individual depth maps, the scale of the scene can be observed. Furthermore, due to the light-
field information better tracking capabilities compared to the monocular case can be expected.
As result, the depth information gained by the plenoptic camera based visual odometry algorithm pro-

posed in this paper has superior accuracy and reliability compared to the depth estimated from a single
light-field image.
� 2016 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier

B.V. All rights reserved.
1. Introduction

The concept of a plenoptic camera has been developed more
than hundred years ago by Ives (1903) and Lippmann (1908).
However, only for the last few years the existing graphic processor
units (GPUs) are capable to evaluate the recordings of a plenoptic
camera with acceptable frame rates (P25 fps).
To gather the whole 4D light-field (hence the name
‘‘plenoptic”), a microlens array (MLA) is placed in front of the sen-
sor. Today there exist basically two main concepts of MLA based
plenoptic cameras: The unfocused plenoptic camera proposed by
Adelson and Wang (1992) and developed further by Ng (2006)
and the focused plenoptic camera, which was described for the
first time by Lumsdaine and Georgiev (2008). Compared to the
unfocused plenoptic camera, the focused plenoptic camera has a
higher spatial resolution but lower angular resolution. This high
spatial resolution is especially beneficial for estimating depth out
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of the recorded raw image (Perwaß and Wietzke, 2012). In our
research we are using a focused plenoptic camera.

The accuracy of the depth information gathered by a focused
plenoptic camera is rather low for a distance of a few meters com-
pared to other depth sensors, like Time-of-Flight (TOF) cameras or
stereo camera systems with a large baseline, at least at a compara-
ble field of view (FOV). Besides, the depth accuracy of a focused
plenoptic camera strongly decays when reducing the focal length.
Thus, a trade-of between wide FOV and acceptable accuracy has
to be found.

On the other hand as shown by Perwaß andWietzke (2012), the
plenoptic camera offers a much larger depth of field (DOF) com-
pared to a monocular camera at the same aperture. Thus, a plenop-
tic camera has a much shorter close range limit than e.g. a stereo
camera system.

Another plus for plenoptic cameras are their small dimensions,
which are similar to those of a conventional camera. In future there
will also be miniaturized light-field sensors available, which can be
assembled in smartphones (Venkataraman et al., 2013).

In many navigation applications such small sensors are prof-
itable, for example on unmanned aerial vehicles (UAVs), where
space and weight is limited. But also for indoor navigation or blind
people assistance, where bulky sensors can be annoying, such
small and light sensors are beneficial.

For this kind of applications today mostly monocular visual
odometry (or Simultaneous Localization and Mapping (SLAM)) sys-
tems are used, which gain depth information from camera motion.
However, such monocular systems come with some drawbacks.
One drawback of a monocular visual odometry system is its scale
ambiguity. Thus, especially in navigation applications additional
sensors are needed to gather metric dimensions. Another disad-
vantage of the monocular system is that no depth is obtained with-
out any motion of the camera or for rotations around the camera’s
optical center.

Thus, a plenoptic camera seems to be a good compromise
between a monocular and a stereo camera for a visual odometry
system. Since for a plenoptic camera rough depth information is
available for each single frame, it is to be expected that tracking
will become much more robust compared to a monocular system.

Fig. 1 shows two typical scenarios for indoor navigation
recorded by a plenoptic camera. Here, far as well as very close
objects with less than one meter distance to the camera are pre-
sent in the same scene. In such scenes a plenoptic camera benefits
from its large DOF. Even though the scene has a high variation in
depth the camera is able to record the whole scene in focus.
(a)

Fig. 1. Two scenarios typical for indoor navigation recorded by a focused plenoptic cam
camera are present in the same scene. Due to the large DOF of a plenoptic camera such s
plenoptic camera.
The presented work unifies and extends the previous publica-
tions (Zeller et al., 2014, 2015a,b). Thereby, this paper provides
the complete work-flow of a focused plenoptic camera based visual
odometry. We firstly present the concept of the focused plenoptic
camera and how depth can be estimated in principle out of the
recorded light-field (Section 2). Additionally, we derive the theo-
retically achievable depth accuracy of the camera (Section 3).
Afterwards, we propose a new depth estimation algorithm which
estimates a probabilistic depth map from a single recording of a
focused plenoptic camera (Section 4). The probabilistic depth
map will be beneficial for the visual odometry system. Like any
camera system that is used for photogrammetric purposes, a
plenoptic camera has to be calibrated. We present a complete
framework to calibrate a focused plenoptic camera, especially for
an object distance range of several meters (Section 5). For this
we develop three different depth models and compare them to
each other. Finally we incorporate the depth estimation as well
as the camera calibration into a focused plenoptic camera based
visual odometry system (Section 6). All proposed methods are
extensively evaluated (Section 7).

1.1. Related work

1.1.1. Depth estimation
For the last years various algorithms for depth estimation based

on the recordings of plenoptic cameras or other light-field repre-
sentations have been developed. First methods were published
even more than 20 years ago (Adelson and Wang, 1992).

Since light-field based depth estimation represents a multi-
dimensional optimization problem, always a trade-off between
low complexity and high accuracy or consistency has to be chosen.
Wanner and Goldluecke (2012, 2014) for instance present a glob-
ally consistent depth labeling which is performed directly on the
4D light-field representation and results in a dense depth map.
Jeon et al. (2015) make use of the phase-shift theorem of the Four-
ier transform to calculate a dense, light-field based disparity map
with sub-pixel accuracy, while Heber and Pock (2014) use princi-
pal component analysis to find the optimum depth map. Some
approaches make use of geometric structures like 3D line segments
(Yu et al., 2013) to improve the estimate and to reduce complexity.
Tosic and Berkner (2014) present a so called scale-depth space
which provides a coarse depth map for uniform regions and a fine
one for textured regions. Other methods reduce complexity by the
use of local instead of global constraints and thus result in a sparse
depth map. Such sparse maps supply depth only for textured
(b)

era. Here, far as well as very close objects with less than one meter distance to the
cenes with a high variation in depth still can be recorded completely in focus by the
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Fig. 2. Different configurations of a focused plenoptic camera. (a) Keplerian
configuration: the MLA is placed behind the image which is created by the main
lens. (b) Galilean configuration: the MLA is placed in front of the ‘‘virtual” image
which would be created by the main lens.
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regions (Bishop and Favaro, 2011; Perwaß and Wietzke, 2012). The
methods presented by Tao et al. (2013) and Kim et al. (2014) addi-
tionally make use of the focus cues which are supplied by a plenop-
tic camera.

1.1.2. Plenoptic camera calibration
There exist already different publications which describe the

calibration of an MLA based plenoptic camera. While Dansereau
et al. (2013) describe in general form the calibration of MLA based
plenoptic cameras, Johannsen et al. (2013) present the calibration
of a focused plenoptic camera for object distances up to about
50 cm. We refer in this paper to the same plenoptic camera
(Perwaß and Wietzke, 2012) but our approach can handle by
orders of magnitude larger depth ranges. Furthermore, we are able
to use a simple setup to calibrate the camera.

1.1.3. Visual odometry
To accomplish their task, visual odometry or SLAM systems can

use feature-based and direct methods. Some systems are based on
depth or stereo image sensors, while other are monocular.

In feature-based visual odometry, features are extracted from
the recorded 2D images by using some feature detector (Klein
and Murray, 2007; Eade and Drummond, 2009; Li and Mourikis,
2013; Concha and Civera, 2014). The features are matched between
the corresponding images. Based on the feature correspondences,
the camera position and the 3D feature point coordinates are esti-
mated. From a feature-based method only a sparse point cloud is
received.

Direct methods, like the one presented by Forster et al. (2014),
perform tracking and mapping directly on the recorded images.
Tracking becomes much more robust since all image data is used.
As presented by Newcombe et al. (2011), direct methods can be
used to estimate a dense depth map. Such direct, dense methods
are very complex. The complexity can be reduced by performing
semi-dense direct tracking and mapping algorithms (Engel et al.,
2013; Engel et al., 2014). Semi-dense means, that only image
regions of high contrast are considered for tracking and mapping
and all homogeneous regions are neglected. These semi-dense
methods are capable to run in real-time on today’s standard central
processing units (CPUs) or even on smartphones (Schöps et al.,
2014).

The use of multiple cameras or depth sensors strongly simpli-
fies the visual odometry problem. Here depth information is
already received without motion. Besides, the scale of the scene
is received directly from the recorded images without using any
additional sensors (Akbarzadeh et al., 2006; Izadi et al., 2011;
Dansereau et al., 2011; Kerl et al., 2013).
2. The focused plenoptic camera

In this section we will present the concept of the focused
plenoptic camera, which is used in our research and we will estab-
lish the equations to retrieve depth information from the recorded
light-field.

As presented by Lumsdaine and Georgiev (2009) a focused
plenoptic camera can be realized in two different configurations,
as shown in Fig. 2: the Keplerian configuration and the Galilean
configuration.

In the Keplerian configuration an MLA and the sensor are placed
behind the focused image which is created by the main lens (Fig. 2
(a)). Here, the focal length of the micro lenses is chosen such that
multiple focused sub-images (micro images) of the main lens
image occur on the image sensor.

In the Galilean configuration MLA and sensor are placed in front
of the focused image which would be created by the main lens
behind the sensor (Fig. 2(b)). Subsequently we will call this image
behind the sensor the virtual image. Similar to the Keplerian con-
figuration, the focal length of the micro lenses is chosen such that
multiple sub-images of the virtual image occur focused on the
image sensor.

