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Deutschen Akademischen Austauschdienstes.



1

Abstract

The uncontrolled growth of urban areas has social and ecological consequences that may lead

to various problems. Aiming to mitigate and avoid these problems, many planning tasks and

geosciences studies are undertaken based on detailed geometric information of individual urban

objects and their changes. However, several other of such tasks and studies rely not directly on

the geometry of single objects, but rather on the semantic interpretation of larger aggregated

areas, which are usually any of the city’s administrative plots. This is the case with the mapping

of so-called urban structure types (USTs). USTs classes are always assigned to spatial aggregates

based on their social functionality and cultural value or, as is more often the case, on their

environmental characteristics as well as the structure and spatial disposition of the objects that

compose them.

This thesis proposes an approach to map USTs through context-based classification of high-

resolution radar satellite images. The USTs are classified at the level of urban blocks, which are

the areas enclosed by streets, railroad tracks and rivers. Two classification methods are applied

to attain that goal, namely, Random Forest and a Minimum-Distance algorithm based on the

relative entropy metric. As a way to increase the classification accuracy, contextual interactions

between pairs of neighboring blocks are established using the framework of probabilistic graphical

models. Different graph structures and parameterization of these models are described and

compared.

The experiments were undertaken using four images from the TerraSAR-X satellite consisting

of two interferometric image pairs obtained at the satellite’s ascending and descending orbits.

The images cover the central area of the city of Munich in Germany. The performance of the

two classification methods as well as the influence of the different graph structures and model

parameterizations are evaluated and compared based on different sets of training samples and

considering five representative USTs classes.

It is shown that more accurate classifications are obtained when these are performed with at-

tributes extracted from the images from both satellite orbits. The choice of the classification

method, i.e. Random Forest or Minimum-Distance, has no significant influence on the accuracy

of the results. By considering the contextual interaction between pairs of neighboring blocks,

the classification accuracies could be increased to the extent of up to 10%, whereas the best

context-based classification achieved the overall accuracy of 78%. In the final considerations,

the limitations and advantages of automatically mapping USTs through the classification of

remote sensing images are discussed.
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Kurzfassung

Das unkontrollierte Wachstum der städtischen Bebauung hat verschiedene soziale und

ökologische Folgen, die zu Problemen führen können. Die Erfassung urbaner Strukturen und ihre

Veränderung sind zur Bereitstellung von Basisinformationen für Monitoring und Planung in den

verschiedensten Bereichen, wie Stadtplanung oder Geo- und Umweltwissenschaften, von hohem

Interesse. Für bestimmte Aufgabenstellungen steht jedoch nicht die detaillierte geometrische

Beschreibung urbaner Objekte im Vordergrund, sondern es sind vielmehr semantische Interpre-

tationen von aggregierten Bereichen gefragt, wie beispielsweise bei der Kartierung von Stadt-

strukturtypen. Dabei erschließt sich häufig ein spezieller Stadtstrukturtyp eines Bereiches nicht

nur aus den Oberflächeneigenschaften der Objekte selbst, sondern erst aus ihrem Kontext oder

ihrer funktionellen Bedeutung.

Ziel der Arbeit ist es, aus hochaufgelösten Radarsatellitenbildern eine Kartierung von Stadtstruk-

turtypen durch kontextbasierte Klassifikation abzuleiten und deren Leistungsfähigkeit zu unter-

suchen. Dazu werden Stadtstrukturtypen auf Ebene von Blöcken klassifiziert, die durch Verkehr-

swege wie Straßen, Schienen und Flüsse eingegrenzt sind. Als Klassifikationsmethoden werden

die Verfahren ”Random Forest” und ”Minimum-Distance” auf Basis von relativer Entropie einge-

setzt. Zur Erhöhung der Leistungsfähigkeit der Klassifikation wird die Berücksichtigung von kon-

textuellen Zusammenhängen über die Nachbarschaft vorgeschlagen, welche durch probabilistis-

che graphische Modelle beschrieben werden. Dazu werden unterschiedliche Graphenstrukturen

gegenübergestellt und die Parametrisierung der Modelle beschrieben.

Für die Experimente werden vier TerraSAR-X Satellitenbilder herangezogen, die aus zwei in-

terferometrischen Bildpaaren der aufsteigenden und absteigenden Bahn bestehen. Die Bilder

decken den zentralen Teil der Stadt München in Deutschland ab. Die Untersuchung wird auf Ba-

sis der Klassifikation von fünf repräsentativen Klassen mit verschiedenen Trainingsdatensätzen

durchgeführt. Es werden die Leistungsfähigkeit der Klassifikationsmethoden, sowie der Einfluss

der Modellparameter und der Graphenstrukturen verglichen.

Es zeigt sich, dass die gemeinsame Verwendung der Bilder von beiden Bahnen bei der Extraktion

von Attributen der Blöcke zu besseren Klassifikationsergebnissen führt. Die Wahl des Klassifika-

tionsverfahrens (”Random Forest” oder ”Minimum-Distance”) hat keinen wesentlichen Einfluss

auf die Ergebnisse. Durch die Berücksichtigung von kontextuellen Zusammenhängen zwischen

benachbarten Blöcken wird die Genauigkeit der Klassifikation bis zu 10% erhöht, wobei die beste

kontextbasierte Klassifikation eine Genauigkeit von 78% erreicht. In der Schlussbetrachtung wer-

den die Grenzen der automatischen Ableitung von Stadtstrukturtypen aus Fernerkundungsdaten

diskutiert.
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1 Introduction

The percentage of people living in urban areas worldwide has recently surpassed the 50% mark

and it is estimated that by 2050 it will reach up to 66%, corresponding to an addition of 2.5 billion

people [Nations, 2014]. Although at slower rate, the sprawl and densification of urban areas has

been taking place also in highly industrialized countries, whose urban population is presently of

about 80% [Nations, 2014]. Only in Germany, urban areas have expanded in 20.3% from 1992 to

2013. In the period of 2010 to 2013, 73 hectares of land in average were converted each day to

urban areas in this country [Bundesamt, 2015]. This process of urban sprawl and densification

has obviously many consequences and is one of the main causes of several interrelated social and

environmental impacts at the local, regional and global scales, such as:

• Global scale: deforestation and climate change, biodiversity and ecosystems endanger-

ment, cultural standardization;

• Regional scale: increase in the emission of pollutants, much higher demand for energy,

water and agricultural goods, increase in waste production, local climate change through

the heat island effect, ”forced” emmigration from rural to urban areas, urban mobility and

traffic congestion issues, sanitation and public health problems;

• Local scale: landslides and flood risk, decrease in the quality of life through microclimate

and environmental disconfort, air and noise pollution, threat of gentrification, shortage of

housing and high rent prices.

Because of that, sustainable development and social equality have frequently been discussed and

conceptualized in tight connection with urbanization. Since analysing the problem preceeds its

solution, urban sprawl monitoring has become an intensively studied topic in recent years. In

this context, remote sensing data and techniques offer many advantages. Several studies have

reported the effectiveness of monitoring urban sprawl based on optical and microwave imagery

[Pesaresi et al., 2013] [Esch et al., 2010] at both the regional and global scales [Patino & Duque,

2013] [Taubenboeck et al., 2012] [Weng, 2012] [Ban et al., 2015]. However, many of the above-

mentioned issues related to rapid and uncontrolled urbanization can be more effectively mitigated

through planning actions undertaken locally at each city. These planning actions, with the main

goals of reducing energy consumption and pollutants emission, are supposed to optimize the

access to services and goods as well as the flux of energy and the outflow of disposals in a city.

The physical basis on what these factors depend is the city’s morphology. In fact, urban climate

and radiant energy balance [Steemers, 2003] [Chun & Guldmann, 2014] [Sanaieian et al., 2014],

traffic optimization [Weber et al., 2014], urban water and waste management [Chang & Wang,

1997] [Bach et al., 2015], energy consumption [Steemers, 2003] [Ratti et al., 2005] and carbon

sequestration [Whitford et al., 2001] [Tratalos et al., 2007] have been studied intrinsically to the

city’s inner structure. Other factors that also significantly influence the well-being of citizens and

the environmental impact of a city such as population density distribution [Li & Weng, 2005]
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[Novack et al., 2011b], access to green areas [Barbosa et al., 2007] [Gill et al., 2008], suscetibility

to noise pollution [Bolund & Hunhammar, 1999] [Hao et al., 2015] together with other quality of

life indicators [Baud et al., 2010] [Hrehorowicz-Gaber, 2013] have also been analyzed in intrinsic

relation to the distribution of a city’s different types of settlements.

In Germany, these different types of urban settlements are categorized as urban morphology

or urban structure types (USTs), which is the conventional term used as the translation of Stadt-

strukturtypen. USTs serve as a common basis for the categorization of the urban surface which

is supposed to guide interdisciplinary planning and monitoring tasks [Pauleit & Duhme, 2000].

The prefecture of Munich, for instance, uses its USTs map as a ”basis for developing urban and

landscape plans and programs”, more specifically ”to identify potential sites for certain projects

and assess their impact on the surroundings” and ”to find potential areas able to be densified”

[Munich, 2014]. Some USTs, based on their names, are defined only on the basis of functional

and socioeconomic factors, but most of them are defined based on objective criteria, like the

geometry, relative orientation and density of their buildings, as well as by environmental factors

such as the presence of vegetation and water bodies. This enables to a great extent the distinction

of these USTs by remote sensing methods which are, in comparison to ground surveys and visual

interpretation, an automatic, objective, fast and probably lower-cost way to accomplish this task.

Over the last years, a large number of methods based on different remote sensing data have

been proposed for the distinction of urban settlements [Patino & Duque, 2013] and the extraction

of specific urban objects [Haala & Kada, 2010] [Rottensteiner et al., 2014]. Concerning airbone

imaging systems, the detection and 3D reconstruction of single buildings has been performed

extensively with airborne Synthetic Aperture Radar (SAR) [Soergel et al., 2009] [Michaelsen

et al., 2010], Interferometric SAR (InSAR) [Stilla et al., 2003] [Thiele et al., 2007], optical [Jaynes

et al., 2003] [Xiao et al., 2012] and laser scanning systems [Elberink & Vosselman, 2011] [Lu

et al., 2014]. However, despite providing information at very high resolution (VHR) (< 1 m),

airborne imaging systems usually cover a relatively limited area at each acquisition. This might

make the distinction of USTs from large cities a costly task if flight campaings must take place

specifically for that goal. Given that spaceborne HR data is by default already available, it might

be prefereable to use this type of data depending on the resources available. Besides, optical

spaceborne high-resolution (HR) (3 - 1 m) imaging systems provide detailed information over

relatively large areas. Their potential for the detection and reconstruction of buildings in urban

areas has also been reported by, for example, Tack et al. [2012], Ok [2013] and Turker & Koc-

San [2015]. However, despite the high revisit rates guaranteed by the large amount of optical

remote sensing satellites presently available, one must still rely on appropriate atmospheric and

sunlight conditions at the time the satellite is passing over the study area. These constraints

become a bit more critical if specific stereoscopy pairs are needed for 3D analysis. Another

possibility is the discrimination of settlement types based on medium-resolution (30 - 10 m)

SAR/InSAR datasets. Although covering large areas on the ground and providing 2D/3D image

information independently from wheather and sunlight conditions, these datasets enable only the

distinction of overgeneralized types of urban settlements, usually based on textural measures and

other pixel-based attributes [Dell’Acqua et al., 2003]. Therefore, each of these types of remote

sensing data offers advantages and constraints regarding the task of distinguishing USTs. It is

then the conditions and requirements of each specific case what will determine the best trade-

off between spatial resolution and coverage area as well as the most appropriate type of remote

sensing imagery.
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1.1 Motivation and Assumptions

The most modern HR spaceborne SAR sensors provide image data for large areas and at good

spatial resolution, enabling the distinction of USTs from whole urban areas. Despite of that,

efforts on the classification of USTs based on this type of remote sensing data are still very

rare, as noticed by Chen et al. [2012], Patino & Duque [2013] and Walde et al. [2014]. This

might be because of (1) the unintuitive visual interpretation of these images, (2) the challenge

in extracting expressive features from them and (3) the distorted appearance of some objects

due to the intrinsic acquisition geometry of these sensors. However, differently from optical data

whose main information component is spectral, the backscattering energy from SAR sensors is

dependent on the moisture content, the geometric structure of the objects on the earth’s surface as

well as on their orientation relative to the sensor. Furthermore, the possibility of deriving height

information through interferometry makes this type of remote sensing data highly informative

about the structure of urban areas. It is hence assumed that HR spaceborne SAR data offer

good potential for distinguishing USTs. Furthermore, if a second dataset from a different looking

direction is available, one has a comprehensive dataset and this potential is expected to increase

significantly.

Regardless of the type of image data used, a key concept in the distinction of USTs is the

consideration of contextual information. The concept of context in this case has two different

meanings. The first one concerns the existence, structure and spatial distribution of different

features inside an element of analysis. This is from the physical point of view what usually defines

the UST class of this element. The second meaning of context concerns the spatial distribution of

the USTs in the area under study. It is an assumption of this thesis that this distribution is not

random, but rather that patterns frequently exist, for instance in the form of clusters of elements

belonging to the same class. If this is the case, then knowing something about the probable UST

of a location may be informative about the USTs of the neighboring locations. The assumption

about the existence of patterns in the distribution of USTs is justified a priori by the first law of

geography according to Tobler [1970], which states: ”Everything is related to everything else, but

near things are more related than distant things”. This law can be interpreted as asserting that

nature is almost never random and that cause-effect relations can be seen everywhere. Tobler

emphasizes that this mutual cause-effect relations tend to be stronger between spatially close

entities. One expression of this law in particular is of anyone’s perception, namely, that similar

things tend to be close to each other and close by things tend to be similar. The existence of

patterns in the distribution of a city’s UST is further supported by the existence in many cities of

urban zoning laws, whose purpose is to organise the spatial distribution of the different types of

settlements and their uses as a way to make the functioning and administration of the city more

effective and easier.

The consideration of context in the distinction of USTs may be statistically modelled in a flex-

ible way by means of the powerful framework of Probabilistic Graphical Models. By establishing

a priori affinities or potentials for each possible joint class assignments of neighboring elements

and considering also the a posteriori probabilities of each element belonging to each class, these

models may be submitted to powerfull existing inference algorithms which are able to consider

these element-wise class probabilities together with a possibly very complex network of contex-

tual relationships between elements in oder to find the most probable classification of the entire

area under study. Therefore, the uncertainty (or certainty) of element-wise classifications due to

the fact that USTs are to some extent subjectively defined and have high inner-class variability

is counterbalanced by the influence of neighboring elements. The intensity of this influence is

defined, as will be shown, by the number of contextual relations and the potentials of the possible

joint class assignments.
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1.2 Goals, Research Questions and Contributions of this Thesis

The present work has two major purposes, namely, (1) to explore the full potential of state-

of-the-art spaceborne InSAR imagery for distinguishing USTs through classification and (2) to

investigate whether considering in their class assignments the mutual influences of contextually

connected urban blocks causes, and to what extent, an improvement in the classification’s overall

accuracy [Congalton & Green, 1999].

More specifically, this thesis explicitly aims to answer the following questions:

• To what extent imagery from a state-of-the-art spaceborne HR InSAR system can be used

for the automatic distinction of USTs?

• Which are the most expressive attributes for describing urban blocks in regard to their

built-up structure and therefore to their UST classes?

• To what extent does the classification accuracy increases when attributes derived from the

images acquired at the other looking direction (satellite orbit) are available?

• To what extent does the classification accuracy increases when the class assignment of each

urban block is influenced by the possible class assignments of its neighboring blocks?

• Which of the experimented structures and parameterizations of the Probabilistic Graphical

Models enable the highest increase in the overall accuracy of the USTs classification?

The main novelties and contributions of this thesis are:

• For the first time Probabilistic Graphical Models were applied for the classification of USTs.

Different application-oriented ways of defining the models graphical structure and parame-

terization were proposed, evaluated and compared.

• HR spaceborne InSAR data acquired at ascending and descending looking directions was

for the first time investigated regarding its potential for performing block-based distinction

of USTs.

• As one of the ways of describing the built-up structure of urban blocks, multidimensional

profiles were generated based on the application of a sequence of thresholding operations

inside each block. A simple metric was used for the comparison of these profiles and hence

for performing UST classification.

Other secondary contributions include:

• Strategies are proposed for effectively extracting meaningful lines and polygons from the

InSAR images. These features are supposed to express parts of buildings and other man-

made objects.

• Many attributes that describe the spatial disposition of these features inside the urban

blocks were for the first time explored.

• For each block a network was generated connecting the polygons extracted in it. The spatial

disposition of these polygons was then described by different network-based attributes.
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• A polygon shape similarity measure was used to define the strength of contextual interaction

between two neighboring blocks. The rationale behind it is that neighboring blocks of similar

shape are more likely to belong to the same UST class.

• Contextual UST classifications were performed with Probabilistic Graphical Models con-

taining 3rd-order interactions between neighboring blocks. Models with more than one a

posteriori class probability term were also explored.

1.3 Structure of the Thesis

This thesis is structured as follows.

In Chapter 2, the most frequently used attributes for describing USTs are firstly presented.

Following, it is shown and briefly discussed how the main man-made and natural features that

characterize USTs typically appear on HR spaceborne InSAR imagery. Also in this chapter it is

discussed the importance of having SAR images from different aspect angles for a more effective

detection of features that characterize the USTs.

Chapter 3 addresses the theoretical aspects of Probabilistic Graphical Models. The main

types of models and their differences are briefly presented as well as the steps performed during

a widely used inference algorithm. Lastly, it is shown how these models are typically defined for

performing contextual classification of remote sensing images.

Chapter 4 is the core of this thesis and describes the employed methods and how the method-

ological steps are interrelated as a means for attaining the goals presented above.