The camera which we are using in our research is of Galilean
configuration and is from the manufacturer Raytrix. While a
plenoptic camera has already a larger DOF than a monocular cam-
era at the same main lens aperture (Georgiev and Lumsdaine,
2009; Perwaß and Wietzke, 2012), in a Raytrix camera the DOF
is further increased by using an interlaced MLA in a hexagonal
arrangement. This MLA consists of three different micro lens types.
Each type has a different focal length and thus focuses a different
virtual image distance on the sensor. The DOFs of the three micro
lens types are chosen such that they are just adjacent to each other.
Thus, the effective DOF of the camera is increased compared to an
MLA with only one type of micro lenses (Perwaß and Wietzke,
2012).

In the following we will only discuss a focused plenoptic cam-
era which relies on the Galilean configuration. Nevertheless, for
the Keplerian configuration similar relations can be derived.

2.1. Path of rays of a Galilean focused plenoptic camera

If we consider the main lens to be an ideal thin lens, the rela-
tionship between the object distance aL of an object point and
the image distance bL of the corresponding image point is defined
by the thin lens equation given in Eq. (1).

1
f L

¼ 1
aL

þ 1
bL

ð1Þ

Here f L is the main lens focal length. Thus, if the image distance bL

of an image point is known, the object distance aL of the corre-
sponding object point can be calculated.

The easiest way to understand the principle of a plenoptic cam-
era is to consider only the path of rays inside the camera, as shown
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Fig. 4. Depth estimation in a focused plenoptic camera based on the Galilean
configuration. The distance b between a virtual image point and the MLA can be
calculated based on its projection in two or more micro images.

1 When we refer to the micro lens images, debayering and white balancing is
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in Fig. 3. For the following descriptions the MLA is assumed to be a
pinhole grid, which simplifies the path of rays. Thus, each pixel on
the image sensor can be considered as the endpoint of the central
ray through the corresponding micro lens. The image on the sensor
can be interpreted as a 4D (non-uniformly) sampled representation
of the light-field L inside the camera, as follows (Gortler et al.,
1996):

L � f ðx; y;/; hÞ ð2Þ
where x and y define the position of the corresponding micro lens
center and / and h the incident angle on the MLA plane. By project-
ing the sampled light-field through the main lens, the correspond-
ing 4D light-field in object space is received.

2.2. Retrieving depth from the sampled light-field

In general, a virtual image point is projected to multiple micro
images. For instance Fig. 3 shows how the virtual image is pro-
jected by the three middle micro lenses onto different pixels of
the sensor. If it is known which pixels on the sensor correspond
to the same virtual image point, the distance b between MLA and
virtual image can be calculated by triangulation.

To derive how the distance b can be calculated, Fig. 4 shows
exemplary the triangulation for a virtual image point based on
the corresponding points in two micro images.

In Fig. 4 pxi (for i 2 f1;2g) define the distances of the points in
the micro images with respect to the principal points of their micro
images. Similarly, di (for i 2 f1;2g) define the distances of the
respective principal points to the orthogonal projection of the vir-
tual image point on the MLA. All distances pxi, as well as di are
defined as signed values. Distances with an upwards pointing
arrow in Fig. 4 have positive values and those with a downwards
pointing arrow have negative values. Triangles which have equal
angles are similar and the following relations hold:

pxi

B
¼ di

b
�! pxi ¼

di � B
b

for i 2 f1;2g ð3Þ

The baseline distance d between the two micro lenses can be calcu-
lated as given in Eq. (4).

d ¼ d2 � d1 ð4Þ

We define the disparity px of the virtual image point as the differ-
ence between px2 and px1, and yield the relation given in Eq. (5):

px ¼ px2 � px1 ¼ ðd2 � d1Þ � B
b

¼ d � B
b

ð5Þ
After rearranging Eq. (5), the distance b between a virtual image
point and the MLA can be described as a function of the baseline
distance d, the distance B between MLA and sensor, and the dispar-
ity px, as given in Eq. (6).

b ¼ d � B
px

ð6Þ

A virtual image point occurs in more or less micro images
depending on its distance b to the MLA. Thus, the length of the
longest baseline d, which can be used for triangulation, changes.
It can be defined as a multiple of the micro lens diameter
d ¼ k � DM (k P 1). Here, k is not mandatory an integer, due to
e.g. the 2D hexagonal arrangement of the micro lenses on the MLA.

The baseline distance d and the disparity px are both defined in
pixels and can be measured from the recorded micro lens images,1

while the distance B between MLA and sensor is a metric dimension
which cannot be measured precisely. Thus, the distance b is esti-
mated relatively to the distance B. This relative distance, which is
free of any unit is called virtual depth and will be denoted by v in
the following.

v ¼ b
B
¼ d

px
ð7Þ

To retrieve the real depth, i.e. the distance aL in object space
between an observed point and the camera, one has to estimate
the relation between the virtual depth v and the image distance
bL (which relies on B and bL0) in a calibration process. Then, one
can use the thin lens equation (Eq. (1)) to calculate the object dis-
tance aL. We will derive in Section 3, how uncertainties in the esti-
mation of the disparity propagate to the object distance.
2.3. Image synthesis

Within the DOF of the plenoptic camera it is known that each
virtual image point xV ¼ ðxV ; yV ÞT occurs focused in at least one
micro image. Thus, based on the virtual depth vðxV Þ a so called
totally focused image IðxV Þ can be synthesized. Here the intensity
value is calculated as the average over all corresponding focused
micro image points. For further details on the image synthesis
we refer to Perwaß and Wietzke (2012).
considered to be already performed.
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3. Derivation of theoretically achievable depth accuracy

Based on the rules known from the theory of propagation of
uncertainty one can derive how the uncertainty rpx of the esti-
mated disparity px will effect the uncertainty raL of the object dis-
tance aL. From the derivative of v with respect to the measured
disparity px the standard deviation of the virtual depth rv can be
approximated as given in Eq. (8).

rv � @v
@px

����
���� � rpx ¼

d
p2
x
� rpx ¼

v2

d
� rpx ð8Þ

Eq. (8) shows that the accuracy of the virtual depth decays pro-
portional to v2 if the baseline distance d is constant. On the other
hand, Eq. (8) reveals, that long baselines d are beneficial for a good
accuracy of the virtual depth. However, Fig. 3 shows, that long
baselines can only be used for points which have a high virtual
depth.

As stated in the prior section, the baseline distance d is a mul-
tiple of the micro lens diameter DM : d ¼ k � DM (k P 1). When the
virtual depth increases (for objects moving close to the camera),
one can switch to longer baselines d, resulting in a discontinuous
dependency of rv from rpx . This finally leads to a discontinuous
dependency of the depth accuracy as function of the object dis-
tance aL.

The relationship between the image distance bL and the virtual
depth v is defined by the linear function given in Eq. (9).

bL ¼ bþ bL0 ¼ v � Bþ bL0 ð9Þ
Here bL0 is the unknown but constant distance between main lens
and MLA. Using the thin lens equation (Eq. (1)) one can finally
express the object distance aL as function of the virtual depth v. If
the derivative of aL with respect to bL is calculated, the standard
deviation of the object distance raL can be approximated as given
in Eq. (10).

raL �
@aL
@bL

����
���� �rbL ¼

f 2L
bL � f Lð Þ2

�rbL ¼
aL � f Lð Þ2

f 2L
�rbL ¼

aL � f Lð Þ2
f 2L

� B �rv

ð10Þ
For object distances which are much higher than the focal length of
the main lens f L the approximation in Eq. (10) can be further sim-
plified as given in Eq. (11). From Eq. (11) one can see, that for a con-
stant object distance aL the depth accuracy increases proportional

to f 2L .

raL �
a2L
f 2L

� B � rv for aL � f L ð11Þ

From Eqs. (8)–(10) one receives raL with respect to rpx :

raL ¼
f 2L

ðbL � f LÞ2
� B � v

2

d
� rpx ¼

f 2L
ðv � Bþ bL0 � f LÞ2

� B � v
2

d
� rpx ð12Þ

Interesting cognition is received when we assume the MLA to lie in
the focal plane (f L ¼ bL0):

raL ¼
f 2L
d � B � rpx ¼

f 2L
k � DM � B � rpx ð13Þ

From Eq. (13) one can see, that the camera supplies a constant
depth accuracy raL for a certain baseline distance. Nevertheless, in
this setup the camera will not be able to capture object distances
aL up to infinity and therefore is not suitable for visual odometry.
For a distance bL0 > f L;raL even decreases with increasing object
distance aL. Nevertheless, in that case the operating range of the
camera is limited to a very short range close to the camera.
To be able to reconstruct a focused image from the recorded
micro images of the focused plenoptic camera, it has to be assured
that each point occurs focused in at least one micro image. As
described by Perwaß and Wietzke (2012), for a focused plenoptic
camera with tree different micro lens types in a hexagonally
arranged MLA (as it is for Raytrix cameras) this is the case for all
points which have a virtual depth v � 2. Hence, the plane at
v ¼ 2 is also called total covering plane (TCP). Therefore, the short-
est image distance bLmin, which refers the longest object distance
aL max, has to satisfy the following relation:

bL min P 2 � Bþ bL0 ð14Þ
Thus, to be able to synthesize images of scenes with object dis-
tances up to infinity (aLmax ! 1, hence bLmin ! f L) one has to assure
that f L P 2 � Bþ bL0.

4. Virtual depth estimation

Virtual depth estimation is basically about finding correspond-
ing points in the micro images and solving Eq. (7). We consider the
virtual depth estimation as a multi-view stereo problem since each
virtual image point occurs in multiple micro images. It simplifies in
the sense that all micro lenses have the same orientation by con-
struction and thus the micro images are already rectified. Besides,
since the micro images have a very small number of pixels
(� 23 pixel diameter) and a relatively narrow FOV (� 25�), distor-
tions caused by the micro lenses are neglected.