Chapter 5 presents the image and auxiliary data, as well as the study site and the ground-

truth data of this thesis. It also describes how the considered UST classes were defined and which

specific attributes were used to distinguish them. This chapter addresses as well the application

strategies and parameterizations of the standard classification methods adopted in this thesis.

The way in which different contextual classification models were evaluated and compared is also

presented.

Chapter 6 presents and discusses the results from all performed experiments.

Based on the results obtained, Chapter 7 discusses in a more general perspective the potentials

and drawbacks of approaching the application at hand with the proposed methods.

Chapter 8 closes the thesis by making the last commentaries and drawing the main conclusions.

Suggestions for future works are made and tasks still to be accomplished are addressed.

I wish you a pleasent reading!
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2 Urban Structure Types in
Remote Sensing

Remote sensing methods have proven to be very efficient when the goal is to estimate and cat-

egorize certain physical aspects of the urban surface, such as degree of imperviousness [Weng,

2012] [Leinenkugel et al., 2011] [Im et al., 2012], vegetation cover [Yunhao et al., 2006] [Tigges

et al., 2013] and building density [Chen et al., 2009] [Schmidt et al., 2010] [Yu et al., 2010]. Urban

land cover classification is also a task that has been successfully performed with different types

of methods and image data [Myint et al., 2011] [Novack et al., 2011a] [Okujeni et al., 2013]. An

advantage from these applications is that the characterization of urban areas based on objective

categories enables to a good extent the methodology to be more easely transferred to other cities

with different morphologies and environmental conditions [Heinzel & Kemper, 2015] [Duque et al.,

2015].

However, several important decision making and planning actions rely ultimately on the infor-

mation about the city’s land use, which is by its nature, even if the classes are formally defined,

a subjective concept. (For all practical reasons, USTs can be considered without risk of mis-

conception as a synonym for urban land use, although the earlier term refers mostly to german

cities). In the cases where the goal is to distinguish USTs directly from remote sensing data, the

expert is necessarily involved with the challenge that subjective and context-defined classes must

be described by objective and quantitative image attributes. The assumption that this is to a

certain extent a feasible task motivated this and many other works, all of which have in com-

mon the fact that context had to be in some way described and taken into consideration in the

classification strategy. The extent to which context can be expressed is what most influences the

accuracy of the end results. Therefore, special attention is dedicated in the next two sections to

the state-of-the-art approaches in that regard. These approaches differ essentially in two aspects,

namely, the elements of analysis (i.e. single pixels or image regions) and the descriptive attributes

they rely on.

2.1 Pixel-Based Approaches

At pixel-based classification of urban settlements, the creation of meaningful image regions, either

through segmentation or through the introduction of auxiliary Geographical Information Systems

(GIS) data, is not a concern. Furthermore, such approaches frequently rely on medium to high

spatial resolution (10 - 1 m) imagery, what has the consequence that the classification is provided

for larger areas at relatively lower computational costs.

The pixel-based approaches for urban settlement distinction can be divided into three general

groups. The first consists of works that performed standard pixel-based classification with large

image datasets and powerfull classifiers [Dell’Acqua et al., 2003] [Hu & Weng, 2009]. They rely

on the comprehensiveness of the image data, the expressiveness of the images pixel values and on
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the discriminant power of classification methods such as fuzzy neuro-networks and self-organizing

maps [Mather & Tso, 2009]. The second group is from works that have used spectral unmixing

techniques to estimate the proportions of impervious, water and bare soil of each pixel and thus

distinguish different environments inside the city [Phinn et al., 2002] [Cockx et al., 2014]. These

approaches describe indirectly the inner-context of each pixel. The third and most common

approach is to compute different texture metrics for each pixel based on a moving window and

then perform standard per-pixel classification. The surroundings of each pixel is hence described

according to the texture metric(s) and the size(s) of the kernel(s), i.e. the moving window, used.

First order statistics [Schmidt et al., 2010], Haralick attributes [Dell’Acqua et al., 2003], wavelet

transform [Myint, 2001], fractal indices [Thomas et al., 2008] and SAR-specific statistics [Reigber

et al., 2008] [Esch et al., 2011] are some of the metrics frequently used to describe the textural

context of each pixel. These kernel-based approaches have though the disadvantages that optimal

kernel-sizes must be found (which may vary according to the data spatial resolution) and that the

kernel is an artificial spatial entity most of the times not related to the morphology of the city.

Although they had their importance in the past, pixel-based approaches are limited if it is

necessary to distinguish more than two or three general classes. Furthermore, they cannot be used

if it is required that the classes instances coincide with the city’s administrative parcels. Because

of that, and due to the present availability of higher resolution sensors and user friendly object-

based image analysis (OBIA) software that allow ease integration with GIS data [Benz et al., 2004]

[PUC-Rio, 2015], region-based approaches have been adopted in most pertinent publications in

the field.

2.2 Region-Based Approaches

Regarding region-based approaches for distinguishing USTs, the regions may be grid-cells [Novack

& Stilla, 2014b] [Heinzel & Kemper, 2015] [Bach et al., 2015], user-defined analytical regions

[Duque et al., 2006] [Duque et al., 2015] or some of the city’s administrative parcels, like census

tracts [Baud et al., 2010], urban districts [Yu et al., 2010] or, most frequently, the city’s urban

blocks [Banzhaf & Hoefer, 2008] [Novack & Kux, 2010] [Heiden et al., 2012] [Voltersen et al.,

2014] [Novack et al., 2014]. Being the largest areas surrounded by streets, urban blocks are

in most cities (and in all german large cities) the spatial units based on which urban zoning

laws are defined and planning actions are conceived and put into practice. Therefore, region-

based approaches have not only the advantage that many more descriptive attributes (textural,

geometrical and contextual) may be explored, but also that regions like census tracts and urban

blocks are frequently homogeneous regaring their built-up structures. Furthermore, classification

results can be in these cases straightfowardly used for administrative purposes. Because of that,

UST classifications performed for the german cities of Leipzig [Banzhaf & Hoefer, 2008], Jena

[Walde et al., 2014], Berlin [Voltersen et al., 2014], Rostock [Walde et al., 2013], Erfurt [Walde

et al., 2013], Cologne [Wurm et al., 2009], Dresden [Hecht et al., 2013] and Munich [Heiden et al.,

2012] [Novack & Stilla, 2014a] have all considered the urban blocks as the analysis units.

As mentioned, an important advantage of region-based approaches is that the spectrum of

descriptive features is much larger. In fact, all possible pixel-based attributes can be aggregated to

the region level as first order statistics (i.e. mean, max., std. deviation etc.) [Schmidt et al., 2010]

or by computing texture measures for the region as a whole. Van de Voorde et al. [2009] and Cockx

et al. [2014], for example, computed the cumulative frequency distribution of the proportion of

sealed surface from each of the blocks pixels and then fitted the cumulative frequency distributions

to the exponential and sigmoid functions. The authors argument that the parameters of the fitted

functions, the errors of fit and the difference between the fitted and observed cumulative frequency

distributions are expressive metrics for estimating a block’s UST. Recently, Duque et al. [2015]
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estimated the degree of poverty from user-defined analytical regions of Medellin (Colombia) as

a reflection of their settlement structures. They proposed a statistic regression model whose

independent variables include several texture measures proposed by Haralick et al. [1973], as well

as histogram and semivariogram measures from analytical regions. Schmidt et al. [2010] also

proposed a regression model for estimating 2D building densities of urban blocks based on the

texture measures by Haralick et al. [1973] and on first order statistics of TerraSAR-X (TS-X)

intensity imagery. Novack & Stilla [2014b] have used TS-X data obtained in High-Resolution

Spotlight Staring (HSS) mode and Histogram of Oriented Gradients (HOGs) [Dalal & Triggs,

2005] in order to classify urban blocks according to three general settlement types.

Texture metrics can be expressive and describe to a certain extent the structure of the set-

tlements inside urban blocks. However, higher-level attributes that describe their composition

have been more frequently resorted to when the goal is specically to classify USTs or the urban

land use. Composition attributes are all created based on the same principle, namely, that firstly

features are extracted from inside the blocks and then the existence, amount, area proportion

and geometrical properties of these features are computed and used to describe the blocks USTs.

Composition attributes have been adopted by many works aiming to classify USTs with mul-

tispectral [Lackner & Conway, 2008] [Voltersen et al., 2014], hyperspectral [Linden & Hostert,

2009] [Heiden et al., 2012], LiDAR [Heiden et al., 2012] [Walde et al., 2013] and SAR imagery

[Novack & Stilla, 2014a] [Novack & Stilla, 2015]. In these and other related works, the features are

patches from land cover classes extracted by a classification step performed at each block. The

most common composition attributes are number of, area, percentage area and maximum area. If

Ab denotes the area of urban block b, aci the area from patch i belonging to class c located inside

b and Nc the number of patches from c inside b, then these four composition attributes can be

calculated as:

area =

n∑
i=1

aci, max. area = max
i

(aci), per. area =

n∑
i=1

aci

Ab
×100, number of = Nc.

(2.1)

These metrics can be combined for the calculation of other simple ones, like patch density (PD),

largest patch density (LPD) and mean area:

PD =
Nc

Ab
× 100, LPD =

max
i

(aci)

Ab
× 100, mean area =

n∑
i=1

aci

Nc
. (2.2)

Along with these five attributes, aggregation index (AI) has also been used for describing

the structure of a land cover class inside a block [Baud et al., 2010] [Huck et al., 2011] [Novack

et al., 2011b]. The AI metric is calculated by counting the number of neighboring pixels from the

same class, called like-adjacencies, divided by the maximum possible number of such adjacencies.

Figure 2.1(a) shows patches from a hypothetical class distributed in completely aggregated and

disaggregated forms. In the first case, the AI value would be of exactly one and on the second

case of exactly zero.

In addition to area, the first order statistics from other geometric properties of the land cover

patches inside the blocks can be used as attributes as well. These geometric properties are usually

rectangular fit (RF), compactness, perimeter / area, major / minor axis length etc. RF is the ratio

between the area of a object and the area of its smallest enclosing rectangle and compactness,

also refered as shape index, equals the perimeter of a feature divided by the minimum perimeter

possible for a maximally compact feature. Figure 2.1(b) shows an example of two features with

the same area but different compactness values.
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Figure 2.1: Two regions with different aggregation indexes for a certain class and two features with different
compactness values. a) Two regions whose features from a certain class are distributed in completely
aggregated (left) and disaggregated form (right). b) Two different features with same area but very
different compactness values.

Composition attributes are usually calculated for general land cover classes, like vegetation,

impervious surfaces, roofs and buildings. Numerous works have used them for the classification

of urban land use and USTs [Pauleit & Duhme, 2000] [Herold et al., 2005] [Banzhaf & Hoefer,

2008] [Wurm et al., 2010] [Huck et al., 2011] [Coseo & Larsen, 2014] [Voltersen et al., 2014], all

of which rely on the fact that the previous land cover classification is accurate enough so that

these attributes are expressive for distinguishing the classes. This assumption is supported by

the fact that the OBIA techniques resorted to in these works, such as multi-resolution segmen-

tation, interface with GIS data and semantical and hierarchical structuring of classes, ensure the

extraction of spatially consistent and semantically coherent land cover patches [Benz et al., 2004]

[Blaschke, 2010].

Since buildings are the most important class of features for describing the built-up structure of

an urban block, specific building metrics have been utilized as attributes whenever their footprints

can be detected and their heights estimated. The most common of these metrics are 2D building

density (BD), 3D BD, also known as normalized building volume, average 3D BD [Chen et al.,

2009] and average floor to area ratio (AFAR) [Yu et al., 2010]. These metrics are computed as

follows:

2D BD =

n∑
i=1

abuildings

Ab
× 100, 3D BD =

n∑
i=1

Vi

Ab
, (2.3)

Av. 3D BD =

n∑
i=1

Vi

AbNbuildings
, AFAR =

1

Nb

Nb∑
i

t∑
j

A floorj/Ab, (2.4)

where Vi stands for the volume of building i, Nb is the number of buildings in block b with

area Ab, j indices a floor from building i. Although 2D and 3D BD describe to a good extent

the structure of any urban block, they do not take into account respectively the height and the

number of buildings. In this sense, Average 3D BD is a more expressive metric. Other attributes,

such as average building height, average footprint size, average volume, maximum height, maximum

footprint size, maximum volume, standard deviation of height, standard deviation of size, standard

deviation of volume and number of buildings have also been widely employed for region-based

categorization of urban settlements [Yu et al., 2010] Heiden et al. [2012] [Hecht et al., 2013]

[Voltersen et al., 2014] [Heinzel & Kemper, 2015].

Other works have put efforts in classifying individual buildings after extracting different ge-

ometric and contextual attributes from them [Steiniger et al., 2008] [Hecht et al., 2013]. The
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context of the individual buildings are in these cases described by defining a buffer zone around

each building and then counting the number of buildings, vegetation and road features inside

the buffer, or by computing the mean, maximum and standard deviation of the buildings volume

around the central building. Yu et al. [2010] and Lu et al. [2014] have used this approach to

describe the settlements of urban blocks by generalizing to the whole block the attributes of the

dominant building and those from secondary buildings. The drawback of these building metrics is

that they require VHR 2D and 3D image data, what sometimes prohibitively increases processing

time and data costs for larger areas applications.

The composition and building metrics presented above only describe partially the built-up

structure of image regions. Another very important group of attributes for region-based clas-

sification of USTs can be called configuration attributes. Configuration attributes describe the

spatial disposition and connectivity of the extracted features inside the regions. The motivation

for exploring such attributes comes from the fact that certain UST classes like Perimeter Block

Development, Row House Development and Regular Block Development can only be properly

described and thus accurately distinguished if such attributes are considered. Despite of that,

only few works on region-based classification of urban settlements have done this.

Simple examples of such configuration attributes are: average nearest distance between build-

ings [Yu et al., 2010], minimal distance of the building contour to the closest block boundary

[Hecht et al., 2013], number of buildings with orientation between... (for different angle intervals)

[Voltersen et al., 2014], etc. A type of more elaborated configuration attributes were proposed

by Vanderhaegen & Canters [2010]. They defined for each block radial and contour profiles

(Figure 2.2) and then calculated for each profile different indexes related to the building/non-

building alternations, as well as to the lengths of the building and non-building profile segments.

These indexes are: normalized number of building/non-building alternations, average length of

building/non-building segments and standard deviation of the normalized length of building/non-

building profile segments.
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Figure 2.2: Radial and contour height profiles from two hypothetical urban blocks. a) Radial height profile
from a hypothetical block. b) Contour height profile from a hypothetical block. Different indexes can be
computed from the profiles. The indexes describe to some extent the disposition of the buildings inside
the blocks. Adapted from Vanderhaegen & Canters [2010].
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Another way of describing the configuration of features inside a block is by creating a neigh-

borhood graph from the features inside it. A neighborhood graph is created usually by defining one

node for each feature of one or more types of features (e.g. buildings, vegetation types, etc.) and

then establishing edges between neighboring features. Two features can be considered neighbors

based, for example, on the criteria of direct adjacency or distance thresholds. Let us assume that

Figure 2.3(a) shows a synthetic image whose white and light grey objects have been extracted

and shown in blue Figure 2.3(b). An example of a graph from the objects shown in blue is shown

in Figure 2.3 (c). Several measures can then be derived from this graph as a way to express the

disposition of the blue objects in the image region. Such measures include: number of edges con-

necting nodes from feature types ci and cj , mean orientation difference between connected nodes,

mean distance between connected nodes, standard deviation of distance between connected nodes,

nodes/edges proportion, proportion of edges connecting nodes from feature types ci and cj etc.
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Figure 2.3: A neighborhood graph connecting features inside a hypothetical region. a) Synthetic image
from a region. b) White and light grey features from the region extracted and shown in blue. c) An
example of a neighborhood graph connecting the extracted features.

Although Hermosillaa et al. [2012], Walde et al. [2013] and Walde et al. [2014] have successfully

used these graph metrics for classifying UST and urban land use, it seems that many possibilities

of using graphs for describing the features disposition is yet to be explored. Assigning the nodes

with different attributes (from the features they represent) and the edges with different weights

enables the calculation of the above mentioned and many other measures, what may increase the

expressiveness of the graph for describing the features spatial disposition in the image regions.

2.3 Appearance of Urban Features on InSAR Imagery

In this section it is briefly presented and discussed how buildings and vegetation, the two main

features that characterize USTs, typically appear on HR InSAR imagery, that is to say on the

coherence and intensity images, as well as on the interferometrically derived Digital Elevation

Model (DEM) . The intention is to show to what extent and with what general strategy these two

features can be detected and afterwards used for the computation of composition and configuration

attributes from the urban blocks. It is also stressed in this section the importance of having

intensity SAR images from the aspect angles of the ascending and descending satellite orbits for

the detection of buildings and hence the block-based distinction of USTs.

The coherence image is an important type of data for urban applications. It has been exploited

for settlement detection at the regional scale [Grey & Luckman, 2003], estimation of building

heights [Fanelli et al., 2001] and the detection of human-induced scene changes [Milisavljevic

et al., 2010]. Coherence is the complex cross-correlation coefficient from two co-registered SAR

acquisitions obtained at the same looking direction. For many applications only the magnitude
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of coherence is of interest, which ranges from 0 to 1. It can be computed for the whole scene by

running a small window over the image pair and estimating it for each location. Besides being

used to evaluate the reliability of height measures from the interferometric DEM and as a penalty

function to optimise the co-registration of two SAR images [Woodhouse, 2006], the coherence

measure is very relevant for land cover classification as well. For example, shadows (due to lack of

signal), water bodies (due to specular reflection) and vegetated areas (due to the vertical spread

of the scatters) have always very low coherence values, whereas man-made structures, due to their

unchangeability between acquisitions, have high coherence values in cases the signal from these

objects, due to their geometric structure, are scattered back to the sensor.

Figure 2.4 depicts a section of the urban area of Munich (Germany) as well as two of its

urban blocks in optical and coherence images. The coherence image was computed from a pair

of intensity images from the TS-X satellite with spatial resolution of approximately 1,1 m. As

expected, wherever there is vegetation, water or shadow, the coherence values are low, expressed

by darker pixels. Conversely, man-made structures like buildings and sealed areas appear in

general as bright areas, corresponding to high coherence values. The yellow lines drawn in the

images serve to highlight the borders between settlements and vegetated areas and river. The

blue squares in Figure 2.4 (a) and (b) highlight a bridge surrounded by water and vegetation. The

bridge appears as a strip of pixels with high values surrounded by dark pixels (Figure 2.4 (b)).

This behaviour is also observable in Figure 2.4 (c) and (d). Nearly all man-made structures from

the two blocks appear very bright, whereas the dark pixels between these structures are mostly

from shadows and vegetated areas. The coherence image may therefore be used to estimate

the proportion of vegetation and sealed areas, such as pavements and buildings, inside urban

blocks. These proportions can be computed by choosing two optimal threshold values above and

below which pixels are considered as belonging to man-made structures and vegetation/shadows

respectively. This strategy has been applied for example by Heiden et al. [2012] and Voltersen

et al. [2014], with the difference that they used the Normalized Difference Vegetation Index [Vina

et al., 2011] image computed from optical data instead.

As discussed in Section 2.2, information about the height of the buildings is extremely valuable

for the block-based distinction of USTs. From SAR imagery, height estimates can be derived

through radargrammetry or interferometry [Woodhouse, 2006]. Each of these techniques offers

pros and cons that should be considered in light of the application at hand and the availability of

data and other resources. The main disadvantage of using radargrammetry to generate a DEM

from urban areas lies in the fact that the complexity of these areas and thus the large dissimilarity

of opposite-side images make their matching a hard task, specially for lower resolution spaceborne

SAR data [Soergel, 2010]. Indeed, the majority of works on DEM generation from urban areas

with SAR data have resorted to the technique of interferometry. However, the accuracy of the

height measurements derived from InSAR data is limited by the side-looking acquisition geometry

of SAR systems, which causes the undesired effects of layover and shadowing [Stilla et al., 2003].

Although these effects can be mitigated by means of the state-of-the-art techniques of Persistent

Scatters [Gernhardt et al., 2010] and tomography [Schmitt et al., 2014], the large amount of data

required to apply such techniques frequently becomes too expensive or is simply not available for

some areas.

When the application’s goals and constraints request that height information be derived based

on spaceborne InSAR data, some factors must be considered in order to maximize the expres-

siveness of the generated DEM. The normal baseline between the acquisitions must configure a

good trade-off between the height of ambiguity and the height sensitivity. Larger baselines will

enable more accurate altitude measurements, increasing however the need for phase unwrapping,

which is not trivial in urban areas [Stabel & Fischer, 2001]. Also, the acquisitions minimum and
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Figure 2.4: Appearance of man-made and natural features in optical and coherence images. a) Optical
image from a section of Munich (Germany). b) The same section of (a) showed in the coherence image
computed from HSS TS-X data with spatial resolution of approximately 1,1 m. c) and d) Two urban
blocks with vegetation and man-made structures showed in optical and coherence images computed from
the HSS TS-X data.

maximum incidence angles must not be such that the amount of shadows decreases at the expense

of increasing too much the layover effect. Another aspect that should be considered is the possible

change in the atmospheric conditions between the acquisitions. Since spaceborne InSAR data is

frequently acquired at more than one orbit, one should care that the time gap is not too large

and that the atmospheric conditions are therefore similar. Otherwise, the time decorrelation may

increase the phase difference noise and thus damage the quality of the interferogram.

Even when all this is considered, two other aspects restrain the accuracy of building heights

measurements made from spaceborne InSAR data. The first one is the still limited spatial reso-

lution of spaceborne SAR systems. The second aspect regards the inherent complexity of most

urban areas, what may hinder the distinction of the backscattered signals from, for example, two

closeby buildings [Soergel, 2010]. Figure 2.5 shows a section of the city of Munich and two of its

urban blocks in optical image and in a DEM generated from an interferometric pair of single-look

complex (SLC) images from the TS-X satellite operating in HSS mode. The DEM has a spatial

resolution of approximately 1,1 meter. It can be seen that in broader context and smaller scale,

different building structures can be distinguished by an experienced interpreter (Figure 2.5 (b)),

whereas when looking at single blocks individually it becomes difficult to visually interpret the
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structure and disposition of the buildings. This has different reasons for the blocks shown in

Figure 2.5 (c) and (d). In (c) the density and spatial complexity of the buildings distribution and

their different shapes causes a complex mixture of signals together with the effects of foreshorten-

ing/layover and shadowing. In (d) the presence of vegetation in most of the block’s area decrease

the coherence of the phase measurements and thus the reliability of the height measurements.

Any information on the built-up structure of single blocks can probably be better expressed as

texture measures than as the attributes and distribution of extracted lines and flattened areas.

(a)

(b)

Optical

DEM

(c) (d)

Figure 2.5: A section of Munich (Germany) and two of its urban blocks shown in optical image and as a
DEM generated through interferometry with HSS TS-X data. a) Optical image from a section of Munich.
b) DEM from the same area of (a) generated through interferometry. c) and d) Optical image and DEM
from two individual urban blocks from Munich.

Probably the most important type of SAR data for urban area analysis is the intensity of

the backscattered radar signal. It depends mainly on the shape and orientation of the scatters,

as well as on their moisture content and the radar beam’s incident angle. Because of volumetric

absortion and diffused reflection, vegetated areas such as grass and trees usually appear dark and

with moderately rough texture on intensity images. Calm water bodies will also appear dark

because of specular reflection. Buildings and houses on the other hand can be identified both by

very bright and very dark areas. Bright points, lines and areas are caused by the layover effect or

by corner reflectors, whereas the dark areas are due to occluded areas, i.e. shadows. These effects
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are inherent to the side-looking geometry of SAR systems and their intensity depends on the

shape and orientation of the objects in relation to the SAR range direction [Stilla, 2007] [Soergel,

2010] [Brunner et al., 2010]. Based solely on the analysis of the corner reflection and shadow areas

extracted from single HR SAR intensity images, some approaches have been proposed to detect

and even reconstruct single buildings in urban areas [Tupin, 2003] [Brunner et al., 2010] [Lin

et al., 2013]. Other works have extended this idea by resorting to airborne VHR SAR imagery

obtained at multiple aspect angles [Michaelsen et al., 2005] [Ferro et al., 2009] [Maksymiuk &

Stilla, 2012] [Schmitt et al., 2014].

Depending on the density and geometric complexity of the buildings, intensity images from

spaceborne SARs may also be used to estimate to a certain extent the orientation and general

geometrical characteristics of buildings [Brunner, 2009] [Ferro et al., 2011] [Cao et al., 2012a]

[Cao et al., 2012b]. In this context, the chances of success increase if images of a same area are

obtained at the satellite’s two different looking directions. Figure 2.6 exemplifies this idea by

showing two urban blocks from Munich in optical and intensity images acquired by the TS-X

satellite at its ascending and descending orbits. It can be seen that buildings may appear very

clearly in one image and yet be barely observable in the other. The intensity and position of the

layover and shadow areas also vary a lot from one acquisition to the other. As mentioned, these

effects depend on the SAR looking directions, the beam’s incidence angles and the geometric

properties and orientation of the buildings in relation to the SAR azimuth direction. It can be

noticed, for example, that some smaller buildings from the block on the upper part of Figure

2.6 cannot be observed in any of the two SAR acquisitions. This is because their major axis are

oriented more towards the range direction. On the lower part of Figure 2.6, a block is shown

containing one single building. It exemplifies the fact that buildings may be detected by a bright

line, caused by corner reflectors and the layover effect, or by a smooth shadow area whose shape

corresponds to a certain extent the size and height from the building lying ahead of it.
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Figure 2.6: Two urban blocks imaged from the ascending and descending looking directions. Buildings
may appear clearly in one intensity image and yet be barely observable in the other. The size and position
of shadows and corner reflection areas also varies a lot according to the looking direction, the incidence
angle, as well as the orientation and shape of the buildings.
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Another important advantage of having spaceborne SAR imagery from the two looking direc-

tions is the possibility to mitigate the effect of layover in the context of detecting buildings inside

urban blocks. It may happen that due to this effect a part of the backscattering signal from a

building’s facade gets assigned to pixels located outside the block to which it actually belongs.

If this is the case in one of the acquisitions, it is likely that the layover effect from the other

acquisition will cause the assignment of the backscattering signal from this part of the facade to

pixels located inside the block. This is exemplified by the upper part of Figure 6.7. It shows

a block from the city of Munich containing a high-rise building. Whereas part of the backscat-

tering signal from the facade is assigned to pixels outside the block in the acquisition from the

descending orbit, this effect is reversed in the acquisition from the ascending orbit. In the cases

where only images from the same looking direction are available, the distinction, for example, of

the commonly considered UST class High-Rise Buildings may therefore be compromised.
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Figure 2.7: Layover effect on images from two urban blocks acquired at ascending and descending looking
directions. This effect, depending on the looking direction, as well as the shape, size and position of the
buildings, may cause the shifting of the signal from the facades to be assigned to pixels located outside the
boundaries of the urban blocks. The availability of intensity images from both looking directions increases
the chances of detecting these buildings.

In this context, layover may also hinder the detection of buildings when they are located too

close to the boundaries of the blocks. This is frequently the case with UST classes Regular Block

Development and specially Perimeter Block Development, as shown on the lower part of Figure

6.7. A possible strategy for identifying blocks belonging to this UST class is the detection of

bright straight lines located close and parallel to the boundaries of the block. This strategy will

fail though if such lines lay outside its boundaries. If, however, a second intensity image from

the other looking direction is available, the risk of this happening decreases significantly. It is

also interesting to notice that in neither intensity images alone the whole building is observable.

Instead, corner reflection lines from the four facades can be detected, however in images from

the two different acquisitions. This is then another evidence that having intensity images from

both aspect angles increases the chances of detecting buildings inside urban blocks, what will

presumably increase the USTs classification’s accuracy in the end.

Lastly, it should be stressed that having spaceborne SAR acquisitions from both looking

directions may also be advantageous for the correct distinction of USTs characterized by the

presence of single-family houses. Figure 2.8 depicts two urban blocks from the city of Munich
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that are oficially assigned to the UST class Single and Double House Development. As shown in

the other figures of this section, the blocks were imaged from both looking directions of the TS-X

satellite. It can be observed that at this specific alignement of the houses and incidence angles,

the houses appear much clearer in the acquisition from the ascending orbit. Once again, the

availability of only one acquisition from one of the looking directions could hamper the accurate

classification of these and other similar blocks.
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Figure 2.8: Two urban blocks with single-family houses shown in optical and intensity images obtained by
the TS-X satellite at ascending and descending looking directions. The houses appear much clearer in the
image from the ascending looking direction at this specific case. The availability of only one acquisition
from one of the looking directions could hamper the accurate classification of these and other similar blocks.
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3 Probabilistic Graphical Models

Probabilistic Graphical Models (PGMs) are a general framework for modeling systems that involve

uncertainty and about which we want to reason [Koller & Friedman, 2009]. As it is frequently

difficult to establish deterministic relations between variables, considering uncertainty is essential

in many applications. In the context of PGMs, uncertainty is modeled using probability theory.

PGMs can be of different types and be designed by a human expert or learned automatically

from data. However, they all have in common the fact that they are a graph-based representation

of a joint probability distribution. The graph consists of nodes and edges, where the nodes

represent random variables (i.e. parts of the system) and the edges represent their probabilistic

dependencies. The graph structure encondes the conditional independencies from the variables of

the distribution and, therefore, how it factorizes. Figure 3.1 shows a simple PGM, the conditional

independencies it encodes and how the joint distribution factorizes.

It is knowing how the joint distribution factorizes what makes reasoning on it computation-

ally efficient. This is because usually considerably fewer parameters are needed to represent a

factorized distribution than a joint one. For example, Figure 3.1 (a) shows on the left side a PGM

containing five variables that may assume three values each. To represent a joint distribution of

these five variables, 243 parameters would be needed (3 x 3 x 3 x 3 x 3 = 243). On the other

hand, if it is known that this distribution factorizes according to the graph, only (3 x 3) + (3

x 3) + (3 x 3 x 3) + (3 x 3) = 54 parameters would be enough. The significant lower amount

of parameters needed to represent a distribution with many variables allows the application of

inference algorithms that work directly on the structure of the graph and are used for answering

queries, like the probability of a variable’s assignment given the observed value of other variables

or the most probable joint assignment of all variables. PGMs also offer the advantage that the

graph’s structure is independent from the reasoning algorithm. Thus, editing one does not require

altering the other. Furthermore, the graph usually reflects our understanding of the semantics

of the problem. These advantages, combined with the fact that in many cases each variable is

related to a limited set of other variables, make PGMs largely applicable.

PGMs can be categorized under two different types, namely, Bayesian networks, which are

directed acyclic graphs, and Markov networks, which are undirected and possibly cyclic graphs.

They differ regarding the conditional independencies they can encode and the type of interaction

between two connected variables.

3.1 The Different Types of Models

Bayesian networks are acyclic graphs whose edges are directed and denote the direction of influence

between two connected variables. Each variable in the graph is associated with a Conditional

Probability Distribution (CPD) that defines a distribution over the values of the variable given

each possible joint assignment of values from its parent-variables. Figure 3.2 shows a simple

bayesian network and its CPDs.
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Figure 3.1: Example of a simple Probabilistic Graphical Model. a) The model’s graph representation.
b) The conditional independencies it encodes. c) The factorization of the joint probability distribution
derived from knowing the variables conditional independencies.

Figure 3.2: Example of a Bayesian network and its Conditional Probability Distributions.

Each factor of a Bayesian network is defined by a node Xi and its parent-nodes PaGXi
. The set

of conditional independencies a Bayesian network encodes can then be expressed by the following

rule:

For each variable Xi : (Xi⊥NonDescendantsXi |PaGXi
). In words: Xi is independent from its

non-descendants given its parents.

Like any PGM, the joint distribution it represents can be obtained by a product of factors.

This is expressed formally by the chain rule for Bayesian networks:

P (X1, ..., Xn) =

n∏
i=1

P (Xi|PaGXi
). (3.1)

So, in the case of the network from Figure 3.2 the distribution factorizes as:

P (A,B,C,D,E) = P (A)P (B)P (D|B)P (C|A,B)P (E|C) (3.2)

Bayesian networks have the advantage that when a new variable is added to the model, the

CPD of the other variables do not change, what makes the contruction of such models easier.
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They also can be in general more easely learned from data and admit the application of exact

inference algorithms for performing queries on them [Koller & Friedman, 2009]. However, in many

applications no directionalities in the influence between the variables can be defined. Furthermore,

the relations of conditional independencies between the variables are frequently too complex and

cannot be expressed with a directed model. In these cases, undirected models like Markov Random

Fields (MRFs) can be used.

Because of undirectionality, the factors of a Markov network do not encode a CPD. Rather,

they represent potentials (affinities) between the assignments of the variables in a factor. Figure

3.3 shows a simple MRF, its factors and their potentials, which can be any real positive number.

As in the case of Bayesian models, the joint probability distribution of a MRF can be obtained

through the product of its factors:

P (A,B,C,D) =
1

Z
ϕ1(A,B)ϕ2(B,C)ϕ3(C,D)ϕ4(D,A), (3.3)

where ϕ(Xi, Xj) represents the factor of variables Xi and Xj , as well as their potential function.

Hence, for example, the probability of P (a0, b0, c1, d1) would be calculated as:

P (a0, b0, c1, d1) =
1

Z
ϕ1(a

0, b0) ∗ ϕ2(b
0, c1) ∗ ϕ3(c

1, d1) ∗ ϕ4(a
0, d1) =

1

Z
30 ∗ 80 ∗ 100 ∗ 1, (3.4)

where Z is the normalization term and is calculated by the summation of the product of each

possible assignment of each factor of the network:

Z =
∑
a,b,c,d

ϕ1(a, b) ∗ ϕ1(b, c) ∗ ϕ1(c, d) ∗ ϕ1(d, a). (3.5)

Because of prohibitive computational costs, this term cannot be calculated exactly in most real-

world applications. Instead, some approximate method must frequently be used to perform any

probabilty calculation on Markov networks.

Figure 3.3: Example of a Markov network, its factors and their potentials.

MRFs are said to be more flexible than Bayesian models because they are able to capture more

independency assumptions and because they enable the encoding of interdependencies between
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variables. On the other hand, the parameterization of a Markov network, i.e. the definition of the

factors potentials, is hardly done intuitively because they affect and are affected by the potentials

from the other factors as well.

In many applications, the user is interested in performing only a specific prediction task,

namely, one that concerns a specific set of variables in the network. Usually in these cases all

other variables of the model are observed. Therefore, instead of P (Y,X), it makes more sense to

encode a conditional distribution P (Y |X), where X and Y indicate the observed and unobserved

variables, repectively. Since interest is only in predicting Y given X, it becomes unnecessary

to model the dependencies and conditional independencies between the variables X. Hence, the

model becomes discriminative regarding Y , where at the same time it avoids the modeling of

probabilistic relations between X, which may be complex and not well understood. Conditional

Random Fields (CRFs) are a type of undirected PGMs that encode such a conditional distribution

as:

P (Y |X) =
1

Z(X)

k∏
i=1

ϕi(Di), (3.6)

where Di denotes the scope of factor ϕi, i.e. the variables it involves. In a CRF, the statement

Di ⊆ X does not apply to any of the factors ϕi(Di). In other words, no factor will possess only

observed variables. Another difference to MRFs regards the normalization term Z, which on

CRFs is a function of X:

Z(X) =
∑
Y

P (X,Y ), (3.7)

where P denotes an unnormalized probability function. There will be then a different normaliza-

tion term for each possible joint assignment x from X. Since X is always observed, the model

is conditioned on x. This has the consequence that the model is reduced to a much simpler one.