However, finding simultaneously correspondences across mul-
tiple micro images leads to a computationally demanding search
problem. Furthermore, since the micro images have a very small
diameter, feature extraction and matching seems to be error prone.
We follow a different approach which is based on multiple depth
observation received from different micro image pairs. Instead of
feature matching we determine pixel correspondences by intensity
error minimization along the epipolar line. For each depth observa-
tion an uncertainty measure is defined and thus, a probabilistic vir-
tual depth map is established. This approach is similar to the one of
Engel et al. (2013) where it is used to gain depth in a monocular
visual odometry approach.

4.1. Probabilistic virtual depth

We define the inverse virtual depth z ¼ v�1, which is obtained
from Eq. (7). The inverse virtual depth z is proportional to the esti-
mated disparity px, as given in Eq. (15).

z ¼ 1
v ¼ px

d
ð15Þ

Since we determine pixel correspondences by matching pixel inten-
sities, the sensor noise will be the main error source which affects
the disparity estimation and thus the inverse virtual depth z. We
neglect for instance misalignment of the MLA with respect to the
image sensor or offsets on the micro lens centers. However, since
these errors are not stochastic but have manufacturing reasons,
they could be eliminated in a calibration process. Furthermore, as
one can see from Eq. (15), the estimate of z relies only on the base-
line distance d and the disparity px which result both as differences
of absolute 2D positions in pixel coordinates (see Eq. (5)). Thus, at
least within a local region, the estimate of z is invariant to align-
ment errors on the MLA.

The sensor noise is usually modeled as additive white Gaussian
noise (AWGN). Since pixel correspondences are estimated based on
intensity values, the disparity px and thus the estimated inverse
virtual depth z can also be considered as Gaussian distributed. This
projection will be derived mathematically in Section 4.3.2.



Fig. 5. Five shortest baseline distances in a hexagonal micro lens grid. For one micro
lens, stereo matching is only performed with neighbors for which the baseline angle
/ is in the range �90� 6 / < 90� .
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In the following we will denote the inverse virtual depth
hypothesis of a pixel by the random variable Z � Nðz;r2

z Þ defined
by the density function f ZðxÞ, as given in Eq. (16).

f ZðxÞ ¼
1ffiffiffiffiffiffiffi
2p

p
rz

e
�ðx�zÞ2

2r2z ð16Þ
4.2. Graph of baselines

For stereo matching we define a graph of baselines. This graph
defines which micro images are matched to each other. Each base-
line in the graph is given by its length d and its 2D orientation on

the MLA plane ep ¼ ðepx; epyÞT . Since the micro images are all recti-
fied, the orientation vector of the baseline is equivalent to that of
the epipolar line. Thus, ep defines the epipolar line for each pixel
of the micro lens pair. In the following we will always consider
ep to be normed to unity (kepk ¼ 1 pixel).

In the graph the baselines are sorted in ascending order with
respect to their length. This is also the order in which stereo
matching will be performed. Matching is performed in that order
since for short baselines it is more likely to find a unique match.
For long baselines it is more likely to find ambiguous matches,
but on the other hand the depth estimate will be more accurate.
Thus, the matching result for short baselines can be used as prior
knowledge for micro image pairs which are connected by a longer
baseline.

Since stereo matching is performed for each micro lens sepa-
rately, matching is only performed with respect to micro images
right to the micro image of interest. Thus, only baselines or epipo-
lar lines with an angle �90� 6 / < 90� are considered.

Fig. 5 shows the five shortest baseline distances in a hexagonal
MLA grid. Here the red2 dashed circles represent the respective
baseline distance around the micro lens of interest. The solid blue
lines show one example baseline for each distance, while only base-
lines right of the dotted line are used for stereo matching. The epipo-
lar line ep is defined such that it points away from the reference
micro lens.

4.3. Virtual depth observation

The inverse virtual depth estimation is performed for each pixel

xR ¼ ðxR; yRÞT in the sensor image. Prior to the estimation the vig-
netting resulting from the micro lenses is corrected by dividing
the raw image by a priorly recorded white image. Additionally,
2 For interpretation of color in Figs. 5, 6 and 8, the reader is referred to the web
version of this article.
the raw image is converted into a gray-scale image based on which
the inverse virtual depth estimation is performed.

As already mentioned, the depth observation is performed
starting from the shortest baseline up to the largest possible base-
line. Based on each new observation, the inverse depth hypothesis
of a raw image pixel ZðxRÞ is updated and thus becomes more
reliable.

To reduce computational effort, for each baseline it is checked
first, if the pixel under consideration xR has sufficient contrast
along the epipolar line, as defined in Eq. (17).

jgIðxRÞTepj P TH ð17Þ
Here gIðxRÞ represents the intensity gradient vector at the coordi-
nate xR and TH some predefined threshold.

4.3.1. Stereo-matching
To find the pixel in a certain micro image which corresponds to

the pixel of interest xR we search for the minimum intensity error
along the epipolar line in the corresponding micro image.

If there was no inverse virtual depth observation obtained yet,
for the pixel of interest xR an exhaustive search along the epipolar
line has to be performed. For that case the search range is limited
on one end by the micro lens border and on the other end by the
coordinates of xR with respect to the micro lens center. A pixel
on the micro lens border results in the maximum observable dis-
parity px and thus in the minimum observable virtual depth v. A
pixel at the same coordinates as the pixel of interest in the corre-
sponding micro image equals a disparity px ¼ 0 and thus a virtual
depth v ¼ 1. Of course the initial search range could be limited in
advance to a certain virtual depth range vmin 6 v 6 vmax.

If there already exists an inverse virtual depth hypothesis ZðxRÞ,
the search range can be limited to zðxRÞ 	 nrzðxRÞ, where n is usu-
ally chosen to be n ¼ 2.

In the following we define the search range along the epipolar
line as given in Eq. (18).

xsRðpxÞ ¼ xsR0 � px � ep ð18Þ
Here xsR0 is defined as the coordinate of a point on the epipolar line
at the disparity px ¼ 0, as given in Eq. (19).

xsR0 ¼ xR þ d � ep ð19Þ
Within the search range we calculate the sum of the squared inten-
sity error eISS over a 1-dimensional pixel patch (1
 N) along the
epipolar line, as defined in Eq. (20).

eISSðpxÞ ¼
XN�1

2

k¼�N�1
2

IðxR þ kepÞ � IðxsRðpxÞ þ kepÞ
� �2

¼
XN�1

2

k¼�N�1
2

eIðpx þ kÞ2 ð20Þ

The best match is the disparity px which minimizes eISSðpxÞ. For the
experiments presented in Section 7.1 we set N ¼ 5. In the following
we refer to the estimated disparity by p̂x, which defines the corre-
sponding pixel coordinate xsRðp̂xÞ. It is important to emphasize that
px is estimated with sub-pixel accuracy by interpolating linearly
between the samples of the intensity image IðxRÞ and therefore is
not restricted to any regular grid.

4.3.2. Observation uncertainty
The sensor noise nI is the main error source which effects the

estimated disparity p̂x and thus the inverse virtual depth
observation.

In our approach the variance of the raw image noise r2
N is con-

sidered to be the same for each pixel xR. Actually, this holds only in
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first assumption since, by correcting the vignetting, the noise at the
micro image borders is amplified.

In the following it will be derived how r2
N effects the disparity

estimation. Therefore, we formulate the stereo matching by the
minimization problem given in Eq. (21), where the estimated dis-
parity p̂x is the one which minimizes the squared intensity error

eIðpxÞ2. For a temporary simplification of the expressions, we omit
the sum over a number of pixels, as defined for eISSðpxÞ in Eq. (20).

p̂x ¼ min
px

eIðpxÞ2
h i

¼ min
px

IðxRÞ � IðxsRðpxÞÞ
� �2h i

ð21Þ

To find the minimum, we calculate the first derivation of the error
with respect to px and set it to zero. It results Eq. (23) as long as
gIðpxÞ – 0 holds.

@eIðpxÞ2
@px

¼ @ IðxRÞ � IðxsRðpxÞÞ
� �2

@px

¼ 2 IðxRÞ � IðxsRðpxÞÞ
� � � �gIðpxÞ½ � ð22Þ

0 ¼! IðxRÞ � IðxsRðpxÞÞ ð23Þ
Here, the intensity gradient along the epipolar line gIðpxÞ is defined
as follows:

gIðpxÞ ¼ gI xsRðpxÞ
� � ¼ @IðxsR0 � pxepÞ

@px
ð24Þ

After approximating Eq. (23) by its first order Taylor-series it can be
solved for px as given in Eq. (25).

p̂x ¼ IðxRÞ � IðxsRðpx0ÞÞ
gI xs

Rðpx0Þ
� � þ px0 ð25Þ

If we now consider IðxRÞ in Eq. (25) as a Gaussian distributed ran-
dom variable, the variance r2

px
of the disparity px can be derived

as given in Eq. (26).

r2
px
¼ VarfIðxRÞg þ VarfIðxsRðpx0ÞÞg

gIðxsRðpx0ÞÞ2
¼ 2r2

N

gIðxsRðpx0ÞÞ2
ð26Þ

Fig. 6 illustrates how the gradient gI effects the estimation of px.
The blue line represents the tangent at the disparity px0 at which
the intensity values are projected onto the disparities.