Figure 3.4 shows a simple CRF model before and after the conditioning on x. No matter how

large the number of potentials from the factors ϕ(xi, yi), what is defined by the cardinality of xi
and yi, once conditioned on xi these factors will be reduced to the number of potentials equal to

the cardinality of yi. The reduced factors ϕ(xi, yi) and ϕ(xj , yj) are then multiplied with factor

ϕ(yi, yj), so that their information is integrated in the reduced model. This multiplication has

the effect of a reparameterization of the factors ϕ(yi, yj). The operations of factor reduction and

factor product are explained in the next section.

Figure 3.4: Conditioning of a CRF model to the observed data x. a) Structure of the model before
conditioning. b) Structure of the model after conditioning.

The flexibility and powerfulness of CRFs come from the fact that it is possible to insert a

large number of observed variables in the model according to domain knowledge without worrying

about their probabilistic dependencies. Nonetheless, even after conditioning the model on x, the

distribution over Y (i.e. over the factors Di ⊆ Y ) usually remains complex enough to make exact

inference intractable. Because of that, a method for approximate inference must be used in order

to perform probabilistic queries in the model.
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3.2 Operations with Factors

As just mentioned, probability queries on MRFs and CRFs cannot be performed with exact

inference methods. This would require the computation of the partition function Z, which is

intractable at pratically any real-world application. Hence, some of the algorithms for approximate

inference on PGMs [Andres et al., 2010] [Kappes et al., 2013] must be used. These algorithms are

based on four operations performed on the model’s factors, namely: product, marginalization,

maximization and reduction.

Factor product, as any of the above operations, can only be performed between two factors

whose scopes have at least one variable in common. So if ϕi(Si) and ϕj(Sj) define two factors

whose scopes are variables Si and Sj respectively, then factor product is only possible if Si∩Sj 6= ∅.
The scope of the resulting factor will be Si ∪ Sj . For example, considering the network shown at

Figure 3.3, a possible factor product operation would be ϕ1(A,B)× ϕ2(B,C). This operation is

shown in Figure 3.5 (a).

Factor marginalization and factor maximization are the main operations involved on inference

on PGMs. Marginalization is performed when the potentials of a subset of variables from a

factor must be computed. Considering the factor ϕ(A,B,C) resulting from the product of factors

ϕ(A,B) and ϕ(B,C), marginalizing out variable A can be expressed as
∑
A

ϕ(B,C). Figure 3.5(b)

shows this operation. In order to marginalize A, the entries from the table on the left side of

Figure 3.5(b) whose values of B and C match should be summed. Factor maximization, or max-

marginalization, is a variant of marginalization in which instead of summing the values from the

matching assignments of the variable to be max-marginalized, only the largest one is passed to

the resulting factor. Therefore, the max-marginalization of variable A from factor ϕ(A,B,C) is

defined as max
A

ϕ(B,C). Figure 3.5(b) shows this operation. The updated potentials from the

resulting factor are shown between parenthesis.

The most simple operation on factors is reduction. It is applied anytime a variable in the

model is observed. Then all the factors containing that variable are reduced. When a factor is

reduced, all its entries that do not match a specific assignment from one or more variables in this

factor are eliminated. Figure 3.5(c) shows the reduction of factor ϕ(A,B,C) to the case where

C = c1.

3.3 MAP - Maximum A Posteriori Estimation

Image classification with PGMs consists in approximately estimating the maximum a posteriori

(MAP) probability of Y given the observed x (arg max
Y

P (Y |x)). That is, estimating the assign-

ment of Y given x for which P (Y |x) is the highest. One of the most commomnly used methods

for inferring this MAP assignment is called Loopy Belief Propagation (LBP) [Kschischang et al.,

2001]. The LBP algorithm is based on a so-called cyclic cluster graph. Firstly, it is described how

a cyclic cluster graph is constructed and what properties it must have. Then, it is explained how

the loopy message passing procedure enables the estimation of the MAP assignment.

If ξ is a PGM over variables V and with n factors ϕ, then a cluster graph Ψ is an undirected

graph where each node is called a cluster C and Ci ⊆ V for each Ci. Each edge between two

clusters Ci and Cj is associated with the sepset Si,j , such that Si,j ⊆ Ci ∩ Cj . A cluster graph

must have two properties:

• Family Preservation: each factor ϕk from ξ is associated to one cluster Ci in Ψ such that

Scope[ϕk] ⊆ Ci. More than one factor ϕk may be associated to Ci. In this case, these two
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Figure 3.5: Examples of factor operations. a) Factor product. b) Factor marginalization and factor
maximization (values showed in parenthesis). c) Factor reduction.

or more factors are multiplied, which implies that they must have at least one variable in

common.

• Running Intersection: a cluster graph Ψ has the running intersection property if every

variable x ∈ Ci and x ∈ Cj is present in every cluster and subset in the unique path between

Ci and Cj . It also assumes that such path exists.

The family preservation property guarantees that each factor of ξ is present in exactly one cluster

of Ψ . The running intersection property guarantees that there is no self-reinforcing loops regarding

the beliefs from any variable in Ψ . Figure 3.6 shows a hypothetical PGM (a), an illegal cluster

graph constructed out of it (b) and a legal one (c). In (b) there is a self-reinforcing loop between

clusters 1, 2 and 4 concerning variable B. The beliefs regarding this variable are self-confirmed

because they influence the beliefs about B from the same clusters it now receives information

about it. This problem is solved in the cluster graph depicted in (c). It respects the family

preservation for the graph in (a) and it has the running intersection property concerning all its

variables.

Fortunately, there is a generic type of cluster graph that guarantees these two properties and

that can be easily constructed independently from the complexity of ξ. These cluster graphs are

called Bethe graphs [Koller & Friedman, 2009] and they have two layers of clusters. One layer

contains exactly one cluster Ck for each factor ϕk of ξ such that Scope[ϕk] = Scope[Ck]. This

guarantees family preservation. The second layer contains univariate clusters with each variable

xi ∈ ξ. An edge is then defined between the clusters Ck of the first layer and the univariate

clusters of the second layer whose variables xi ∈ Ck. Figure 3.7 shows the Bethe graph for the

undirected PGM shown in Figure 3.6 (a).
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Figure 3.6: An undirected model and one example of an ilegal and of a legal cluster graph. a) Hypothetical
Markov network. b) Cluster graph disrespecting the running intersection property for variable B. c)
Example of a valid cluster graph for the respective Markov model.

The LBP algorithm transmits messages between every pair of connected clusters in the cluster

graph. Messages have a direction. Hence a cluster graph with ten edges has twenty messages: one

going from each cluster Ci to Cj and one going for each cluster Cj to Ci. The messages update

the so-called beliefs about the variable(s) in the sepset from the two connected clusters Ci and

Cj . The update of the beliefs is computed in the following way. Let ψi be the product of all

factors from ξ associated to cluster Ci. For example, cluster C1 from Figure 3.6 (c) is defined by

the product of factors ϕ(A,B) and ϕ(B,C) from Figure 3.6 (a). The message from cluster Ck to

Ci is defined as δk→i. The beliefs of subset Si,j at loop τn are defined as:

τn(Si,j) = max
Ci−Si,jψ(Ci)

, where ψ(Ci) = ψi.
∏

k∈(Nbi−{j})
δk→i (3.8)

Each loop τn is completed when exactly one message is sent over each edge in each direction.

This implies the updating of all beliefs. Since each cluster can only send a message after it has

received the messages from all its neighbors except the one to which it is transmiting the message,

the algorithm is initialized by setting an unit function for every sepset. This allows the algorithm

to start with any message.

Strictly speaking, LBP will have converged when for each sepset Si,j the following condition

holds:

τn−1(Si,j) = τn(Si,j) (3.9)

This implies that every message in loop n is the same as in the previous loop. In reality, this may

never occur, so the user is obligated to set a limited number of loops and/or apply a smoothing

factor to the update of the messages:

δni→j = λ(δni→j) + (1− λ)δn−1i→j (3.10)

When λ = 1, no smoothing takes place and when 0 < λ < 1 the updated message gets averaged

to its older one to the extent of 1− λ.

Once convergence is obtained, the approximated max-marginals of all variables have to be

decoded in order to identify the most probable joint assignment. This is done by first multiplying
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each cluster with all its incoming messages. Following, the most probable assignment at each

cluster Ci must be consistent with the most probable assignment of all other clusters that contain

any of the variables from ψi(Ci). Figure 3.8 shows the pseudo-code of the Max-Product Belief

Propagation inference algorithm, which is one variant of LBP. The other variant, called Max-Sum

Belief Propagation, differs in the fact that product is substituted by summation and the factor

potentials are previously transformed to logarithm form.

Figure 3.7: Bethe graph for the undirected graph of Figure 3.6 (a).

Procedure Initialize Bethe Graph;

Clusters are equal to the factors of the graph;

for each cluster Ci do

βi ←
∏

ϕ : a(ϕ)=iϕ;

end

Initialize all values of all messages to 1 ;

for each edge (i− j) ∈ ξ do

δi→j ← 1;

δj→i ← 1;

end

Procedure Run Massage Passing Belief Propagation;

while convergence is not achieved do

Select (i− j) ∈ ξ;
δi−j(Si,j) ← Procedure Max-Product Message(i, j) ;

end

Procedure Max-Product Message;

i = sending clique;

j = receiving clique;

ψ(Ci) ← ψi.
∏

k∈(Nbi−{j})δk→i;

τ(Si,j) ← maxCi−Si,j ψ(Ci);

Procedure Compute Final Beliefs;

for each clique i do

βi ← ψi.
∏

k∈Nbiδk→i;

end

Figure 3.8: Pseudocode from the Max-Product Belief Propagation algorithm.
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3.4 Remote Sensing Image Classification with Probabilistic Graph-

ical Models

The apporaches for the classification of remote sensing images with PGMs can be categorized into

two general types, namely, standard site-based and context-based classification. On site-based

approaches, the class assignment of an image site, which is usually a single pixel or an image

segment, is not influenced by the class assignments of its neighboring sites. Instead, only the

variables of the site itself, which might eventually express some characteristics of its context,

can influence its class assignment. The most frequently used type of PGM in these cases are

Bayesian networks, which have been applied, for example, for land cover classification [Dlamini,

2011] [Mukashema et al., 2014], land use classification [Ropero et al., 2015] and the estimation

of geo/biophysical parameters [Qu et al., 2008]. On the other hand, context-based classification

with PGMs refer to the cases where there is mutual influence between neighboring image sites

regarding their class assignments. In other words, there is probabilistic dependence between their

unobserved variable class. In these cases, an undirected PGM must be used, for no directional

causality can be established between the variable class of neighboring image sites.

To elaborate on how PGMs can be used for context-based image classification, some basic

notation must first be defined. We denote i and j as two neighboring image sites and si and ci
respectively as the observed attributes and the unknown class label from i. The aim is to predict

the set of labels C = {ci, cj , ..., cn} given the observed image data set I = {si, sj , ..., sn} by means

of a factorized probabilistic distribution. The factorization of such a distribution can be, though

not always completely, visualized and represented as a graph G = {V,N} defined by a set of nodes

N = {nsi , nci} and vertices V = {vscii , vccij , vcsij , vssij }. Although in theory G may have any possible

structure (i.e. it may contain even all of the four types of vertices in it), the most commonly used

structures for image filtering, segmentation and classification are the ones depicted in Figure 3.9

(a) and (b). In these graphs, each image site i has one node nci (shown in pink) and at least one

nsi (shown in blue). The latter represents an observed attribute from i, the former its unknown

class label. Also, these graphs have only factors with two variables each connected by vertices of

two types, namely vscii and vccij .

Figure 3.9: Commonly used structures of undirected graphs in image analysis applications. Blue and pink
nodes represent observed and unobserved variables respectively. a) Regular grid structure used for the case
when image sites are single pixels. b) Irregular grid, or region adjacency graph, used for the case when
image sites are image segments. c) and d) Reduced Markov networks from (a) and (b) respectively after
conditioning it on the observed variables. The nodes of the reduced graphs are depicted over the image
sites they represent.
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Formally speaking, the graphs in Figure 3.9 (a) and (b) represent MRFs models, i.e. they

express the factorization of distributions of the type P (C, I). These models can be formulated as

the following product of factors:

P (C, I) =
1

Z

∏
ci∈C

ϕ(ci, si)
∏

vi,j∈V
ψ(ci, cj). (3.11)

The terms ϕ(ci, si) are called association factors and define a function f(si, ci) → p′, where p′

is the local class potential p′(ci|si). In other words, it defines the potentials of each possible k

label cki given the observed data at site i. The terms ψ(ci, cj) are called interaction factors and

define the potentials of each combination of values (cki , c
k
j ) from two neighboring sites i and j.

Z is the normalization term. In the above models, the number of association factors is equal to

the sum of neighboring sites j from each site i. Two sites can be considered neighbors based on

different criteria, such as the euclidean distance or the adjacency between them. It should be

noticed that a graph G will fail to represent the factorization of a distribution if the scope of at

least one factor has more than two variables. Consider for instance the graph from Figure 3.9(b).

It is impossible to know whether the distribution factorizes with seven association factors and ten

pairwise interaction factors, or instead with seven association factors and four third-order factors,

i.e. factors whose scopes have three random variables each. In this last case, the interaction

factors would be of higher-order (generic name given when the model has factors with more than

two variables) and equation 3.11 would be altered to be as follows:

P (C, I) =
1

Z

∏
ci∈C

ϕ(ci, si)
∏

vi,j∈V
ψ(ci, cj , cm), (3.12)

where sites i, j and m are considered to be mutual neighbors according to some criterium. Exam-

ples of image segmentation and labelling using higher-order PGMs can be found in Kohli et al.

[2009] and Wegner et al. [2013].

Whether higher-order or not, the great flexibility of such models lies in the fact that there

is complete freedom in defining the association and interaction potentials. In fact, they can

be defined (1) by some function, (2) empirically by the user or (3) learned through supervised

convex optimization [Lee et al., 2007] [Ganapathi et al., 2008] [Koller & Friedman, 2009]. Defining

the potentials empirically is subjective and may become overly time-consuming. Learning them

through optimization requires a large amount of training data [Koller & Friedman, 2009], specially

when the cardinalities of the variables are high. Besides, experiments shown in Novack & Stilla

[2014b] were not encouraging for the same application of this thesis. The option of defining

the potentials by a function is on the other hand a convenient one. A standard procedure for

defining the association potentials has been the use of powerfull classifiers to compute p′(ci|si),
such as Support Vector Machines [Schnitzspan et al., 2008] [Zhong et al., 2014] or Random Forest

[Niemeyer et al., 2013] [Novack & Stilla, 2015]. These powerfull classifiers can deal with many

observed attributes from each i, in spite of those being continuos or sometimes inexpressive or

correlated with each other. This makes the association potentials already very discriminative,

hence increasing the chances of obtaining better results. The interaction potentials in their turn

can be defined without much effort based on empirical knowledge or on collected samples. This

is because the number of (cki , c
k
j ) combinations is only of n(n+1)

2 , if we assume that the cardinality

of ci is of n for all sites.

Since the sites attributes I are always observed, the association factors are always reduced to

n potentials, i.e. one for each n possible outcomes of ci. After multiplying each of the reduced

factors ϕ(ci, si) and ϕ(cj , si) to the respective ψ(ci, cj), the graph becomes conditioned on I and

the interaction factors get re-parameterized. Accordingly, the graphs of Figure 3.9 (a) and (b)
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after being conditioned on I and reduced look like the ones depicted in Figure 3.9 (c) and (d).

It can be argued that such models actually enconde a conditional distribution P (C|I), since I is

always observed and G always reduced to this observation. This would characterize these models

as CRFs, given that Z becomes a function of I. In fact, a CRF is a special case of a MRF.

Koller & Friedman [2009] defines a CRF as a undirected model which in all of its factors there

is at least one unobserved variable. Other authors though prefere to define CRFs as when the

interaction potential functions are a function of the observed variables as well [Kumar & Hebert,

2006] [Schnitzspan et al., 2008], as for example in the following model:

P (C, I) =
1

Z

∏
ci∈C

ϕ(ci, si)
∏

vi,j∈V
ψ(ci, cj , si, sj). (3.13)

Frequently, the image analysis problem at hand requires performing a specific prediction task

with a model whose most variables are observed. In this context, one is not interested in estimating

actual probabilites, but instead the outcome of C with the highest likelihood. Therefore, the

partition function Z can be ignored. Also, because summations are better to deals with than

multiplications, undirected models such as the MRF and the CRF shown in equations 3.11 and

3.13 can be reformulated to their corresponding energy functions:

MRF: E(C) =
∑
i∈S

ϕ(si, ci) +
∑
i∈S

∑
j∈Ni

ψ(ci, cj), (3.14)

CRF: E(C) =
∑
i∈S

ϕ(si, ci) +
∑
i∈S

∑
j∈Ni

ψ(ci, cj , si, sj). (3.15)

Formulated as an energy function, the association and interaction potential functions from a

model are transformed to their logarithm form. Consequently, the MAP configuration of C can

be obtained by minimizing E(C), since

E(C) ∝ − logP (C|I) (3.16)

and therefore

CMAP = arg max
C

P (C|I) = arg min
C
E(C). (3.17)

This minimization can be performed without a problem, for example, with the LBP algorithm

presented in Section 3.3. The only changes required are then the substitution of the multiplications

by summations and the transforming of the association and interaction potentials to their negative

logarithm form.

A convenient and common strategy for defining the potentials of the interaction factors of the

MRF from equation 3.14 is through a Potts model:

ψ(ci, cj) =

{
0 if ci = cj

1 if ci 6= cj
. (3.18)

The Potts model forces any two neighboring sites indiscriminately to assume the same class

label, creating therefore the effect of smoothing the spatial distribution of C by penalizing the

energy everytime two neighbors should get different classes assigned to them. Obviuosly, this is

compensated and regulated by the association potentials internally to the optimization process

for inferring the CMAP . In the context of CRFs, the potentials of the interaction factors may be

defined on the other hand by a less brute and more flexible approach called generically contrast-

sensitive Potts models [Hao et al., 2014]. These models have, for example, the form:

ψ(si, sj , ci, cj) =

{
0 if ci = cj

− ln
(
‖µi − µj‖2

)
if ci 6= cj

, (3.19)
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where µi is the feature vector of site i with each feature m rescaled to the unit length as follows:

µmi
′ =

µmi −min(µm)

max(µm)−min(µm)
. (3.20)

The potential function shown in equation 3.19 has the effect of penalizing the energy if the class

of neighboring sites are different in proportion to the similarity of their feature vectors. In other

words, the more similar their feature vectors are, the stronger the penalty will be. It is evident

that many other criteria for penalizing the energy may be introduced as a contrast-sensitive Potts

model. Whether as a MRF or a CRF, the interaction factors can be multiplied by a constant as

a way to adjust the influence and consequently the degree of smoothing caused by the interaction

potentials.

Another interesting property of undirected PGMs is that the model does not need to be

limited to the association and interaction terms shown in equations 3.14 and 3.15. Other potential

functions can be inserted as additional terms in the energy function. Each additional term is just

another group of factors, each with at least one unobserved variable in it. A model for performing

contextual and multitemporal classification may be defined, for example, by inserting a temporal

interaction term to equation 3.14:

E(C, S) =
∑
i∈S

ϕ(ci, si) +
∑
i∈S

∑
j∈Ni

φ(ci, cj) +
∑
i∈S

∑
k∈Et

∑
l∈Lk

i

ψ(sti, s
k
l , c

t
i, c

k
l ), (3.21)

where t and k are two neighboring epochs. Et = {t− 1, t+ 1} is the set of temporal neighbors

from epoch t. Lki is the set of image sites l that occupy the same spatial area as i but in epoch k

instead of i. The temporal interaction potential models the dependency between the class labels

and the observed data at consecutive epochs. Its potential function can be based on a transition

matrix in which the conditional probabilities P (cti|ckl ) for all n ∗n label combinations are defined.

Examples of such similar models can be found in Bruzzone et al. [2004], Feitosa et al. [2009] and

Hoberg et al. [2015]. Besides multi-temporal classification, the tasks of multiscale [Su et al., 2011]

and hierarchical [Alioscha-Perez & Sahli, 2014] classification of remote sensing imagery have also

been performed with undirected PGMs with additional terms. Indeed, this possibility together

with the freedom in defining the potential functions and the eventual consideration of higher-order

factors is what makes PGMs highly attractive for the contextual classification of different remote

sensing imagery in different applications.
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4 Methodology

This chapter describes the methodological steps employed in this thesis. They are interconnected

according to the flowchart shown in Figure 4.1. The paralelograms represent input data, the cubes

represent processes and the rectangles represent the outcome from the processes. The concept

feature refers to entities extracted from the images, as for example lines and polygons. The

concept attribute refers to a variable that assumes a numerical value at each different instance,

for example an urban block’s area.

The following sections describe the main processes depicted in Figure 4.1 as well as other

related steps. These main processes are: (1) extraction of urban blocks, (2) extraction of features

inside the blocks, (3) computation of attributes from the blocks based on their features, (4) USTs

classification and (5) USTs contextual classification.

4.1 Extraction of Urban Blocks

In this thesis, the image regions considered as analysis elements are urban blocks. These were

extracted by firstly defining the study area as the intersection between the SLC image pairs.

Following, the streets, rivers and railroads network was overlaid onto the study area. The blocks

were then extracted as the closed regions whose borders coincide with the network. Blocks that

were not entirely located inside the study area were excluded from the subsequent analysis.

4.2 Extraction of Features

One of the most important methodological steps of this thesis is the extraction of features inside

the urban blocks. It is the geometrical properties and the spatial disposition of the features what

gives the most expressive evidences about the built-up structure of the blocks. Therefore, a lot of

efforts were put on the development of effective strategies for extracting meaningful features from

inside the blocks. The next section describes the general feature extraction and analysis strategy.

The subsequent ones describe the specific procedures employed for the extraction of the different

types of features.

4.2.1 Extraction and Analysis Strategy

The streets, rivers and railroads network was converted from the WGS-84 coordinate system

to the acquisition coordinate system, i.e. to the range and azimuth coordinates of the SAR

image. In this system, all pixels in one of the image’s columns correspond to the same SAR

incidence angle, as all pixels in one line correspond to the same SAR azimuth instant. Figure

4.2 shows the intensity image and the boundaries of an urban block in WGS-84 and acquisition

coordinates. From the perspective of feature extraction strategies, it is preferable to keep the

images in acquisition geometry and know exactly the range and azimuth directions. In Figure

4.2 (a), for example, it can be seen that bright corner reflection lines will most probably appear
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Figure 4.1: Methodological flowchart adopted in this thesis. The paralelograms represent input data, the
cubes represent processes and the rectangles represent the outcome from the processes. The sections of
this chapter in which the process are explained are indicated in the cubes.
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perpendicular to the range direction. This facilitated the extraction of lines and increased the

expressiveness of texture measures, what will be discussed in the respective sections.

In order to correctly calculate the geometric properties and position of the extracted features

(e.g. length, area, orientation, distance to closest block boundary etc.), their coordinates, as

well as those from their respective urban blocks, were reprojected from acquisition to WGS-84

coordinates and then from these to the local Gauss-Kruger (GK) - Zone 12 coordinates. The trans-

formation from WGS-84 to GK-Zone 12 was performed by undertaking the steps and considering

the parameters indicated by Wasmeier [2006].
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Figure 4.2: SAR intensity image and boundaries of an urban block shown in two different coordinate
systems. a) Intensity image and boundaries of a block shown in acquisition geometry. b) Same intensity
image and block boundaries projected to the WGS-84 coordinate system. Keeping the images in acquisition
geometry facilitated the extraction of lines and increased the expressiveness of texture measures, as it will
be discussed.

4.2.2 Extraction of Dark and Bright Areas

In SAR coherence images, as discussed in Section 2.3, bright and dark areas frequently correspond

to sealed and vegetated areas respectively. In intensity images they are usually the consequences

of the SAR-inherent corner reflection and shadowing effects, which in urban areas are dependent

mainly on the buildings shape and orientation. The amount and geometrical properties of bright

and dark areas are thus assumed to be closely related to the built-up structure of the urban

blocks.

The extraction of these features was performed in the simplest way, namely, through thresh-

olding of the input images. This operation creates a binary image based on a threshold value T

and the following rule:

p(x, y) =

{
0 if g(x, y) < T

1 if g(x, y) > T
, (4.1)

where p(x, y) and g(x, y) are respectively a pixel position and its grey value. This exact rule

was applied for extracting bright areas from the intensity and coherence images, whereas for the

extraction of dark areas the inequality signs of equation 4.1 were obviously inverted.

After each thresholding operation, connected components (CCs) were created from the pixels

with value 1 using the eight-pixel connectivity criterion [Gonzalez & Woods, 2001]. The area,

orientation, and compactness of each CC were then computed and recorded.
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4.2.3 Extraction of Lines

The number, length, position and orientation of lines extracted inside the urban blocks are very

important evidences on their built-up structure. Therefore, a strategy was developed for extract-

ing lines from the intensity images from each block. This strategy is summarized in the following

workflow:

1. Edges Extraction → 2. Binarization → 3. Extraction of Lines→ 4. Projection of Lines→
5. Filtering of Lines

The extraction of edges was performed by applying the Kirsch edge detector [Kirsch, 1971] over

the intensity image of each block. The outcome of this step is an edge image E with the estimative

of the edge gradient magnitude at each pixel. This is done by convolving the image I with different

kernels g(z):

En,m = max
z∈[1,...,8]

1∑
i=−1

1∑
j=−1

g
(z)
ij × In+i,m+j , (4.2)

such that z ∈ [1, ..., 8] represents the compass directions ordered as N, NW, W, SW, S, SE, E and

NE. The kernel used is always the same but rotated counterclockwise in 45◦ each time z changes

from z to z + 1. Therefore:

g(1) =

 +5 +5 +5

−3 0 −3

−3 −3 −3

 , g(2) =

 +5 +5 −3

+5 0 −3

−3 −3 −3

 , g(3) =

 +5 −3 −3

+5 0 −3

+5 −3 −3

 , ... etc.

After creating the edge image, it was binarized by the application of a global empirically de-

fined threshold. Following, lines were extracted from this binary image using the Progressive

Probabilistic Hough Transform (PPHT) method [Galamhos et al., 1999].

The standard version of this method, named Hough Transform [Duda & Hart, 1972], consists

in representing lines with parameters r and θ. r is a vector that starts at the lower left origin of

the image and ends at the closest point in the infinite line that goes through coordinate (i, j). θ

is the angle between vector r and the x-axis of the image. Each possible line that goes through

the image coordinate (i,j) will have an unique coordinate in Hough space (r ∈ R, θ ∈ [0, π]) and

is defined as a function of θ : r(θ) = |i cos θ + j sin θ|. One additional vote is then accumulated

in the Hough space at each of these coordinates. This procedure is applied for every pixel (i, j)

of the binary image whose value equals 1. Hough space coordinates with many votes define the

parameters of pertinent lines in the image.

The problem however with the conventional Hough Transform is that it extract lines of infinite

length parameterized only by its angle and distance from the origin. The PPHT method in

the other hand is able to extract finite lines during the voting process by looking along the

line’s corridor and finding the longest segment of pixels either connected or separated by a gap

not exceeding a given threshold [Galamhos et al., 1999]. The extraction of finite lines enables

the calculation of their length. The following parameters of the PPHT method were defined

empirically: (1) voting threshold : return only lines with number of votes larger than threshold;

(2) min. line length: shorter lines get discarded and (3) max. line gap: merge two lines if their

gap is shorter than parameter. Figure 4.3 depicts the results from the first three steps of the

workflow for extracting lines inside the urban blocks.

It can be noticed from Figure 4.3 (e) that many extracted lines are redundant. The extraction

of redundant lines is an inexorable effect of the PPHT method and the input binary image. In

order to filter redundant ones, the lines were projected from acquisition to GK-Zone 12 coordinate
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Figure 4.3: Partial results of the line extraction strategy. a) Input intensity image of an urban block. b)
Edge image derived with the Kirsch [1971] filter. c) Binarization of the edge image through thresholding.
d) Extraction of finite lines from the binary image using the PPHT method. e) Extracted lines overlaid
onto the intensity image.

Line inherent:
Lenght
Orientation

Line to line related:
Distance to closest line
Orientation difference to closest line
Shortest distance between line and the most parallel line
Shortest distance between line and the most perpendicular line
Proportion between length of line and length of the closest line

Line to block boundaries related:
Distance to closest block boundary
Orientation difference to closest block boundary
Shortest distance between line and the most parallel block boundary
Shortest distance between line and the most perpendicular block boundary
Proportion between length of line and length of the closest block boundary

Table 4.1: Attributes computed for each line extracted inside each urban block.

system and their lengths and orientation were computed. Following, lines were kept, merged or

eliminated according to basic criteria of proximity, joint length and relative orientation between

every pair of close lines. Figure 4.4 shows in GK-Zone 12 coordinate system the boundaries of

the urban block from Figure 4.3 and its extracted lines before and after the line filtering step.

The green boxes show in detail that most redundant lines were successfully eliminated. For each

of the remaining lines the attributes listed in Table 4.1 were computed.
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Figure 4.4: Example of the line filtering step. a) Boundaries and extracted lines from the block shown in
Figure 4.3 projected to GK coordinate system. b) Lines before filtering shown in detail. c) Block lines
remained after the filtering step. d) Remaining lines shown in detail.

4.2.4 Extraction of Polygons

Polygons were extracted with the aim of detecting as accurately as possible compact features

that indicate the presence of buildings in the urban blocks. For that, a strategy was developed

consisting of a top-down followed by a bottom-up step.

The top-down step consists in the creation of a Max-Tree from the intensity image of each

block, whereas the bottom-up step consists in the filtering of meaningful nodes from the tree. A

Max-Tree is a hierarchical represention of the structure of an image concerning its pixel values

g(x, y) [Salembier et al., 1998]. It is created by a sequence of image binarization steps - each

of which consisting in the application of equation 4.1 - for n different thresholds T , such that

T0 < T1 < T2 < ... < Tn. At each binarization step, CCs are created which are represented as

nodes in the tree. A tree has the amount of levels equal to the chosen number of binarization

steps. Two CCs extracted respectively at binarization steps performed with Ti and Ti+1 are

parent and son if CCTi(g) ∩CC
Ti+1

(g) 6= ∅, then surely CC
Ti+1

(g) ⊆ CC
Ti
(g). In this case, a directed edge

is set in the tree from CCTi(g) to CC
Ti+1

(g) . Figure 4.5 illustrates the creation of a Max-Tree from

a synthetic image with four binarization levels. Min-Trees are exactly the same as Max-Trees,
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only that the signs of equation 4.1 are inverted and T0 > T1 > T2 > ... > Tn. Max-Trees were

created for the extraction of bright polygons and Min-Trees for the extraction of dark polygons. In

both cases, each CC was approximated to a smoother polygon by the Douglas-Peucker algorithm

[Douglas & Peucker, 1973] and then projected to GK coordinate system. After that, the CCs

area, compactness and length-to-width ratio were computed and stored in their respective nodes

in the tree.

Figure 4.5: Example of a Max-Tree with four binarization levels created from a synthetic image. The
tree nodes IDs are coded with capital letters. a) to d) CCs extracted with thresholds T0 to T3 and the
respective nodes in the tree. Son-nodes are always entirely comprised in their parent-nodes.

Max- and Min-Trees are very effective for extracting meaningful polygons from images. How-

ever, the best of these polygons, approximated from CCs and represented by nodes in the tree,

cannot be selected simply based on their attributes. This is because there might be spatial con-

flicts between them. This is exemplified by nodes G and D from the Max-Tree from Figure 4.5.

It would make no sense, for example, to consider both of these nodes as representing features

from two different buildings. Rather, one has to choose between keeping D and discarding all of

its successors, or instead to keep G, and maybe F also, and discard all its ancestors. The selec-

tion/discard of polygons and hence the solving of spatial conflicts was performed at the bottom-up

step of the polygon extraction strategy.

The bottom-up step, as the name implies, starts at the leaf nodes and goes up the tree

comparing each node with its parent. At each comparison one of the nodes is discarded, namely,

the one that matches the least the expected type of polygons. This matching is measured by

pertinence functions which express in the interval from 0 to 1 how similar a node is, regarding a

specific attribute, from an ideal polygon. As mentioned, three attributes were considered: area,

compactness and length-to-width ratio. The pertinence values from each of these three attributes

have to be somehow aggregated into a total pertinence value. The way in which this was done

is shown in Figure 4.6. Firstly, the nodes attribute values are normalized according to certain

boundary values and submitted to their associated pertinence functions. The pertinence values

are then aggregated to a total one according to a simple hierarchy of aggregation operators.

Finally, the node with highest total pertinence is kept. In case it is the son of the node against
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with it is competing, it gets reconnected to its grand-father, which is the node it will be compared

with in the next step of the bottom-up process.
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Compactness:
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0.11

Figure 4.6: Bottom-up process for selecting meaningful polygons from the Max- and Min-Trees. a) In
each of the tree’s node the attributes of the polygon it represents are stored in normalized form. b) The
pertinence functions to which the node’s attribute values are submitted (according to the color association
shown here). c) Hierarchy of aggregation rules responsible for computing a single pertinence value for each
node. d) The two possible restructuring of the tree after the discard of the node with lowest pertinence.

The final result is a block’s set of polygons with no spatial overlap. Polygons with pertinence

value under a certain threshold were discarded. The remaining ones are expected to match to a

good extent the sorts of polygons that ideally represent building features in the SAR-intensity

image. The advantage of this strategy is that no segmentation is performed, what spares the

sometimes unintuitive tunning of segmentation parameters. The only parameters that have to

be set are the thresholds Ti and the pertinence functions, which can be standard ones like the

gaussian, the sigmoid or the linear function.

4.3 Urban Block Attributes

In this section, the attributes from the urban blocks that were considered for USTs classification

are described. These attributes are of three types, namely, (1) attributes computed from the CCs
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of dark and bright areas, (2) attributes that describe the urban blocks according to the composition

and configuration of lines and polygons inside them and (3) texture attributes extracted from the

interferometrically derived DEM.

4.3.1 From Dark and Bright Areas

After extracting bright and dark areas from the coherence and intensity images and computing

the CCs area, orientation and compactness, several composition attributes expressing the number,

proportion and general geometric properties of each CC type were computed for each urban block.

Some of these attributes were presented in equations 2.1 and 2.2. The complete list of these

attributes, as well as the threshold values applied for extracting each type of CC are presented in

Chapter 5.

In addition to these composition attributes, Multidimensional Profiles (MDP) were also gen-

erated from the extraction of bright and dark areas. A MDP is a sequence S of multivariate

observations xi(t) ∈ [i = 1, ..., n; t = 1, ...,m], where xi indices a variable from the observation t.

It is assumed that the observations are logically ordered, as in a time-series analysis or in a sys-

tematic altering of parameters. MDPs can be represented as a observations× variables (n×m)

matrix or as a profile in feature space, where one axis of the space represents the observations t

and the other axes the variables xi computed at each t. In the present context, t is a threshold

value and the xi variables are the composition attributes computed from the extracted CCs.