Beside the stochastic error which results from the sensor noise,
there will also be a systematic error present for a Raytrix camera
when performing stereo matching in neighboring micro images.
This systematic error occurs since neighboring micro images have
different focal lengths. Thus, for the same virtual image region
some micro images will be in focus while others will be blurred.
Hence, beside the variance r2

px
we define a second error source

which models differences in the projection process. In this so called
focus uncertainty we take into account that a small intensity error
eISS very likely gives a more reliable disparity estimate than a large
gI(px0)px
I(px)

px

gI(px0)px
I(px)

px

Fig. 6. Camera sensor noise nI can be considered as additive white Gaussian noise
(AWGN) which disturbs the intensity values IðxRÞ and thus affects the disparity
observation as AWGN. As shown on the left, for a low image gradient along the
epipolar line, the influence of the sensor noise nI is stronger than for a high image
gradient.
intensity error. Therefore, the focus uncertainty r2
f is defined as

follows:

r2
f ¼ a � eISSðp̂xÞ

gIðxRðp̂xÞÞ2
ð27Þ

The constant scaling factor a defines the weight of r2
f with respect

to r2
px
. We chose a such that for micro lenses with a different focal

length r2
f equals on average to r2

px
.

We define the overall observation uncertainty of the inverse vir-
tual depth r2

z as the sum of r2
px

and r2
f . From Eq. (15) one can see

that z is the disparity px scaled by d�1. Thus, for r2
z the scaling fac-

tor d�2 has to be introduced, as given in Eq. (28).

r2
z ¼ d�2 � r2

px
þ r2

f

� 	
ð28Þ
4.4. Updating inverse virtual depth hypothesis

As described in Section 4.2 the observations for the inverse vir-
tual depth z are performed starting from the shortest baseline up to
the largest possible baseline, for which a virtual image point is still
seen in both micro images. In that way for each pixel an exhaustive
stereo matching over all possible micro images is performed, lead-
ing to multi-view stereo. In our algorithm we incorporate new
inverse virtual depth observations similar to the update step in a
Kalman filter. Thus, the new inverse virtual depth distribution
Nðz;r2

z Þ results form the previous distribution Nðzp;r2
pÞ and the

new inverse depth observation Nðzo;r2
oÞ as given in Eq. (29).

Nðz;r2
z Þ ¼ N r2

p � zo þ r2
o � zp

r2
p þ r2

o
;
r2

p � r2
o

r2
p þ r2

o

 !
ð29Þ

From Eq. (28) one can see that the inverse virtual depth vari-

ance r2
z is proportional to d�2. Furthermore, the number of obser-

vations increases with increasing baseline distance d. We consider
M observations of a micro image point with disparity variance

r2ðiÞ
px ¼ r2

px
(i 2 1;2; . . . ;M) at the same baseline distance d. There-

fore, the inverse virtual depth variance r2
z results as given in Eq.

(30).

1
r2

z
¼
XM
i¼1

d2

r2ðiÞ
px

¼ M � d2

r2
px

ð30Þ

Assuming that M and d are proportional to v one can see from Eq.
(30) that r2

z decreases with v3.

4.5. Calculating a virtual depth map

Based on the observed inverse virtual depth z, a pixel in the raw
image, defined by the coordinates xR, can be projected in a 3D
space. We will call this 3D space the virtual image space and

denote it by the coordinates xV ¼ ðxV ; yV ;v ¼ z�1ÞT . This transform
is defined by an inverse central projection as follows:

xV ¼ ðxR � hxÞz�1 þ hx ð31Þ
yV ¼ ðyR � hyÞz�1 þ hy ð32Þ

Here h ¼ ðhx; hyÞT defines the center of the micro lens which pro-
jects the virtual image point xV on the sensor. This inverse central
projection is also visualized in Fig. 7. Defining the projection in
homogeneous coordinates results in the following system of
equations:



(xV , yV , v)

(xR, yR)

(hx, hy)

B

vB = z−1B

sensor MLA

Fig. 7. Projection of a raw image point xR to a virtual image point xV based on an
inverse central projection.
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z � xV
z � yV
z
1

0
BBB@

1
CCCA ¼

1 0 hx �hx

0 1 hy �hy

0 0 1 0
0 0 0 1

0
BBB@

1
CCCA �

xR
yR
z
1

0
BBB@

1
CCCA ð33Þ

Pixels which are projected to the same virtual image point are used
to update the virtual depth of the virtual image point with the same
probabilistic update method as described in Section 4.4.

5. Calibration of the plenoptic camera

To define the relation between virtual image space and object
space a camera calibration has to be performed. This section pre-
sents several methods which we have developed to calibrate a
focused plenoptic camera. The calibration is divided into two parts.
In Section 5.1 we briefly present the method to calibrate the optical
path. It is presented here for completeness, but it is not an original
contribution of this paper. In Section 5.2 we present as original
contribution the calibration of the depth map. Here we define
the relationship between the object distance aL and the virtual
depth v.

5.1. Calibration of the optical path

The optical path defines the relationship between camera coor-
dinates xC ¼ ðxC ; yC ; zC ¼ aLÞT and virtual image coordinates
xV ¼ ðxV ; yV Þ. In our approach we consider this projection as a cen-
tral perspective projection, as it is for a regular camera. Thus, sim-
ilar to a regular camera, our model is defined by a pinhole camera
including a distortion model. The pinhole model is described by the
equation:

k � x0V
k � y0V
k

0
B@

1
CA ¼

f 0 cx
0 f cy
0 0 1

0
B@

1
CA �

xC
yC
zC

0
B@

1
CA ð34Þ

In Eq. (34) x0V ¼ ðx0V ; y0V ÞT are the undistorted virtual image coordi-
nates. Besides, f defines the principal distance (or camera constant)
of the underlying pinhole camera model, while c ¼ ðcx; cyÞT defines
the principal point. All three parameters, f ; cx, and cy, are defined
in pixels. We define the relation between the distorted points xV

and the undistorted points x0
V based on the commonly used model

as presented by Brown (1966). The model consists of radial sym-
metric as well as radial asymmetric correction terms.

xV ¼ x0V þ Dxrad þ Dxtan ð35Þ
yV ¼ y0V þ Dyrad þ Dytan ð36Þ
The radial symmetric correction terms Dxrad and Dyrad are defined as
follows:

Dxrad ¼ x0V � cx
� �

k0r2 þ k1r4 þ k2r6
� � ð37Þ

Dyrad ¼ y0V � cy
� �

k0r2 þ k1r4 þ k2r6
� � ð38Þ

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x0V � cx
� �2 þ y0V � cy

� �2q
ð39Þ

The radial asymmetric correction terms Dxtan and Dytan are given by
the following two equations:

Dxtan ¼ p0 r2 þ 2 x0V � cx
� �2� 	

þ 2p1 x0V � cx
� �

y0V � cy
� � ð40Þ

Dytan ¼ p1 r2 þ 2 y0V � cy
� �2� 	

þ 2p0 x0V � cx
� �

y0V � cy
� � ð41Þ

We estimate the defined model based on a traditional, bundle
adjustment based calibration method, as will be presented in the
evaluation in Section 7.2. Of course the model could be further
extended by introducing additional correction terms. Nevertheless
we received good results with the presented model as will be
shown later.

5.2. Calibration of the virtual depth

Purpose of the depth map calibration is to define the relation-
ship between the virtual depth v supplied by the focused plenoptic
camera and the metric object distance aL.

As described in Section 2 the relationship between the virtual
depth v and the object distance aL relies on the thin lens equation,
which is given in Eq. (1).

From Fig. 3 one can see, that the image distance bL is linearly
dependent on the virtual depth v. This dependency is as given by
Eq. (42).

bL ¼ v � Bþ bL0 ð42Þ
Substituting this in the thin lens equation (Eq. (1)) and rearranging
the terms yields for aLðvÞ:

aLðvÞ ¼ 1
f L

� 1
v � Bþ bL0


 ��1

ð43Þ

This function depends on three unknown but constant parameters
(f L;B, and bL0) which have to be estimated. This can be performed
from a bunch of measured calibration points for which the object
distance aL is known. In this paper we present two novel model
based calibration methods. For comparison the function will also
be approximated by a curve fitting approach.

5.2.1. Method 1 – Physical model
The first model based approach estimates the unknown param-

eters of Eq. (43) explicitly. Since the main lens focal length is
already known approximately from the lens specification, it is set
as a constant value prior to the estimation. For each measured

object distance afigL the corresponding image distance bfig
L is calcu-

lated based on the thin lens equation Eq. (1).
Since the image distance bL is linearly dependent on the virtual

depth v, the calculated image distances bfig
L and the corresponding

virtual depths vfig are used to estimate the parameters B and bL0.
Eqs. (44)–(46) show the least squares estimation of the
parameters.

B̂

b̂L0

 !
¼ XT

Ph � XPh

� 	�1
� XT

Ph � yPh ð44Þ

yPh ¼ bf0g
L bf1g

L bf2g
L � � � bfNg

L

� 	T
ð45Þ

XPh ¼ vf0g vf1g vf2g � � � vfNg

1 1 1 � � � 1

 !T

ð46Þ
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Instead of solving for the parameters B and bL0 to fulfill the least
squares criteria, one could also think of considering the inverse
depth variances r2

z to solve for a minimum variance.

5.2.2. Method 2 – Behavioral model
The second model based approach relies also on the function

defined in Eq. (43). However, this method does not estimate the
physical parameters explicitly as done in method 1, but a function
which behaves similar to the physical model.