4.3.2 From the Extracted Lines and Polygons

As another way to describe the built-up structure of the urban blocks, several attributes were

computed which regard the geometrical properties and the spatial configuration of lines and

polygons inside the blocks. Such attributes were conceived with the aim to objectively express

the signs considered by a human interpreter when visually distinguishing USTs on remote sensing

images. Such attributes can be assigned to one of the following types:

• Composition attributes. Examples: Number of lines, Number of polygons larger than 500

m2.

• Proportion attributes. Examples: Proportion between the number of lines and the number

of block boundaries, Proportion between the joint area of all polygons and the block’s area.

• Descriptive attributes. Examples: Mean length of lines, Area of largest polygon.

• Feature-Feature configuration attributes. Examples: Number of pairs of perpendicular lines,

Standard deviation of the distance between parallel polygons.

• Feature-Block Boundary configuration attributes. Examples: Distance between the largest

line and the closest block boundary, Orientation difference between the largest polygon and

the block boundary most parallel to it.

As explained in Section 4.2.1, these attributes were computed with the features and the blocks

boundaries coordinates projected to the local GK-Zone 12 coordinate system. The distance

between polygons was measured between their centers of mass. The distance between lines was

computed as the distance between their closest points. The complete list of these five types of

attributes is presented in Chapter 5.

The spatial configuration of polygon features inside the blocks was also described based on

network-based attributes. Thus, for each block a network was created in which the nodes represent
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the polygons inside it and the edges define contextual relations between them. The networks

were created in the following way. At each polygon’s center of mass a node was set. Then, edges

between each node and its two nearest-neighbors were created. Finally, each node was associated

with the attributes of the polygon it represents. These attributes are: area, compactness, length

to width ratio, orientation, distance to closest block boundary, orientation difference to closest

block boundary and pertinence. Also, the edges connecting every two nodes were associated with

the attributes distance between the nodes, orientation difference between the polygons and mean

pertinence of the polygons. Figure 4.7 shows the network created from the polygons extracted

inside an urban block. Several properties of the networks structures were extracted and considered

as attributes from the respective blocks.

Another set of network-based attributes considered in this thesis concerns the spatial auto-

correlation of the polygons (i.e. the nodes) attributes. A network’s spatial autocorrelation is a

measure of the extent to which connected nodes tend to have similar values regarding a given at-

tribute. A common way to measure the spatial autocorrelation of a network’s attribute is through

the Moran’s Index I [Moran, 1950], which is computed as:

I =
n∑

i

∑
j
wij

∑
i

∑
j
wij(xi − X̄)(xj − X̄)∑
i

(xi − X̄)2
, (4.3)

where xi is the value of node for variable x, X̄ is the mean value of x and wij is an element of a

matrix of spatial weights. The weights are defined as zero when two nodes are not connected and

as their normalized distance otherwise.

The justification for considering spatial autocorrelation measures as a block’s attributes is that

some USTs are characterized by the presence of buildings with similar geometrical properties and

constant relative orientation. In these cases, the Moran’s Index is expected to be higher. This

is also expected to happen when two similar polygons resulting from the extraction of a bright

and a dark area are found very close to each other, what indicates the presence of a well-detected

building.

4.3.3 From the Digital Elevation Model

As discussed in Section 2.3, DEMs generated from spaceborne InSAR data are not very expressive

regarding the built-up structures from urban blocks. Nevertheless, it was assumed based on visual

analysis that texture measures could be to some extent informative for the block-based distinction

of USTs. Hence, Histograms of Oriented Gradients (HOGs) [Dalal & Triggs, 2005] were explored

as texture descriptors.

The first step for the generation of HOGs is the computation of the gradient images in x and

y directions by performing convolution filtering repectively with kernels [−1, 0, 1] and [−1, 0, 1]T .

The second step is the creation of a histogram whose n bins represent different orientations from

0◦ to 180◦ discretized into n intervals. This histogram is accumulated by letting each pixel in the

block to cast a weighted vote to each bin. The magnitude |∇| and orientation θ of the gradient

from each pixel define respectively the weight of the vote and to which orientation bin the pixel

votes. These two measures are computed as follows:

θ = atan2 (dx, dy) , |∇| =
√
dy2 + dx2. (4.4)

A single unnormalized histogram with eight bins was accumulated for each urban block and each

of the two DEMs. These eight bins values were used as attributes in the UST classification.
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Figure 4.7: A network connecting the extracted polygons from an urban block. a) The extracted polygons
and boundaries from an urban block shown in acquisition coordinates. b) The boundaries and polygons
from the same block projected to GK coordinates. From the projected polygons in (b) a network was
defined where nodes are set on the center of mass from each polygon and edges are defined between each
node and its two-nearest neighbors. Block attributes are then computed as the structural properties of the
network as well as the spatial autocorrelation measurements concerning the nodes attributes.

4.4 Urban Structure Types Classification

This section presents the two approaches with which the classification of USTs was performed.

The classification results served as a basis for measuring the increase of accuracy achieved when

context is considered in the classification and, as it will be explained, as a integrated part of the

contextual classification approaches that are proposed in this thesis. Before that, however, the

process of class generalization is addressed.

4.4.1 Class Generalization

Class generalization is the process of grouping specific classes into more general ones based on

certain criteria. The criteria applied for grouping the specific UST classes were their physical and

principally semantic similarities. The grouping of classes is inevitably subjective and dependent

on the specific study area and other boundary conditions, such as the type of utilized remote

sensing data and the ultimate use of the final classification. The official UST classes from the

study area and their generalization are presented in Chapter 5.

4.4.2 Comparison of Multidimensional Profiles

The comparison of MDPs has several applications in the fields of computer vision [Kadous, 2002],

biomedicine [Zhang et al., 1995] and data mining [Agrawal et al., 1993]. Although, to the best

of our knowledge, it has not yet been explored for remote sensing imagery classification, it is

assumed that MDPs can effectively express the structure of image regions regarding their pixel

values. Classification of these image regions can be performed by simply collecting sample MDPs

from each class and assigning the other regions to the classes according to a similarity metric.

Different types of metrics and measures have been proposed for comparing MDPs [Lee et al.,

2000] [Yang & Shahabi, 2007] [Shao et al., 2011]. They all have in common the fact that it is

possible to evaluate the uncertainty of the class assignments of a region by analysing the similarity
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of its MDPs to the reference MDPs from all considered classes. These similarities can hence be

understood as values of membership to the classes.

In this thesis, three types of MDPs were generated for each urban block, namely, two resulting

from the extraction of bright areas from the intensity and coherence images and one resulting from

the extraction of dark areas from the intensity images. As explained in Sections 4.2.2, each MDP

was generated by applying a ordered sequence of threshold values to the images and by computing

after each thresholding operation several block-based attributes regarding the extracted CCs.

The comparison of MDPs was performed using the relative entropy metric, also known as the

Kullback-Leibler distance [Kullback & Leibler, 1951]. The Kullback-Leibler distance D between

two blocks A and B over a random variable x at different observations t is given by

D(A(x)| |B(x)) =
∑
t∈T

A(x(t)) ∗ log
A(x(t))

B(x(t))
, (4.5)

where t is in this case a threshold value. Thus, A(x(t)) is the value of the attribute x computed

from the CCs extracted by applying threshold t over the image of block A. As several attributes

are computed from each block at the application of each threshold value t ∈ T , and as these

attributes are considered independent from each other, the Kullback-Leibler distance D between

two blocks A and B is computed simply as the sum of the univariate distance from A and B for

each of the n attributes as

D(A(x1, ..., xn)| |B (x1, ..., xn)) = D(A(x1)| |B (x1)) +D(A(x2)| |B (x2)) + ...

...+D(A(xn)| |B (xn)).
(4.6)

Before it is possible to compare two MDPs using the relative entropy metric, the values of each

xi need to be normalized, since they probably have very different domains.

4.4.3 The Random Forest Algorithm

Random Forest is a classification algorithm developed by Breiman [2001] that provides comparable

results to, and frequently better than, other powerful classifiers such as Suport Vector Machines,

Logistic Regression and Decision Trees [Walton, 2008], [Novack et al., 2011a] [Rodriguez-Galiano

et al., 2012]. Random Forest is said to be an ensemble and bagging method because it comprises

several single classifiers {h(x,Θk), k = 1, ...}, each of which contributes with one vote of same

weight to the class assignment of an input element. Each k classifier is fitted based on a different

independently generated subset of variables x and training samples {Θk} with the same class

probability distribution.

In the Random Forest algorithm, decision trees are considered as the single classifiers. A

decision tree is a top-down hierarchical sequence of binary splits of the data which generates a

tree-structured set of rules. Figure 4.8 shows an example of a hypothetical decision tree. At the

root of a tree, the dataset is in its entirety and at its leaves only instances that belong to the

same class are to be found. All other nodes are thresholding rules that split the data in two. The

optimal variable xi and threshold value t for performing the split can be found by minimizing the

Gini index of impurity:

S(xi, tj)
∗ = arg min

xi∈[1,...,n],tj∈{D}
1−

∑
c

p2c(xi, tj), (4.7)

where S(xi, tj)
∗ is the optimal split of a node and pc is the proportion of class c at the data subset

created by applying threshold tj on variable xi. D are all values assumed by variable xi on the
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training set. The minimization of equation 4.9 is performed at each node of a decision tree with

the exception of its leaves.

The fact that each decision tree in Random Forest is derived with a random subset of variables

and training samples reduces the correlation between the decision trees. It reduces also the

computational cost of the algorithm and the risk of over-fitting, unlike methods based on boosting.

In fact, the computing time is in the order of T
√
MN log(N), where T is the number of trees,

M is the number of variables that each split evaluates and N is the number of training samples

used to create each decision tree. All these parameters are user-defined.

Figure 4.8: Example of a hypothetical decision tree. At its root the whole dataset is in its entirety and at
its leaves only instances from a same class. All other nodes are thresholding rules that split the data in
two according to a thershold that minimizes the Gini impurity index.

Random Forest has also the advantages that it is robust against noise and outliers, it can

handle a very large number of variables without deletion and it can estimate the importance of

variables during classification. This last aspect of the algorithm is important both for dimension-

ality reduction and for knowledge acquisition on which variables most influence the classification’s

accuracy. Variable importance estimation was performed with the mean accuracy decrease strat-

egy [Hastie et al., 2001] in the following way: each tree of the forest is fitted and its accuracy

is computed based on the samples of the sample set that were not used to fit the trees (called

out-of-bag subset), then the values of variable mth from the out-of-bag samples are randomly

permuted and the accuracy of each tree is re-computed. For each tree and each variable m, the

misclassification rate of the out-of-bag samples before and after m is permuted is compared. The

rate difference for each m is averaged by the number of trees fitted with a subset of input variables

that include m.

4.5 Contextual Analysis and Classification of Urban Structure

Types

This section is comprised of three subsections. The first one describes the measures used to

evaluate the spatial autocorrelation of the UST classes. The second describes how the shape

similarity of two neighboring blocks was evaluated. The last and most important subsection

presents the models proposed for performing contextual classification of USTs with undirected

PGMs.
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4.5.1 Spatial Autocorrelation of the Classes

Spatial autocorrelation analysis of the USTs was performed in order to evaluate the extent to

which the assumption that neighboring blocks tend to pertain to the same UST class can be

justified. The stronger the spatial autocorrelation, the stronger is this assumption. Two urban

blocks are considered to be contextually related if they are mutual neighbors. The discussion on

the criteria for establishing neighborhood relationships between blocks is left for Section 4.5.3.

The spatial autocorrelation can be measured globally or for each class separetely. To the

best of our knowledge, the only ways of analysing global and per-class spatial autocorrelation of

categorical variables is respectively with the Assortativity Index [Newman, 2003] and with Join

Counts statistics [Cliff & Ord, 1981]. The assortativity index is computed in the following way:

Assortativity =

∑
i
eii −

∑
i
aibi

1−
∑
i
aibi

, (4.8)

where e is a matrix whose elements eij express the proportion of pairwise neighboring relationships

in which a block belongs to class i and its neighbor to class j. Thus,∑
ij

eij = 1,
∑
i

eij = ai and
∑
j

eij = bj . (4.9)

As these neighboring relationships are undirected, the matrix e has the properties that eij = eji
and ai = bi. If the network is perfectly assortative, i.e. when every block is only a neighbor

of blocks from the same class, then the assorativity index is 1 and
∑
i
eii = 1. If the network is

perfectly disassortative, i.e. when each block is only connected to neighbors of different classes,

then
∑
i
eii = 0 and the index will be positive and smaller than 1. Figure 4.9(a) shows sixteen

elements belonging to four classes. Each element is a neighbor from the elements directly beside it

as well as with those directly above and below it, as Figure 4.9(a) indicates. Table 4.2(a) shows the

number of each class combination from these pairwise neighboring relationships, whereas Table

4.2(b) shows the respective proportion of each of these class combinations among all existing

neighboring relationships. According to equation 4.8, the assortative index computed from the

matrix shown in Table 4.2(b) is of approximately 0.44. For the purpose of comparison, the

assortative index of the example from Figure 4.9(b) is of 0.55.

The Join Counts statistics follow the principle of counting seperatly for each class k the three

possible class configurations among all pairs of neighboring blocks. These three configurations

are WW , BB and WB, where W stands for white or 0, i.e. when a block i belongs to any class

other than k, and B stands for blue or 1, i.e. when the block belongs to class k. These three

configurations are counted as:

BB = (1/2)
∑
i

∑
j

yiyjwij , (4.10)

WW = (1/2)
∑
i

∑
j

(1− yi)(1− yj)wij , (4.11)

BW = (1/2)
∑
i

∑
j

(yi − yj)2wij , (4.12)

where y is the vector of observations, in this case of blocks, and wij is a spatial weights matrix

in binary form. Hence, wij is 1 when block i and j are neighbors and 0 otherwise. Figure 4.9(c)

and (d) show respectively the binary maps from classes ’Purple’ and ’Yellow’ according to Figure

4.9(a). Based on these binary maps and the neighborhood criteria presented above, the Join
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Counts statistics from these classes are computed. It can be observed that the statistics BB,

WW and BW for class ’Purple’ are respectively of 4, 14 and 6. For the class ’Yellow’ these

statistics are of 2, 16 and 6.

Inference for the Join Counts statistics should, according to Cliff & Ord [1981], be performed

computationally based on n random permutations, where at each permutation the blue and white

observations are randomly moved spatially. Based on the permutations, a reference probability

distribution is obtained and pseudo p-values can be computed as:

p = (m+ 1)/(n+ 1), (4.13)

where m is the number of values from the reference distribution that are equal to or greater than

the observed Join Counts. Since this is a one-sided test, if the p-value for BW is very small, that

does not mean that there is negative autocorrelation for the given class, but instead, it indicates

the presence of WW and BB autocorrelation in the data.

Figure 4.9: Examples for the explanation of the spatial autocorrelation measures for categorical data. a) A
map with sixteen elements, four classes and twenty-four pairwise neighboring relationships. b) A variation
of the map shown in (a). c) Binary map from the class ’Purple’ from the map shown in (a). d) Binary
map from the class ’Yellow’ from the map shown in (a).

4.5.2 Urban Blocks Shape Comparison

As it will be discussed, the strength of the interaction between two neighboring blocks regarding

their class assignments was also defined in proportion to the similarity of their shapes. Based on

empirical observation, it was assumed that the probability of two neighboring blocks belonging

to the same class is higher if their shape is similar. This can be observed mainly in older cities

whose street network has not been entirely planned.

In this thesis, the L2-based Turning Function metric proposed by Arkin et al. [1991] was used

for measuring the shape similarity between two neighboring blocks. This metric represents a

polygon A as its Turning Function ΘA(s) in which s is the position in the normalized perimeter

of A in relation to an intial point O on A’s boundary (i.e. where s = 0). ΘA(s = 0) is equal

to the counterclockwise tangent between the segment of A in which O is located and the line

parallel to the x-axis. This first angle is called v. As s increases by going along the perimeter

of A in counterclockwise direction, ΘA(s) will not change until s reaches the first vertice of A.

At that point a ”jump” occurs in the function relative to the counterclockwise tangent between

the segments directly before and after s. If the turn s makes at that point is counterclockwise,

this angle is positive and ΘA(s) increases, otheriwse the angle is negative and ΘA(s) decreases.