Eq. (43) can be rearranged to the term given in Eq. (47). Since
the virtual depth v and the object distance aL both are observable
dimensions, a third variable u ¼ aL � v can be defined.

aL ¼ aL � v � B
f L � bL0

þ v � B � f L
bL0 � f L

þ bL0 � f L
bL0 � f L

ð47Þ

Thus, from Eq. (47) the term given in Eq. (48) results. Here, the
object distance aL is defined as a linear combination of the measur-
able variables u and v.

aL ¼ u � c0 þ v � c1 þ c2 ð48Þ
The coefficients c0; c1, and c2 are defined as given in Eqs. (49)–(51).

c0 ¼ B
f L � bL0

ð49Þ

c1 ¼ B � f L
bL0 � f L

ð50Þ

c2 ¼ bL0 � f L
bL0 � f L

ð51Þ

Since for Eq. (48) all three variables aL;v , and u are observable
dimensions, the coefficients c0; c1, and c2 can be estimated based
on a number of calibration points. For the experiments presented
in Section 7.2 the coefficients c0; c1, and c2 are estimated by using
the least squares method as given in Eqs. (52)–(54).

ĉ0
ĉ1
ĉ2

0
B@

1
CA ¼ XT

Be � XBe

� 	�1
� XT

Be � yBe ð52Þ

yBe ¼ af0gL af1gL � � � afNgL

� 	T
ð53Þ

XBe ¼
af0gL vf0g af1gL vf1g � � � afNgL vfNg

vf0g vf1g � � � vfNg

1 1 � � � 1

0
B@

1
CA

T

ð54Þ

After rearranging Eq. (48) the object distance aL can be described as
a function of the virtual depth v and the estimated parameters c0; c1,
and c2 as given in Eq. (55).

aLðvÞ ¼ v � c1 þ c2
1� v � c0 ð55Þ
5.2.3. Method 3 – Curve fitting
The third method is presented for comparison purpose and is a

common curve fitting approach. It approximates the function
between the virtual depth v and the object distance aL without
paying attention to the function defined in Eq. (43).

It is known that any differentiable function can be represented
by a Taylor-series and thus, by a polynomial of infinite order.
Hence, in the approach presented here the functions which
describes the object distance aL depending on the virtual depth v
will be defined as a polynomial as well. A general definition of this
polynomial is given in Eq. (56).

aLðvÞ �
XK
k¼0

lk � vð Þk ð56Þ
Similar to the second method the polynomial coefficients l0 to lK are
estimated based on a bunch of calibration points. In the experi-
ments presented in Section 7 a least squares estimator as given in
Eqs. (57)–(59) is used.

l̂0

l̂1

..

.

l̂K

0
BBBBBBB@

1
CCCCCCCA

¼ XT
Pol � XPol

� 	�1
� XT

Pol � yPol ð57Þ

yPol ¼ af0gL af1gL � � � afNgL

� 	T
ð58Þ

XPol ¼

1 1 � � � 1

vf0g vf1g � � � vfNg

vf0g2 vf1g2 � � � vfNg2

..

. ..
. . .

. ..
.

vf0gM vf1gM � � � vfNgM

0
BBBBBBBBBB@

1
CCCCCCCCCCA

T

ð59Þ

For this method a trade-off between the accuracy of the
approximated function and the order of the polynomial has to be
found. A high order of the polynomial results in more effort for
calculating an object distance from the virtual depth. Besides, for
high orders the matrix inversion as defined in Eq. (57) results in
numerical inaccuracy. For such cases a different method for solving
the least squares problem has to be used (e.g. Cholesky
decomposition).

For all depth calibration methods we do not define a distortion
model for the virtual depth, as it has been done for instance by
Johannsen et al. (2013). As the results in Section 7.2.3 will
show, there occurs almost no image distortion. Thus, we also
neglect the virtual depth distortion compared to the stochastic
depth error.
6. Plenoptic camera based visual odometry

The plenoptic camera based visual odometry that is presented
here is a direct and semi-dense method. Direct means it does not
perform any feature extraction, but works directly on pixel inten-
sities. The algorithm is called semi-dense since it works only on
pixels with sufficient gradient and neglects homogeneous regions
in the intensity image. The method is based on the monocular
approach published by Engel et al. (2013, 2014). It has been
adapted and modified by us to be suitable for plenoptic cameras.

The method presented in this section uses both, the probabilis-
tic virtual depth map, which is established as described in Section 4
and the synthesized totally focused intensity image (see Perwaß
and Wietzke, 2012). In addition, the virtual depth calibration is
used to receive a metric scale of the scene. For the complete section
we will always consider the images to be undistorted. Thus, a point
is always defined by its undistorted virtual image coordinates
x0V ¼ ðx0V ; y0V ÞT .

This part about the plenoptic camera based visual odometry is
structured as follows: In Section 6.1 we introduce a probabilistic
metric depth model which is defined similar to the virtual depth
model in Section 4. Section 6.2 briefly describes the initialization
of the method. While Sections 6.3 and 6.4 present the tracking of
new frames and updating of the depth map, Section 6.5 describes
how the existing metric depth map is propagated from reference
frame to reference frame.
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A complete work-flow of the plenoptic camera based visual
odometry is shown in Algorithm 1.

Algorithm 1. Plenoptic camera based visual odometry
6.1. Inverse metric depth map

Similar to the inverse virtual depth map an inverse metric depth
map is defined. The inverse depth of each pixel is modeled as a
Gaussian distributed random variable. This is done much the same
as for the inverse virtual depth since for a pair of pinhole cameras
the inverse metric depth is approximately proportional to the esti-
mated disparity of corresponding points in the two frames, at least
for a rotation matrix close to a unity matrix. For each pixel

x0V ¼ ðx0V ; y0V ÞT in the undistorted inverse metric depth map, the
inverse depth value dðx0V Þ is calculated from the virtual depth, as
given in Eq. (60). Here c0; c1, and c2 are the coefficients received
from the camera calibration, as presented in Section 5.2.2.

dðx0V Þ ¼ z�1
C ðx0V Þ ¼

1� vðx0V Þ � c0
vðx0V Þ � c1 þ c2

¼ zðx0V Þ � c0
c1 þ c2 � zðx0V Þ

ð60Þ

In Eq. (60) zðx0
V Þ ¼ v�1ðx0V Þ defines the inverse virtual depth of the

pixel x0V . Of course any other calibration model could be used to cal-
culate the inverse metric depth. The corresponding variance r2

dðx0V Þ
is received from the inverse virtual depth variance as follows:

r2
dðx0V Þ ¼

@d
@z

����
����
2

� r2
z ðx0V Þ ¼

c1 þ c0 � c2ð Þ2
c1 þ zðx0V Þ � c2
� �4 � r2

z ðx0V Þ ð61Þ
Due to the nonlinear projection from the inverse virtual depth zðx0V Þ
to the inverse metric depth dðx0V Þ, these calculated inverse depth
values do not result from a Gaussian process anymore. Thereby
we accept a small error when initializing the inverse metric depth
map. Nevertheless, as will be described in the following these val-
ues are used only as initial depth hypotheses which will be contin-
uously updated by new stereo observations in the totally focused
images. These new observations result from a Gaussian process
and in general are much more reliable than the initial values.
Thereby the initial error becomes neglectable.

6.2. Initialization

When running the algorithm the first recorded frame is set as
reference frame. For this frame the probabilistic inverse virtual
depth map is estimated as presented in Section 4 and the totally
focused image is synthesized. In the following step, for the refer-
ence frame the probabilistic inverse metric depth map (dðx0V Þ and
r2

dðx0
V Þ) of the reference frame is initialized based on the probabilis-

tic inverse virtual depth, as described in Section 6.1. Here, we ini-
tialize only the pixels which have a valid inverse virtual depth
estimate. These are all the pixels which also have sufficient inten-
sity gradient.

Thereby, our first reference frame is defined by its totally
focused intensity image IRef ðx0

V Þ as well as its probabilistic inverse
metric depth map Dðx0

V Þ.
Dðx0V Þ � N dðx0

V Þ;r2
dðx0V Þ

� � ð62Þ
6.3. Tracking of new frames

For each newly recorded frame again the totally focused inten-
sity image INewðx0

V Þ is synthesized. Since for the image synthesis the
virtual depth map is needed, we estimate the complete inverse vir-
tual depth map for each recorded frame and synthesize the image
based on that depth map. However, in the future it could be con-
sidered to use the already existing depth map of the reference
frame and project it into the newly recorded frame. This works
well if the frame rate is high with respect to the camera motion
since the pose of the new frame (relative to the reference frame)
has to be known, at least roughly.

Based on the synthesized image the frame pose with respect to
the current reference frame is estimated. The transform between
the camera coordinates of the reference frame xW and the camera
coordinates of the new frame xC is defined by a rigid body trans-
form G 2 SEð3Þ, as given in Eq. (63).

xC ¼

xC
yC
zC
1

0
BBB@

1
CCCA ¼ G � xW ¼ G �

xW
yW
zW
1

0
BBB@

1
CCCA ð63Þ

The rigid body transform G is defined as the combination of a rota-
tion and a translation in 3D space:

G ¼ R t
0 1


 �
2 SEð3Þ ð64Þ

The Matrix G has six degrees of freedom. These degrees of freedom
are in the following combined in the six-dimensional vector n 2 R6,
which has to be estimated.

The vector n is optimized by minimizing the sum of squared

photometric errors riðnÞ2, over all valid depth pixels, between the
synthesized image of the new frame INewðx0

V Þ and the one of the ref-
erence frame IRef ðx0

V Þ. The squared photometric error, for a certain

pixel x0ðiÞV in the reference frame, can be defined as follows:
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riðnÞ2 :¼ IRef x0ðiÞV

� 	
� INew w x0ðiÞ

V ;dðx0ðiÞV Þ; n
� 	� 	� 	2

ð65Þ

Here the warping of a pixel in the reference frame to its pixel coor-
dinates in the new frame is combined in the functionwðx0V ; dðx0V Þ; nÞ.
This function is defined by the projection model of the camera.