Figure 4.10 shows an example of a hypothetic polygon A and what its Turning Function ΘA(s)

would be.
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Red Green Yellow Purple Total

Red 8 2 1 1 12
Green 2 8 1 1 12
Yellow 1 1 4 4 10
Purple 1 1 4 8 14
Total 12 12 10 14

(a)

Red Green Yellow Purple ai

Red 0.16 0.04 0.02 0.02 0.25
Green 0.04 0.16 0.02 0.02 0.25
Yellow 0.02 0.02 0.08 0.08 0.21
Purple 0.02 0.02 0.08 0.16 0.29
bj 0.25 0.25 0.21 0.29

(b)

Table 4.2: Example used to explain the computation of the assortative index. a) Number of each
class combination of the neighboring relationships from the elements in Figure 4.9(a). b) Propor-
tion of each class combination among all existing neighboring relationships from the example in
Figure 4.9(a).
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Figure 4.10: A polygon represented in the cartesian plane and its Turning Function. a) A hypothetic
polygon named A represented in the cartesian plane. At the initial point O in A, where s = 0, the Turning
Function ΘA(s) is equal to the counterclockwise tangent of angle v measured in relation to the segment in
which O is located and the line parallel to the x-axis. b) The Turning Function ΘA(s) of the polygon A
shown in (a). ΘA(s) increases abruptly every time s encounters a vertice of A and s turns counterclockwise.
If a clockwise turn takes place, ΘA(s) decreases abruptly. These descontinuities are indicated with dashed
lines in (b). Upper-case roman numbers indicate in (a) and (b) the vertices of A and the corresponding
discontinuities in the Turning Function ΘA(s).
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The function ΘA(s) can be extended to the whole real line by continuily accumulatint it as s

goes around the normalized perimeter of A. Therefore, ΘA(1) = v+ 2π, ΘA(s+ 1) = ΘA(s) + 2π

and ΘA(s−1) = ΘA(s)−2π. Rotating the polygon A by θ corresponds to a vertical shift of ΘA(s)

to ΘA(s) + θ, whereas altering the initial point O by an amount t ∈ [0, 1] causes the horizontal

shift of ΘA(s) to ΘA(s + t). The problem of measuring the similarity between polygons A and

B is the one of finding t∗ and θ∗ for which the difference between the integrals of the Turning

Functions of A and B is minimized. In other words, it is the problem of finding the optimal

reference point and orientation of A for which the shapes of A and B are most similar. This

similarity can be measured by the L2-based Turning Function metric as follows:

SA,B2 =

 min
t∈[0,1]

 1∫
0

[ΘA(s+ t)−ΘB(s)]2ds− [θ∗(t)]2


1
2

. (4.14)

Fortunately, SA,B2 (t, θ) is a convex function of θ for any fixed value of t and the optimal rotation

θ∗ for any given t is simply a − 2πt [Arkin et al., 1991]. a is the difference between the areas

under ΘB(s) and the initial function ΘA(s) given by:

a =

1∫
0

ΘB(s)−
1∫

0

ΘA(s). (4.15)

Since the functions ΘA(s + t) and ΘB(s) are both piece-wise constant, the integral in equation

4.14 is very easy to compute. The values of s for which ΘA(s) changes are named discontinuities

and they occur, as mentioned, at each vertice of A. In Figure 4.10 (b) these discontinuities are

indicated as dashed lines. If A and B have respectively m and n vertices, then plotting ΘA(s+ t)

and ΘB(s) in the interval t = [0, 1] is expected to produce m+n discontinuities. The rectangles in

this plot bounded on the sides by two discontinuities and on the top and bottom by ΘA(s+ t) and

ΘB(s) are called strips. The area within each strip can be easely computed as its width (ds) times

the square of its height, defined by |ΘA(s+ t)−ΘB|. Adding up the areas of all strips gives the

value of the integral in equation 4.14. Given that θ∗(t) is obtained as a− 2πt, the only problem

left is to find t∗. Arkin et al. [1991] prove that only m ∗n values of t must be evaluated to find it,

namely, the values t at which a discontinuity in ΘA(s+ t) is aligned with a discontinuity in ΘB(s).

This makes it very simple to minimize equation 4.14 and thus compute the similarity between two

urban blocks based on their Turning Functions. Figure 4.11 shows the Turning Functions from

two hypothetical urban blocks named Red and Blue before and after ΘBlue(s) gets shiftted by an

amount t which makes a discontinuity in ΘRed(s) coincide with a discontinuity in ΘBlue(s+ t).

4.5.3 Contextual Classification Models

The contextual classification of USTs was performed using different undirected PGMs. The

models differ according to the following aspects: (1) strategy for defining the graph’s structure,

(2) the type of function for defining the interaction potentials (3) whether the model has one or

two groups of association potentials and (4) the order of the model, i.e. the number of unobserved

variables present in the interaction factors. For the rest of this section, the notation from Section

3.4 will be adopted.

The first aspect that should be considered when developing a PGM for performing contextual

classification of UST is the criterion according to which two urban blocks i and j are considered to

be neighbors. Obviously, if they are neighbors, there is contextual interaction between them and
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Figure 4.11: Horizontal shifting of the Turning Function of a hypothetical urban block. a) Two hypothetical
urban blocks represented in cartesian space and the origin points O in their perimeter where t = 0. b) The
Turning Functions ΘBlue(s) and ΘRed(s) of the two blocks. The areas in light grey indicate the intervals
for which a (equation 4.15) is positive. The areas in darker grey indicate the intervals for which a is
negative. c) Horizontal shift of ΘBlue(s) to the amount of t so that a discrepancy from ΘBlue(s+ t) overlies
horizontally a discrepancy from ΘRed(s) (highlighted by the green rectangle).
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they are thus probabilistically dependent. In this thesis, four criteria for establishing neighboring

relationships between blocks were considered. The first three of them are defined as follows:

j ∈ Ni if


Criterion 1: d(i, j) < th

Criterion 2: d(i, j) < thi(lengthi ∗ 1, 5) ∧ dist.(i, j) < th′

Criterion 3: j ∈ k-nn(i) ∧ d(i, j) < th′
, (4.16)

where Ni is the set of neighboring blocks from i, d(i, j) is the euclidean distance between block i

and j, th denotes a fixed distance threshold and th′ denotes an upper distance threshold above

which two blocks are not considered neighbors. d(i, j) was always measured between the centers

of mass of the urban blocks. The first criterion considers two blocks as neighbors if they are not

further apart as a fixed th, the second criterion is just like the first with the exception that th is

adaptively defined as the length of block i times 1,5. The factor of 1,5 was chosen because, having

the center of mass of block i as its origin, the radius of 0, 5 ∗ length(i) will usually include mostly

the area of the block itself. Thus, the adaptive radius of 1, 5 ∗ length(i) will include as neighbors

of i the blocks j that are apart from i to the extent of its length. The third criterion considers as

neighbors from i its k nearest-neighboring blocks. The fourth criterion considers blocks i and j

as mutual neighbors if they are adjacent to each other. In this case, the streets are considered the

borders between the blocks. The adjacencies between the blocks was extracted by firstly creating

a binary image where the blocks are the foreground and the streets, rivers and railroads network

is the background. Following, the euclidean distance transform of this binary image was created.

Finally, a watershed segmentation was performed over the distance transform image in order to

extract the exact borders between the blocks. If two blocks share a border, they are considered

neighbors. This process is depicted in Figure 4.12.
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Figure 4.12: Steps performed for extracting the adjacency between urban blocks. a) Input binary image.
b) Euclidean distance transform of the binary image. c) Outcome of the watershed segmentation applied
on the distance transform image. Two blocks are considered to be neighbors if they share a border on the
watershed image.

It is possible to depict with Figure 4.13 the construction of a simple undirected graph for

contextual UST classification. In this graph, blocks are considered neighbors if the euclidean

distance between their centers of mass is not larger than a threshold th. Each block’s unobserved

variable c is represented in the graph by a node and an edge is created between each pair of

neighbors. If it is defined that, besides its neighbors unobserved variable cj , ci depends also on

its observed si, then the resulting graph will have the number of association factors equal to

the number of blocks in the study site and the number of pairwise interaction factors equal to

the number of pairs of neighboring blocks. The process depicted in Figure 4.13 for one block
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i is performed for each block of the study site. The repeated interaction factors are afterwards

discarded.

Figure 4.13: Construction of a simple undirected Probabilistic Graphical Model for Urban Structure Types
classification. a) Blocks are considered neighbors if the euclidean distance between their centers of mass
is not larger than a threshold th. b) Each block’s unobserved variable c is represented in the graph by a
node. c) An edge is created between each pair of neighbors. d) If it is defined that, besides its neighbors
unobserved variable c, ci depends also on its observed si, then the resulting graph will have the number of
association factors equal to the number of blocks in the study site and the number of pairwise interaction
factors equal to the number of pairs of neighboring blocks.

Independently of which criterion is used to define the pairwise neighboring relations between

blocks, the graph shown in Figure 4.13 is a MRF. It is the simpliest type of PGM with which

contextual UST classification was performed in this thesis and it can be formulated as an energy

function as follows:

E(C) =
∑
i∈S

ϕ(ci, si) + λ
∑
i∈S

∑
j∈Ni

ψ(ci, cj). (4.17)

Its association functions were defined as

ϕ(ci, si) = − ln(P (ci = lk|si)), (4.18)
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where P (ci = lk|si) is the probability of class label lk given the data si. This probability is given

by the Random Forest classifier as the number of votes from the decision trees to class label lk
divided by the total number of decision trees. The association functions ψ(si, sj) were defined as

Potts models [Hao et al., 2014]:

ψ(ci, cj) =

{
0 if ci = cj

1 if ci 6= cj
. (4.19)

The parameter λ in the energy function above has the purpose of balancing the influence of the

interaction factors in relation to the association factors, as the former, depending on th, may be

much more numerous than the latter. As it will be shown, the parameter λ was tunned to the

best value between 0 and 1.

A simple CRF version of the model from equation 4.19 was formulated as follows:

E(C) =
∑
i∈S

ϕ(ci, si) + λ
∑
i∈S

∑
j∈Ni

ψ(si, sj , ci, cj). (4.20)

The association potentials in this model are defined just as before. The interaction potentials

on the other hand are defined by a so-called contrast-sensitive Potts model, which considers

the l2-norm of the difference between the normalized attribute vectors of the neighboring urban

blocks:

ψ(si, sj , ci, cj) =

{
0 if ci = cj

− ln
(
‖si − sj‖2

)
if ci 6= cj

. (4.21)

In this contrast-sensitive Potts function, the more similar the attribute vectors of the neighboring

blocks, the higher is the cost for assigning them to different classes. It can be seen from Figure

4.14 that defining the cost as − ln
(∥∥∥si − sj∥∥∥

2

)
instead of 1−

(∥∥∥si − sj∥∥∥
2

)
makes the model more

strict against assigning different classes to neighboring blocks.
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Figure 4.14: Different cost functions for different λ values. a) The costs of assigning neighboring blocks to
different classes is weaker in this case. b) This function makes the costs higher, what causes that models
with similar functions are more strict against assigning different classes to neighboring blocks.

An alternative way of defining the interaction potentials was also experimented with the

following contrast-sensitive Potts function:

ψ(si, sj , ci, cj) =

 0 if ci = cj

− ln
(∥∥swi − swj ∥∥1) if ci 6= cj

(4.22)
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where swi and swj are the attribute vectors from neighboring sites i and j weighted by the attribute

importance vector computed by the Random Forest classifier. In other words, it is the negative

natural logarithm of the weighted mean of the difference.

A similar CRF model was tested which considers the shape similarity between neighboring

blocks i and j for defining the cost in case they are assigned to different classes. This model is

formulated in the following way:

E(C) =
∑
i∈S

ϕ(ci, si) + λ
∑
i∈S

∑
j∈Ni

ψ(Si,j2 , ci, cj) (4.23)

and their interaction potential functions are given by:

ψ(Si,j2 , ci, cj) =

 0 if ci = cj

− ln
(
Si,j2

)
if ci 6= cj

, (4.24)

where Si,j2 is the shape similarity between blocks i and j computed with the L2-based Turning

Function measure presented in Section 4.5.2.

Given that standard UST classification was performed not only with the Random Forest

algorithm, but also by means of MDP comparison, the MRF and CRF models from equations

4.19 and 4.22 were extented to accomodate a second type of association potential functions.

These functions are defined by the strategy for computing the membership from blocks to UST

classes based on MDPs comparison. The MDP creation and comparison strategies are explained

respectively in Sections 4.3.1 and 4.4.2, whereas the way in which the final membership values

from each block to each class was computed is addressed in Chapter 5 at Section 5.2.3. The MRF

model with this additional association term is formulated as:

E(C) =
∑
i∈S

ϕ(ci, si) +
∑
i∈S

δ(ci, si) + λ
∑
i∈S

∑
j∈Ni

ψ(ci, cj), (4.25)

whereas its CRF version is formulated as

E(C) =
∑
i∈S

ϕ(ci, si) +
∑
i∈S

δ(ci, si) + λ
∑
i∈S

∑
j∈Ni

ψ(si, sj , ci, cj). (4.26)

The interaction potential functions from these two models were, just as before, defined by equa-

tions 4.21 and 4.23. The association terms are two: ϕ(ci, si), defined as the outcome from the

Random Forest algorithm for each block i and δ(ci, si), which is defined by the MDPs comparison

strategy.

All the models presented above have in common the fact that all their interaction factors have

no more than two unobserved c variables. As mentioned in Section 3.4, models with interaction

factors with more than two of such variables are called higher-order models. In this thesis,

classification experiments were performed also with third-order MRFs defined as:

E(C) =
∑
i∈S

ϕ(ci, si) + λ
∑
i∈S

∑
j∈Ni

ψ(ci, cj , cm). (4.27)

The interactions potentials from these models were defined by the simple third-order Potts func-

tion:

ψ(ci, cj , cm) =

{
0 if ci = cj = cm

1 otherwise
. (4.28)
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The construction of third-order factors was done in the following way. First, pairwise neighboring

relationships were defined based on the criterion of 3-nearest neighbors. Then, for each neighbor-

ing pair of blocks i and j, the closest block m to j which is also a neighbor from i was searched.

In this way, a factor ψ(ci, cj , cm) was inserted in the model. This process, shown graphically in

Figure 4.15, was repeated for every block i and afterwards all repeated factors were discarded.

The models presented above express the types of UST contextual classifications that were per-

formed. Minimizing their energy functions is equivalent to finding the most-probable classification

of the study area, as explained in Section 3.3. As mentioned, the most-probable classification can

only be found approximately when dealing with undirected PGMs. In all cases, the algorithm

used for that task was the Max-Sum LBP, whose equivalent Max-Product LBP is presented in

Figure 3.8. The actual experiments performed and their results will be presented respectively in

Chapters 5 and 6.

Figure 4.15: Strategy for building third-order interaction factors from a third-order MRF. Firstly, pairwise
neighboring relationships were defined based on the criterion of 3-nearest neighbors. a) For each neighboring
pair of blocks i and j, the closest block m (shown in red) to j (shown in blue) which is also a neighbor
from i is searched. b) An interaction factor containing variables ci, cj and cm is thus inserted in the model.
c) This process is repeated for the other neighbors of i and for all other blocks in the study area. The
different colors represent different thrid-order interaction factors. d) The final local graph structure for
these six blocks.
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5 Data and Experiments

This chapter presents in its first part the image, auxiliary and ground-truth data used in this

thesis as well as its study site. The second part describes the experiments and how some of the

methods presented in the previous chapter were applied.

5.1 Used Data and Study Site

5.1.1 Image Data

The extraction of features from the urban blocks was performed based on SLC images acquired

by the TS-X satellite operating at HSS mode. The images have a nominal spatial resolution

of approximately 1,1 meter and were kindly provided by the German Aerospace Center (DLR).

Table 5.1 presents the main acquisition parameters. The acquisition dates were chosen after

confirming close to clear-sky conditions on the respective days. The minimum and maximum

incidence angles of the chosen acquisitions are such that the layover and shadowing effects are,

among the imagery available at that time, most balanced. The four images presented in Table

5.1 configure two interferometric pairs, in which one was obtained at ascending and the other at

descending looking direction. Table 5.2 presents the main parameters of these two InSAR pairs.

Because the area covered by the images is relatively flat and its surface height differences almost

never exceeds 80 meters, the heights of ambiguity of both InSAR datasets were considered to be

appropriate for the application at hand.

Date
Range Azimuth Ran. x Azi. Min. Inc. Max. Inc.

Size
Spacing Spacing Looks Angle Angle

18.05.2011 0.45 0.86 1 x 1 22.33◦ 23.63◦ 10364 x 6054

09.06.2011 0.45 0.86 1 x 1 22.23◦ 23.63◦ 10364 x 6082

09.05.2011 0.45 0.87 1 x 1 24.73◦ 25.94◦ 11166 x 5342

20.05.2011 0.45 0.87 1 x 1 24.72◦ 25.94◦ 11168 x 5982

Table 5.1: Main acquisition parameters of the TS-X images used in this thesis.

Looking Direction Date Polarization Perp. Baseline Height of Ambiguity

Ascending
18.05.2011 VV

51.16 m 70.86 m
09.06.2011 VV

Descending
09.05.2011 VV

120.16 m 27.32 m
20.05.2011 VV

Table 5.2: Main parameters of the InSAR image pairs used in this thesis.

From both InSAR image pairs shown in Table 5.2, two DEMs were generated using the public

software Nest developed by the European Space Agency (https://earth.esa.int/web/nest/home).

The sequence of steps performed and the respective parameters applied in each of them are shown

in Table 5.3.
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Steps: Parameters:

Co-registration 900 Ground Control Points

Generation of the flattened interferogram -

Estimation of the coherence image Window size: 10x2 (az. x rg.)

Filtering of the interferometric phase Method: Goldstein, Alpha: 0.5, Block size: 32

Multi-looking of the filtered phase Rg x Az. looks: 2x3

Phase unwrapping Method from Costantini [1998]

Geocoding -

Table 5.3: Steps and parameters applied for the generation of InSAR DEMs.

5.1.2 Study Site

The TS-X images presented in the previous section cover a significant area of the city of Munich

(Germany). Figure 5.1 shows the exact footprints of the ascending and descending acquisitions.

Each footprint covers an area of approximately 10 x 5 km. The study site was defined as the

intersection area of these two footprints. Its central point coincides with the historical center of

the city.

Munich was chosen as this thesis’s study site due to the following conveniences: (1) there is

ample availability of TS-X imagery from this city, (2) reliable auxiliary and ground-truth data

are available and (3) its built-up structures are representative of other medium to large European

cities.

Figure 5.1: The image data footprints and the study site of this thesis. Each footprint covers an area of
approximately 10 x 5 km. Their intersection area was defined as study site. Its central point coincides
with the historical center of Munich.
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5.1.3 Auxiliary and Ground-Truth Data

The only auxiliary data used in all experiments of this thesis are the streets, rivers and railroads

network as well as the official UST map from the city of Munich. Both data were kindly provided

in shapefile (.shp) format by the city hall’s Department of Health and Environment (Referat

fuer Gesundheit und Umwelt). As explained in Section 4.1, the streets, rivers and railroads

network was used to extract the urban blocks from the study site, whereas the official UST map

from Munich was considered as ground truth data and used for collecting training samples and

assessing the classifications accuracies. Fortunately, the latest version of this map is from 2011,

which is also the year in which the SAR images were acquired. Figure 5.2 shows the official UST

map from the study site. It contains 1696 urban blocks assigned to 27 different classes.