In this nonlinear optimization process, which in our case is
solved by the Levenberg–Marquardt algorithm, a weighting
scheme is used that handles the different inverse depth variances
of the pixels in the probabilistic depth map as well as outliers
which result for instance from occlusion. The robustness of the
method is improved by performing the optimization on different
pyramid levels, starting from a low image resolution up to the full
image resolution.

For a further explanation we refer to Engel et al. (2014) where
this optimization process is described in detail.

6.4. Updating the inverse metric depth

The probabilistic inverse metric depth map Dðx0
V Þ of the current

reference frame is updated based on each newly tracked frame.
Therefore, for each pixel x0V with a valid inverse metric depth
hypothesis, stereo-matching along the epipolar line is performed.
Here, stereo matching is performed by minimizing the sum of
squared intensity differences of a one-dimensional pixel patch
along the epipolar line. Sub-pixel accuracy is achieved by linear
interpolation between the samples of the totally focused image.

Similar to the virtual depth estimation (Section 4.3.1) the depth
range is limited to dðx0V Þ 	 nrdðx0

V Þ.
Engel et al. (2013) show how the error of an observed disparity

can be modeled by two different error sources. One error source is
the geometric error, which results from noise on the estimated
camera pose and on the intrinsic camera parameters. It affects
the position and orientation of the epipolar line. The second error
source is the photometric error, which results from noise in the
intensity image. It is considered that both errors are Gaussian dis-
tributed and additively interfere the observed disparity and thus
the observed inverse metric depth. Thus, based on these two error
sources, beside the inverse metric depth observation doðx0

V Þ itself, a
corresponding quality criteria, the inverse depth variance r2

oðx0
V Þ,

can be defined.
For each valid depth pixel x0V the new observation of the inverse

metric depth is incorporated into the already existing inverse met-
ric depth hypothesis Dðx0

V Þ. Therefore, again the Kalman filter step,
as already given in Eq. (29), is applied.

6.5. Propagating the inverse metric depth

With changing perspective of the camera, the number of
valid depth pixels x0

V in the reference frame, which can be
mapped to the corresponding pixel in the newly tracked frame,
decreases. Therefore, at one point a new reference frame has to
be selected. Thus, the last tracked frame will be set as the new
reference frame.

The decision for changing the reference frame is made based on
a score which considers the length of the translation vector t
between the current reference and the new frame as well as the
percentage of valid depth pixels used for tracking.

After changing the reference frame the algorithm still is sup-
posed to benefit from the continuously updated depth map of
the old reference frame. Therefore, the probabilistic depth map of
the old reference frame DOldðx0

V Þ is propagated to the new frame.
Here, the pixel coordinates in the new frame can be calculated

based on the mapping function wðx0V ; dðx0
V Þ; nÞ:

x0ðiÞVNew ¼ w x0ðiÞV ;dðiÞ
; n

� 	
ð66Þ
Besides, the new inverse metric depth dNewðx0
V Þ is just the inverse of

the component zC of the respective camera coordinates.
Under the assumption that the rotation between the old and

new reference frame is small, the following approximation holds:

dNewðx0V Þ �
1

dOldðx0V Þ
þ tz


 ��1

ð67Þ

Considering the approximation given in Eq. (67), based on the prop-
agation of uncertainty, the new inverse metric depth variance
r2

dNewðx0
V Þ can be calculated as follows:

r2
dNewðx0V Þ �

dNewðx0V Þ
dOldðx0V Þ


 �4

� r2
dOldðx0V Þ ð68Þ

After propagating the depth to the new reference frame, all pix-
els which have a valid inverse virtual depth value but where not
seen in the old reference frame are initialized as described in Sec-
tion 6.2. Subsequently the algorithm continues tracking new
frames and updating the inverse depth map of the reference frame.

7. Evaluation of the proposed methods

This section presents the evaluation of all proposed methods.
Here, we first evaluate the virtual depth estimation algorithm
presented in Section 4 itself and compare it to a conventional
algorithm, as shown in Section 7.1.

In Section 7.2 the evaluation of the camera calibration as
described in Section 5 is presented. Here we also evaluate the
accuracy of the metric depth which is received from the estimated
virtual depth.

In Section 7.3 we put everything together for the focused
plenoptic camera based visual odometry. We present the 3D point
cloud of a sample scene which was generated by this visual odom-
etry approach. Additionally, we show how the depth accuracy
compared to that of a single light-field frame can be improved.

All experiments which are presented in the following sections
are performed based on a Raytrix R5 camera with a main lens focal
length of f L ¼ 35 mm. The camera has a sensor resolution of
2048 
 2048 pixel at a pixel pitch of 5.5 mm. Thus, the camera
has a FOV of approximately 18�.

7.1. Evaluation of the virtual depth estimation

This section presents the evaluation of our proposed depth esti-
mation algorithm which in the following will be abbreviated by
MVS (multi-view stereo). For comparison we perform all experi-
ments for our MVS and a conventional block matching algorithm
(BMA) as it is used by Perwaß and Wietzke (2012).

7.1.1. Experiments
To evaluate the depth estimation methods a planar target is

recorded for different object distances, as shown in Fig. 8. Here,
the images show the view of the camera for two different target
distances. Since the target is placed frontal to the plenoptic camera
for a perfect estimation one would expect a constant virtual depth
across the complete plane.

For each of the recorded frames a virtual depth map is calcu-
lated, by using both our probabilistic MVS method and the conven-
tional BMA. Since we only want to evaluate the depth estimation
algorithm itself, no post processing steps like filtering or hole fill-
ing have been performed on the virtual depth maps.

Since our method offers additionally to the virtual depth
v ¼ z�1 an inverse virtual depth variance r2

z , two different depth
maps were calculated based on our MVS algorithm. While the first
depth map considers all valid depth pixel disregarding their
variance, the second depth map considers only those depth pixel



Fig. 8. Setup to evaluate the virtual depth estimation. The virtual depth estimation algorithms (MVS and BMA) are evaluated based on a planar chessboard target for different
object distances. Only depth values in the red marked region of interest are evaluated.
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which have a variance r2
z underneath a certain threshold TðzÞ, as

defined in Eq. (69).

r2
z ðxV Þ < TðzÞ ¼ b � zðxV Þ3 ð69Þ

The threshold TðzÞ is chosen as a third order function of z due to the
thoughts made in Section 4.4. In Eq. (69) b is just a scaling factor,
which defines the point density of the resulting depth map. In our
experiments a scaling factor b ¼ 0:1 was chosen. This resulted in
a more or less equal point density for our approach compared to
the BMA. It is important to emphasize, that here no low-pass filter-
ing is performed and just uncertain estimates are removed.

The MVS performs matching based on a one-dimensional patch
which is 5 pixels long. Since we are able to define a continuous cost
function by linear interpolation between the samples, the disparity
estimation of the MVS is not restricted to any regular sub-pixel
grid.

The BMA is performed with three different settings. For all set-
tings a block diameter of 4 pixel was selected. Besides, for the three
settings disparities are estimated with sub-pixel accuracies of
0.1 pixel (BMAð0:1Þ), 0.25 pixel (BMAð0:25Þ), and 0.5 pixel (BMAð0:5Þ).

7.1.2. Results
Fig. 9 exemplary shows the depth maps calculated for an object

distance aL ¼ 1:2 m. These depth maps correspond to the scene
which is shown on the left side in Fig. 8. Fig. 9(a) and (b) show
the results of our MVS algorithm. Here, Fig. 9(a) includes all valid
depth pixels, while Fig. 9(b) includes only those which have a vari-
ance r2

z < TðzÞ, as defined in Eq. (69). The depth map in Fig. 9(c)
shows the results of the conventional BMA with a sub-pixel accu-
racy of 0.25 pixel.

From Fig. 9 one can already see, that the outliers in our method
are drastically reduced by introducing the threshold TðzÞ, while
(a) MVS (all depths) (b) MVS (σ2
z < T

Fig. 9. Color coded virtual depth maps calculated from the raw image of a Raytrix R5 cam
considered. (b) Depth map calculated based on our MVS algorithm. Only depth pixels wit
BMA with a sub-pixel accuracy of 0.25 pixel.
most of the details are kept. Besides, one can see that the depth
map of the BMA is much sparser than the raw depth map resulting
from the MVS. In addition it seems that the outliers of the BMA,
especially on the chessboard plane are not statistically indepen-
dent, but occur in clusters.

Beside the qualitative evaluation based on the color coded
depth maps some statistics were calculated for different object dis-
tances aL. In this Section we present the results for
aL1 ¼ 1:2 m;aL2 ¼ 3:1 m, and aL3 ¼ 5:1 m. For all three object dis-
tances Table 1 shows the depth pixel density of the corresponding
algorithm. The depth pixel density is defined as the ratio between
the number of valid depth pixels and the total number of pixels
within the region of interest.

One can see, that our method has a higher depth pixel density
than the BMA for all object distances.

For all three object distances we calculated the empirical stan-
dard deviation of the inverse virtual depth values z ¼ v�1 across
the chessboard target. The results are shown in Table 2. As one
can see, the standard deviation of our MVS approach is better than
that of the BMA for all three object distances, even without remov-
ing outliers. After removing outliers, we achieve a standard devia-
tion which is at least three times better than that of the BMA, while
still having a higher depth pixel density (see Table 1). It is also
quite interesting to see that only slightly reducing the depth pixel
density, by introducing the threshold TðzÞ, highly reduces the
empirical standard deviation of the inverse virtual depth.

Figs. 10 and 11 show exemplary the virtual depth histograms
across the chessboard target, for the MVS and the BMA with a
sub-pixel accuracy of 0.25 pixel, for the object distances
aL1 ¼ 1:2 m and aL3 ¼ 5:1 m. Especially from Fig. 10 one can see
that the outliers of the BMA have some systematic characteristic.
The histograms again show quite well how the outliers in our
approach are removed by introducing the threshold TðzÞ.
(z))
2

7

vi
rt

ua
ld

ep
th

v

(c) BMA(0.25)

era. (a) Depth map calculated based on our MVS algorithm. All valid depth pixels are
h a variance r2

z < TðzÞ are considered. (c) Depth map calculated by the conventional



Table 1
Depth pixel density on the chessboard target for different object distances aL .

Method Depth pixel density

aL1 aL2 aL3

MVS (all depths) 0.3077 0.5041 0.5647
MVS (r2

z < TðzÞ) 0.1790 0.3900 0.4769
BMAð0:1Þ 0.0609 0.0824 0.1039
BMAð0:25Þ 0.1572 0.3018 0.4232
BMAð0:5Þ 0.1383 0.2640 0.4768

Table 2
Empirical standard deviation of the inverse virtual depth z for different object
distances aL .

Method Standard deviation

aL1 aL2 aL3

MVS (all depths) 0.0366 0.0505 0.0385
MVS (r2

z < TðzÞ) 0.0104 0.0167 0.0169
BMAð0:1Þ 0.0840 0.0856 0.0975
BMAð0:25Þ 0.0772 0.0644 0.0682
BMAð0:5Þ 0.0645 0.0586 0.0530
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7.2. Evaluation of the calibration methods

We show in Section 7.2.1 the setups we used for the calibration
of the optical path as well as for the depth. In Section 7.2.2 we pre-
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Fig. 10. Virtual depth histograms for object distance aL1 � 1:2 m. (a) Histogram of our M
including all depth pixels with r2

z < TðzÞ. (c) Histogram of the conventional BMA with a
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Fig. 11. Virtual depth histograms for object distance aL1 � 5:1 m. (a) Histogram of our M
including all depth pixels with r2

z < TðzÞ. (c) Histogram of the conventional BMA with a
sent how the parameters for the optical path model are obtained.
Different experiments which compare the three depth calibration
methods to each other are also presented here. The results of both,
optical path and depth calibration are presented in Section 7.2.3.
7.2.1. Calibration setups
Fig. 12 shows the setups which were used to calibrate the

plenoptic camera. For the calibration of the optical path a 3D cali-
bration target was used, as shown in Fig. 12(a). This target consists
of a number of coded and uncoded calibration points which can be
detected automatically from the recorded images.

For the depth calibration we used the setup as shown in Fig. 12
(b). Here we have a chessboard calibration target which consists of
7 
 10 fields and thus results in 54 reference points (intersections
between fields). This calibration target is moved along the optical
axis of the camera. Behind the camera a laser rangefinder (LRF) is
assembled which measures a metric reference distance to the
target.
7.2.2. Experiments
7.2.2.1. Calibration of the optical path. The parameters of our optical
path model as defined in Section 5.1 were estimated based on a
professional calibration software. This software automatically
detects the circular target points in the recorded images and per-
forms a bundle adjustment. For the calibration performed here,
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(a) Optical path calibration setup (b) Depth calibration setup

Fig. 12. Setups to calibrate the focused plenoptic camera and to measure depth accuracy. (a) Setup for the calibration of the optical path. (b) Setup for the calibration of the
depth map.
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91 images were recorded from as different as possible
perspectives.
7.2.2.2. Calibration of the depth map. To evaluate the different depth
calibration methods, based on the setup shown in Fig. 12(b) a ser-
ies of measurements was recorded. Therefor the chessboard target
was recorded for different object distances.

For this series one cannot guarantee, that the target is always
parallel to the sensor plane. Thus, the measured distance does
not hold true for all points on the plane. Nevertheless, since we
are able to detect the chessboard corner points in the image and
we know their position on the target except for some scaling factor
s, we can define the relation between coordinates on the chess-

board xCB ¼ ðxCB; yCB; zCBÞT and the undistorted virtual image coordi-
nates x0

V ¼ ðx0V ; y0V ÞT :

k � x0V
k � y0V
k

0
B@

1
CA ¼

f 0 cx
0 f cy
0 0 1

0
B@

1
CA � sR tð Þ �

xCB
yCB
zCB
1

0
BBB@

1
CCCA ð70Þ

Here, R defines the 3D rotation and t the 3D translation from chess-
board coordinates to camera coordinates. Since we know the intrin-
sic camera parameters (f ; cx, and cy), based on the undistorted
recorded image point x0V , the rotation matrix R and the translation
vector with respect to the scaling factor t0 ¼ t � s�1 can be estimated.
For the case that the chessboard coordinates xCB are defined with
the x-y-plane being on the chessboard plane (zCB ¼ 0), the third
coefficient of the translation vector equals the object distance
tð3Þ ¼ aL. Between the scaled object distance a0

L ¼ aL � s�1 and the
target distances measured by the LRF dLRF the following linear rela-
tion can be defined:

dLRF ¼ s � a0L þ aL0 ð71Þ

Here, both, the scaling factor s and the zero point offset (between
LRF and camera) are constant and thus can be estimated based on
all measured target distances. In that way for each point on the
chessboard plane a very precise object distance aL can be calculated.

The chessboard pattern was recorded at 48 different object dis-
tances aL in the range from 0.85 m to 5.02 m. Here all object dis-
tances are more or less uniformly distributed over the complete
range, while the spacing between two distances ranges from
5 cm to 10 cm. Since the pattern on the calibration target has 54
reference points, 54 measurement points are received for each
recorded target. For each measurement point the object distance
aL is calculated separately as described above.

Beside the physical model (Section 5.2.1) and the behavioral
model (Section 5.2.2) based calibration method, the curve fitting
approach (Section 5.2.3) was performed by using a third and a
sixth order polynomial.

In a first experiment only the measured object distances of five
recorded targets were used for calibration. This experiment was
performed to evaluate if a low number of calibration points is suf-
ficient to receive reliable calibration results.

In a second experiment only the measured points with an object
distance of less than 2.9 m were used for calibration. In this exper-
iment it was supposed to investigate how strong the estimated
functions are drifting off from the measured data outside the range
of calibration.

To evaluate the accuracy of the depth a third experiment was
performed. Based on all measured points the root mean square
error (RMSE) with respect to the distance of the calibration target
was calculated. The object distances, which were calculated from
the virtual depth, were converted to metric object distance by
using the behavioral model presented in Section 5.2.2.

In the experiments we use the depth map calculated based on
our virtual depth estimation method. The only post processing
we do is filtering of the inverse virtual depth z with a weighted
average filter, as shown in Eq. (72).

zAV ¼
P

izi � r2
zi

� ��1

P
i r2

zi

� ��1 ð72Þ

Here the weights are defined by the inverse of the variance r2
z of a

pixel.
In this experiment the parameters of the behavioral model were

estimated based on all measured object distances, which then also
were used for evaluation.

7.2.3. Results
7.2.3.1. Calibration of the optical path. The calibration of the optical
path resulted in the intrinsic parameters as given in Table 3.

These parameters conform to what we expected. The principal
point was expected to be somewhere around the center of the
image. Since the virtual images IðxV Þ used for calibration have a
size of 1024 
 1024 pixel, this conforms quite well. The principal
distance of the pinhole camera model f should be within the same
order of magnitude as the main lens focal length f L. For the pixels
of the virtual image we assume a size 11 
 11 lm (double the
width and height of the pixels in the raw image). This assumption
holds since the virtual image has half as many pixels as the raw
image in width and height respectively. Thus, a pinhole camera
principal distance (in millimeter) f PH ¼ 34;83 mm is received. This
conforms quite well to f L ¼ 35 mm.

For the distortion model the parameters given in Tables 4 and 5
are received.

From those parameters one can see, that for the 35 mm focal
length, there occurs almost no distortion. The calibration resulted



Table 4
Radial symmetric distortion parameters.

k0 (pixel�2) k1 (pixel�4) k2 (pixel�6)

�2.13 
 10�8 �1.13 
 10�14 �2.99 
 10�21

Table 3
Intrinsic camera parameters.

f (pixel) cx (pixel) cy (pixel)

3166.44 510.98 516.31
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Fig. 13. Results of the depth calibration using only five object distances. The
calibration was performed based on the physical model, the behavioral model and

Table 5
Radial asymmetric distortion parameters.

p0 (pixel�1) p1 (pixel�1)

�1.60 
 10�10 �3.07 
 10�11
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in a projection error with RMSE of 0.0438 pixel in x- and
0.0494 pixel in y-direction.
the curve fitting approach.
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Fig. 14. Results of the depth calibration using object distances up to 2.9 m. The
calibration was performed based on the physical model, the behavioral model and
the curve fitting approach.
7.2.3.2. Calibration of the depth map. Fig. 13 shows the results
corresponding to the first experiment. The red dots represent the
calibration points for the five object distances. The green dots are
the remaining measured points which were not used for calibra-
tion. As one can see, the physical model as well as the behavioral
model are almost congruent. Both curves match the measured dis-
tances very well over the whole range from 0.85 m to 5.02 m. For
the polynomials of order three and six instead, five object distances
are not sufficient to approximate the function between virtual
depth v and object distance aL accurately. Both functions fit to
the points used for calibration but do not define the underlying
model properly in between the calibration points.

Fig. 14 shows the results of the second experiment. Again, the
points used for calibration are represented as red dots and the
green dots represent the remaining points. Both model based cali-
bration approaches are again almost congruent and describe very
well the measured distances in the range of calibration up to
2.9 m. In this range also the estimated polynomials fit the mea-
sured distances very well. Nevertheless, for object distances larger
than 2.9 m especially the third order but also the sixth order poly-
nomial are drifting away from the measurements. The functions of
both model based approaches still match the measured values very
well up to an object distance of 5.02 m. Though, the physical model
still fits the data a little bit better than the behavioral model which
has one more degree of freedom. The results show, that both model
based functions are able to convert the virtual depth to an object
distance even outside the range of calibration points with good
accuracy.

As mentioned in Section 7.2.2.2, to evaluate the depth resolu-
tion of the plenoptic camera the complete series of measurement
points was used for both, the prior calibration as well as for the
evaluation. For each of the 48 object distances the RMSE is calcu-
lated. The RMSE is calculated based on all 54 measurement points
per object distance. Therefor the error is defined as the difference

between the measured object distance aRef
L and the one calculated

based on the virtual depth aLðvÞ.
Fig. 15 shows the RMSE of the metric depth as function of the

object distance aL. Besides, the figure shows the simulated accu-
racy for a similar camera setup as the one used in the experiments.
In the simulation a maximum focus distance of 10 meters was set.
For the estimated disparity a standard deviation of rpx ¼ 0:1 pixel
was selected. This seems to be a plausible value, since one depth
estimate results as the combination of multiple observations. From
the graph one can see that the measured results conform compar-
atively well with the simulation, even though a very low rpx was
chosen.

7.3. Evaluation of the plenoptic camera based visual odometry

This section presents the evaluation of our proposed visual
odometry algorithm. Here we incorporate both, the virtual depths
estimated based on the method presented in Section 4 and the
camera model received from the calibration, as presented in
Section 5.

7.3.1. Experiments
To evaluate the visual odometry based on a focused plenoptic

camera several experiments were performed. In these experiments
we focused on measuring the accuracy of recorded objects in 3D
space. Besides, we want to demonstrate the capabilities of the
focused plenoptic camera based visual odometry in a sample scene.
Since our interest lies in the depth map of the scene, we did not
measure a ground truth for the performed trajectories and thus,
the tracking itself was not evaluated explicitly.
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Fig. 15. Depth accuracy of a Raytrix R5 camera with main lens focal lengths
f L ¼ 35 mm.

Fig. 16. Sample scene which was recorded to evaluate the focused plenoptic
camera based visual odometry.
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For the experiments presented in this section, we reduced the
image resolution of both the totally focused intensity image as well
as the corresponding virtual depth map, to 512 
 512 pixel.

7.3.1.1. 3D reconstruction. For a qualitative evaluation of our
method, we recoded an image sequence composed of 2600 frames
by the focused plenoptic camera. Fig. 16 shows the recorded scene
and Fig. 17 some sample images out of the recorded sequence. The
shown sequence was recorded with a frame rate of approximately
50 fps while the camera was moved freehand. Thus, between two
consecutive frames on average a translation of roughly 2 mm is
performed. After recording, our focused plenoptic camera based
visual odometry algorithm is applied offline to the sequence.

7.3.1.2. Depth accuracy. Two experiments were performed to eval-
uate the depth accuracy of the focused plenoptic camera based
visual odometry. We evaluate the depth over time as well as over
Fig. 17. Five intensity image samples out of the sequenc
object distance. For both experiments the same setup as for the
depth calibration (Section 7.2.1) was used.

To see how the visual odometry improves the depth informa-
tion, an image sequence is recorded while the camera is translated
in vertical direction. For each object distance a vertical movement
of 20 cm was performed while recording the image sequence.

In the first experiment the depth accuracy over a sequence of
images, while the camera is moving in vertical direction, is evalu-
ated for object distances from approx. 2.6 m to 5.3 m with a spac-
ing of 30 cm. Exemplary we present the results for an object
distance of 3.183 m. The calculated metric depth map at each
frame is read out and analyzed. Since the camera is moved more
or less uniformly over time, this evaluation is equivalent to mea-
suring the accuracy as function of baseline distance.

The second experiment is performed to evaluate the depth
accuracy of the plenoptic camera based visual odometry with
respect to the object distance aL. Therefor the standard deviation
of the depth, which resulted from the plenoptic camera based
visual odometry, was evaluated for the 10 object distances in the
range from 2.6 m to 5.3 m, after a vertical translation of 20 cm.

7.3.2. Results
7.3.2.1. 3D reconstruction. Fig. 18 shows the 3D point cloud which
resulted from the focused plenoptic camera based visual odometry.
Of course, this point cloud gives only a qualitative impression. Nev-
ertheless, one can see, that for instance the rectangular shape of
the table itself and other items on the table, like the keyboard or
the book on the right are kept. Even though in this figure the point
clouds which resulted from over 40 reference frames are overlaid
no misalignment between them can be seen.

There is quite a big gap at the position where the computer
monitor should be in the point cloud. The problem is that the mon-
itor has almost no structure in the recorded sequence (see Fig. 17)
and thus no reliable depth can be estimated.

Due to the very narrow FOV of about 18� for a monocular visual
odometry no reliable tracking would be possible, as shown by
Zeller et al. (2015b). This experiment shows that our plenoptic
camera based approach is working in setups where monocular
approaches fail and thereby extends the working range of visual
odometry in general.

7.3.2.2. Depth accuracy. Fig. 19 shows the course of the depth’s stan-
dard deviation over all frames in the recorded sequence and thus as
a discrete function over time. Since the sequence was recorded for a
more or less homogeneous movement in vertical direction, the
standard deviation can also be considered as a function of the base-
line distance to the first frame. As already mentioned, the baseline
between the first and the last frame is 20 cm in length.

One can see from Fig. 19 that the curve has approximately 1=x
behavior. This conforms to the theoretical depth accuracy of a pair
of stereo images recorded for the simplified case. Here one can
derive the depth accuracy based on the theory of propagation of
uncertainty, as given in Eq. (73).
e of 2600 frames recorded by a Raytrix R5 camera.



Fig. 18. 3D point clouds of a sample scene recorded by a Raytrix R5 camera after
applying the focused plenoptic camera based visual odometry to a sequence of 2600
frames.
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Fig. 19. Standard deviation of the measured depth for a chessboard target in
3.183 m distance to the camera. From the first to the last frame the camera was
translated by 20 cm in vertical direction.
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Fig. 20. Standard deviation measured over object distance. Red dots: Standard
deviation of the focused plenoptic camera based visual odometry after a translation
of 20 cm in vertical direction. Blue dashed line: Standard deviation for a stereo
camera pair with baseline distance of 20 cm, intrinsic parameters similar to the
Raytrix camera, at a disparity standard deviation of 0.3 pixel. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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raL ¼
f � dB

p2
x

� rpx ¼
a2L

f � dB
� rpx ð73Þ
In Eq. (73) f represents the focal length of the underlying pinhole
camera model, dB the baseline distance, aL the object distance and
px the measured disparity. The standard deviation of the disparity
rpx can be considered as constant.

After the camera started moving there is still a range of about
seven frames where the standard deviation does not decay. In this
range the baseline to the first frame is too short to improve the
depth of the focused plenoptic camera and thus, no improvement
in the depth accuracy is achieved. Thereafter, the larger baseline
built by subsequent frames leads to a quite steep descent of the
depth’s standard deviation.

Fig. 20 shows the results for the chessboard plane recorded for
different object distances aL. Here the red dots show the depth’s
standard deviation after the focused plenoptic camera based visual
odometry with a translation of 20 cm.

The blue dashed line represents the theoretical depth standard
deviation for a stereo camera pair with a baseline distance of
20 cm, intrinsic parameters similar to those of the Raytrix camera,
and a disparity standard deviation rpx of 0.3 pixel. This curve can
be calculated from Eq. (73). Thus, the measured values conform
to the theoretical limits.
8. Summary and conclusion

In this paper we addressed the problem of depth estimation for
a focused plenoptic camera and presented a probabilistic depth
estimation approach. We showed how the camera can be cali-
brated to be used in photogrammetric or computer vision applica-
tions and additionally we were able to run a visual odometry
algorithm based on a focused plenoptic camera. This approach
has certain advantages compared to a monocular visual odometry.

For the proposed depth estimation algorithm we introduce a
graph of baselines which defines the multiple micro lens pairs
in the MLA. Based on this graph multiple binocular stereo-
observations are obtained, starting from a short up to a long base-
line. These observations are incorporated in a probabilistic depth
map. We expressed mathematically how the camera noise affects
the disparity estimation. Thus, the estimated inverse virtual depths
can be defined as Gaussian distributed random variables. Based on
the probabilistic depth map it is possible to remove outliers with-
out any low-pass filtering by setting a threshold for the inverse vir-
tual depth variance. Thus, discontinuities in the depth map are
preserved.

For camera calibration we apply a traditional camera model to
the synthesized image of a focused plenoptic camera and estimate
it based on a traditional calibration method. We developed two
model based depth calibration methods, which proved to define
the camera model very well, and compared them to a well known
curve fitting approach. Due to the precise models, only a small
number of measurements is needed for calibration. Besides, it
was shown that the estimated functions are valid in excess of the
calibration range.

In this paper we incorporated both, the estimated depth map
and the camera model, which resulted from calibration, into a
focused plenoptic camera based visual odometry. We achieve con-
siderable improvements both with respect to the depth from a sin-
gle image of the focused plenoptic camera and the depth received
from a monocular visual odometry. We were able to run the algo-
rithm when using a focused plenoptic camera with a narrow FOV
and a respectively large focal length. Another main improvement
is that our focused plenoptic camera based visual odometry also
measures scale and thus metric tracking and mapping is possible.

Compared to a monocular camera, the hardware effort stays
pretty much the same, since the plenoptic camera differs only by
the MLA in front of the sensor. The computational effort however
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increases compared to monocular visual odometry since light-field
based depth estimation has to be performed.
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