Figure 5.2: Official Urban Structure Types map from the study site of this thesis. It contains 1696 urban
blocks assigned to 27 different classes. The data was kindly provided by the city hall of Munich.

5.2 Experiments

5.2.1 Class Generalization and Sample Selection

As it can be observed in Figure 5.2, many of the official UST classes from the study site have a

low number of instances. Moreover, some of them are defined exclusively by functional factors,

i.e. they do not have physical characteristics that make them distinguishiable from other similar

classes. Because of that, a generalization of the classes was performed. It comprised two steps.

The first one involved assigning mixed blocks to one single UST class. Among the 1695 blocks

of the study site, 21.89% of them are assigned to more than one UST class. These blocks were

assigned to a single UST class, namely, to the one with largest relative area. The second step

concerned the semantic grouping of the original 27 UST classes into five general ones. Table 5.4

shows to which general classes the original ones were assigned. The number of instances from

each class is shown in parenthesis after their names. As mentioned in Section 4.4.1, the criteria

for merging classes were their structural and functional similarities. The outcomes of the class

generalization process are a group of five UST classes, each with a reasonable number of instances,

and a ground-truth map in which each block is assigned to a single UST class.
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The selection of samples for training the classification models was performed in two ways,

namely, randomly and in supervised way. In both cases, the same amount of samples from each

of the five classes was selected. This amount was defined as half the number of instances from the

UST class with least instances. It can be seen from Table 5.4 that this class is Large Buildings

and Industrial Areas and that it has 126 blocks officially assigned to it. Therefore, the number

of samples from each of the five classes collected at all classification experiments was of 63. In

total, twenty-six different groups of training samples were collected: one in supervised way and

the other twenty-five randomly.

Dense Block Development (DBD) (691):
Block Development (691)

Detached and Semi-detached Housing (DSDH) (282):
Small and Isolated Building Structures (47)
Small and Isolated Single Houses (1)
Single and Double House Development (201)
Regular House Development (33)

Large Buildings and Industrial Areas (LBIA) (126):
Greenhouse Development (1)
Large Building Complex (56)
Large Halls (20)
Mixed Use: Large Buildings and Hall Development (28)
Mixed Use: Small Buildings and Hall Development (12)

Regular Block Development (RBD) (319):
Chained House Complex (10)
Isolated High Buildings, Parallel-Disposed Buildings (54)
Lined and Block-Edged Development (90)
Perimeter Block Development (10)
Mixed Types of Buildings (46)
Small Buildings Complex (22)

Parks, Squares and Vegetated Areas (PSVA) (278):
Agriculture Fields (4)
Cemeteries (2)
Extensiv Green and Uncultivated Areas (11)
Hedges and Copses (2)
Meadows and Pasture (2)
Small Gardens (16)
Small Green Areas (179)
Squares and Other Green Areas (50)
Urban Groves (4)

Table 5.4: Generalization of the official UST classes. The number of instances and the abbrevi-
ation of each class is shown in parenthesis after their names. The five classes written in blank
letters are the ones considered in all classification experiments.

5.2.2 Considered Attributes

In this section, the attributes considered in the standard classification of USTs are presented.

Together with the attributes computed from the features extracted inside the urban blocks, the

following block shape attributes were also considered in the classification: Area, Compactness,

Major-minor axis ratio, Orientation, Perimeter, Perimeter-area-ratio.
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Table 5.5 presents the composition and configuration attributes of the blocks concerning the

lines extracted in them. These attributes were computed twice, i.e. once considering the lines

extracted from the intensity image from the ascending orbit and once considering the lines ex-

tracted from the intensity image from the descending orbit. Lines were considered to be parallel

to each other if their relative orientation is below 15◦. They are considered to be perpendicular

if their relative orientation is between 75◦ and 90◦.

As explained in Section 4.3.2, networks were created for each urban block connecting the

polygon features extracted in it. For each block two networks were created: one connecting

the bright and dark polygons extracted from the intensity image from the ascending orbit and

another connecting the bright and dark polygons extracted from the intensity image from the

descending orbit. Some of these attributes are related to the structure of the network and others

to the Moran’s I of the nodes attributes. These statistics of the Moran’s I were estimated both

computationally, i.e. based on 9999 permutations, and analitically based on the assumption of

normality. The attributes computed from these networks and considered for classification are the

ones listed in Table 5.7. The density (d) of the network is computed as:

d =
2m

n(n− 1)
, (5.1)

where n is the number of nodes and m is the number of edges in the network.

The attributes computed from the bright and dark areas extracted as CCs through the bina-

rization by thresholding operations are the following: Number of CCs, Number of CCs larger than

200 pixels, Number of CCs larger than 500 pixels, Number of CCs larger than 1000 pixels, Joint

CCs area, Mean CC area, Maximum CC area, Standard deviation of the CCs area, Proportion

of the CCs area, Maximum compactness of the CCs, Compactness of the largest CC, Maximum

length-to-width ratio of the CCs, Minimum perimeter-area ratio of the CCs, Number of CCs with

length-to-width ratio higher than 5 and Number of CCs with length-to-width ratio higher than

10.

5.2.3 Attribute Relevance Analysis

In order to gain insight on the expressiveness of the considered block attributes, an attribute

relevance analysis was performed using the Random Forest algorithm. As described in Section

4.4.3, the attributes relevance were measured through the mean accuracy decrease strategy. Based

on each of the twenty-six training sample sets, a Random Forest model was fitted and intrinsically

to it the attributes relevance was computed. The final relevance of each attribute was considered

as the average relevance from these twenty-six Random Forest models.

5.2.4 Standard Classifications

The standard classifications served as references for evaluating the accuracy improvement achieved

by considering context in the classifications. They are also comprised in the contextual classifica-

tion models as the association potential functions. The standard classifications were performed,

as addressed above, with the Random Forest classifier and by means of comparing the blocks

MDPs.

For the creation of each MDP from each block, the input image’s 200-quantiles were firstly

computed. Then, the quantiles were set as the 200 threshold values T , with each of which CCs were

extracted through binarization by thresholding operations, as explained in section 4.2.2. After

each thresholding operation, the CC attributes described in the previous section were computed.

For each block, six MDPs were created. The types of MDPs are defined by the input image and
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Line attributes:
Maximum line length
Mean angle difference between a line and its closest line
Mean angle diff. between a line and the block boundary closest to it
Mean angle diff. between a line and the block boundary most parallel to it
Mean angle diff. between a line and the line most parallel to it
Mean angle diff. between a line and the line most perpendicular to it
Mean distance between a line and its closest line
Mean distance between a line and the line most parallel to it
Mean distance between a line and the line most pependicular to it
Mean distance between a line and the block boundary closest to it
Mean distance between a line and the block boundary most parallel to it
Mean distance between a line and the block boundary most perpendicular to it
Mean orientation of the lines
Mean length of the lines
Min. angle diff. between a line and the block boundary closest to it
Min. distance between a line and the line most parallel to it
Min. distance between a line and the line most pependicular to it
Min. distance between a line and the block boundary most parallel to it
Min. distance between a line and the block boundary most perpendicular to it
Number of lines
Number of lines longer than 50 m
Number of lines longer than 100 m
Std. dev. of angle difference between a line and its closest line
Std. dev. of distance between a line and its closest block boundary
Std. dev. of distance between a line and its closest line
Std. dev. of distance between a line and the line most parallel to it
Std. dev. of distance between a line and the line most perpendicular to it
Std. dev. of the lines length
Std. dev. of the orientation of all lines

Table 5.5: The composition and configuration attributes computed from the lines extracted from
each urban block. These attributes were computed once considering the lines extracted from
the intensity image from the ascending orbit and once considering the lines extracted from the
intensity image from the descending orbit.

the type of CCs extracted. These six types of MDPs are the following: (1) Bright areas from

the intensity image from the ascending orbit, (2) Bright areas from the intensity image from the

descending orbit, (3) Dark areas from the intensity image from the ascending orbit, (4) Dark areas

from the intensity image from the descending orbit, (5) Bright areas from the coherence image

from the ascending orbit and (6) Bright areas from the coherence image from the descending

orbit. Each MDP was compared with the MDPs of the same type from the classes reference

MDPs and the mean similarity values for each of the classes was computed. These values express

the similarities of the block to the UST classes in regard to that type of MDP. Using the criterion

of highest similarity, six classifications were produced, i.e. one for each MDP type. The overall

accuracies of these classifications were then considered as weights of the weighted mean of the

similarity values from each block to each class. Finally, a final classification was produced by the

highest weighted mean similarity criterion. The weighted mean similarity to each class is also

what was used as the association potential in some of the contextual classification models.
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Polygon attributes:
Maximum pertinence
Mean area
Mean angle difference between a polygon and its closest block boundary
Mean distance between a polygon and its closest block boundary
Mean distance between a polygon and the polygon most parallel to it
Mean distance between a polygon and the polygon most perpendicular to it
Mean, max. and std. dev. of the polygons area
Mean, max. and std. dev. of the polygons length-to-width
Mean, max. and std. dev. of the polygons compactness
Mean, max. and std. dev. of the polygons orientation
Number of pairs of polygons parallel to each other
Number of pairs of polygons perpendicular to each other
Number of polygons
Number of polygons with area > 3rd, 4th and 5th 5-quantiles of the area values
Number of polygons with pertinence > [0.05, 0.1, 0.15, 0.2, 0.3, 0.4, 0.5]
Number of pol. with pertinence > [3rd, 4th, 5th] of the 5-quantiles of the pertinence values
Std. dev. of the angle diff. between a polygon and its closest block boundary
Std. dev. of the distance between a polygon and its closest block boundary
Std. dev. of the distance between a polygon and the polygon most parallel to it
Std. dev. of the distance between a polygon and the polygon most perpendicular to it
Std. dev. of the polygons orientation
3rd, 4th and 5th 5-quantiles of the polygons area
3rd, 4th and 5th 5-quantiles of the pertinence values

Table 5.6: The composition and configuration attributes computed from the polygons extracted
from each urban block. These attributes were computed four times for each block according to
the type of polygon (from dark or bright areas) and the satellite orbit (ascending or descending).

The classifications performed with the Random Forest algorithm considered the 129 attributes

presented in Tables 5.5 and 5.6, as well as the 16 HOGs attributes. To this vector, the CC

attributes presented in the previous section were also inserted. However, instead of extracting

the CCs with two-hundred thresholds, as in the case of the generation of MDPs, the CCs were

extracted with only three different thresholds. These are the input image’s 5rd, 7th and 9th 10-

quantiles. This adds up to 45 computed attributes for each of the 6 types of CC presented above.

Thus, in total 415 attributes were submitted to the Random Forest classifier, i.e. 129 + 16 + (45

* 6). The number of decision trees from the Random Forest was set to 100. (Although this might

seem a low number, exploratory experiments revealed that the performance was never improved

when the number of decision trees was set to 1000 or more). The number of attributes evaluated

when looking for the best split at each tree bifurcation was set to the root square of the total

number of attributes. Attribute evaluation was performed internally to the fitting of the model

and the attributes with relevance below the mean relevance value were discarded. Then the model

was re-fitted with only the most pertinent attributes.

5.2.5 Contextual Classification Models

In order to facilitate the report of the results on the contextual classification of USTs, the dif-

ferent models presented in Section 4.5.3 were coded according to Table 5.7. These models were

evaluated and compared based on twenty-six different training sample sets. As explained in Sec-

tion 5.2.1, one of these sample sets was collected in supervised way, whereas the other twenty-five

were collected randomly. The actual classifications, as mentioned in Section 4.5.3, were in all
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Network structure attributes:
Density of the graph
Highest mean membership of two connected nodes
Mean node pertinence
Membership value of the node with highest membership
Number of nodes
Number of edges
Number of edges / number of nodes
Number of edges connecting parallel nodes
Number of edges connecting parallel nodes / number of edges
Number of edges connecting parallel nodes / Number of edges (...)

(...) connecting perpendicular nodes
Number of edges connecting perpendicular nodes
Number of edges connecting perpendicular nodes / number of edges
Std. dev. of the membership from the two connected nodes (...)

(...) with highest membership mean
Network Moran’s I of attributes:

Area
Distance to closest block boundary
Length to width ratio
Orientation
Orientation difference to closest block boundary
Rectangular Fit
For the attributes above:

Expected I based on random permutation of the values
Expected I under normality assumption
Difference between I and expected I based on random permutations
Difference between I and expected I under normality assumption
P-value of I based on random permutation of the values
P-value of I under normality assumption (one-sided)

Table 5.7: Attributes from the networks connecting the polygon features inside the blocks. For
each block two networks were created: one connecting the bright and dark polygons extracted
from the intensity image from the ascending orbit and another connecting the bright and dark
polygons extracted from the intensity image from the descending orbit.

cases performed by minimizing the models energy functions with the Max-Sum LBP inference

algorithm.

Each of the models from Table 5.7 were tested on graph structures defined by the four criteria

presented in Section 4.5.3. Regarding criterion 1, two fixed distance thresholds th were tested,

namely, of 140 and 240 m. 142.4 is the 0.9 quantile of the blocks attribute ’length of longest line’,

whereas 244.7 is the 0.8 quantile of the blocks length. Hence, these two numbers were rounded

down to 140 and 240 and then considered as the fixes distance threshold. Regarding criteria 2 and

3, a fixed upper distance threshold th′ of 300 m was defined. The number of k nearest-neighbors

considered when applying criterion 3 was of 3.
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Code Energy Function Interaction Potentials Type

M1 Eq. 4.19 Eq. 4.21 MRF
M2 Eq. 4.27 Eq. 4.21 MRF
M3 Eq. 4.29 Eq. 4.30 MRF
M4 Eq. 4.22 Eq. 4.23 CRF
M5 Eq. 4.22 Eq. 4.24 CRF
M6 Eq. 4.25 Eq. 4.26 CRF
M7 Eq. 4.28 Eq. 4.23 CRF

Table 5.8: Coding of the contextual classification models proposed and tested in this thesis.
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6 Results

In this chapter, the results obtained in this thesis are presented. It has three major sections.

The first one briefly analyses the relevance of the block attributes considered in this thesis. It

also compares the overal accuracies of USTs classifications performed with the two different

methods, i.e. Random Forest and MDP comparison, and with sets of attributes derived from

images obtained at one and both looking directions. The second section analyses the performance

of the different contextual classification models proposed in this thesis and takes a look at the

misclassifications of specific representative classifications. The third and last section analyses the

spatial autocorrelation of the official UST map of the study area according to neighbourhood

relations defined by different criteria.

6.1 Attribute Relevance and Standard Classifications Analysis

6.1.1 Attribute Relevance

This section presents the most relevant attributes considered in this work. The computation of

the attributes relevance was performed as described in Section 5.2.3. Table 6.1 shows from each

type of attributes the eight best-ranked ones. Before their names, the abbreviations indicate

from which image it was computed, i.e. whether from the coherence (Coh.) or intensity (Int.)

image from the ascending (Asc.) or the descending (Des.) looking direction. It can be observed

that the most relevant groups of attributes are the ones derived from the extracted bright and

dark areas as well as from the extracted polygons. The single most relevant attributes however

are surprisingly those that concern the blocks shape (area, perimeter and perimeter-area ratio).

This is presumably because the values of all other attributes are to some extent dependent on

the blocks size and shape. The least relevant group of attributes turned out to be the network

attributes, followed by some of the HOGs and lines ones.

From the third-six attributes shown in Table 6.1, exactly eighteen of them were derived from

the ascending and eighteen from the descending images, what supports the assumption that it

is important to consider imagery obtained at both orbits. Among the HOG attributes, however,

the best ranked ones were computed from the DEM generated from the ascending SLC images.

In fact, this interferometric pair has a higher height of ambiguity (Table 5.2), what makes the

problem of phase unwrapping less critical and thus increases the expressiveness of this DEM in

comparison to the one derived from the descending image pair. Regarding the generic types of

the attributes, i.e. composition or configuration, it can be seen from Table 6.1 that the majority

of the lines attributes are configuration ones (6 out of 8), whereas among the polygon attributes

only the two most relevant ones are configuration attributes.

6.1.2 Standard Classifications

In this section, the overal accuracies from the standard USTs classifications are reported. Based

on each of the twenty-five different sets of training samples collected randomly, six classifications
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Name Relevance

Polygon Attributes:
Asc.: Mean orientation angle of bright polygons 12,0 %
Asc.: Mean orientation angle of dark polygons 11,2 %
Asc.: Mean compactness of dark polygons 10,6 %
Des.: Maximum length-to-width ratio of bright polygons 10,3 %
Asc.: Mean length-to-width ratio of bright polygons 10,3 %
Des.: Mean area of bright polygons 10,1 %
Des.: Number of bright polygons with pertinence > 3rd 5-quantile 9,6 %
Des.: Mean length-to-width ratio of bright polygons 9,3 %

Network Attributes:
Des.: Highest mean membership of two connected nodes 5,5 %
Des.: Number of edges 2,8 %
Des.: Mean node pertinence 2,7 %
Des.: Diff. between obs. I and exp. I under norm. of the nodes orientation 1,7 %
Asc.: Mean node pertinence 1,6 %
Asc.: I p-value under norm. for orient. diff. between pol. and clos. blk. bnd. 1,5 %
Asc.: Diff. between obs. and exp. I under norm. for the nodes orient. 1,4 %
Des.: Diff. between obs. and exp. I based on permutations for the nodes area 1,4 %

Lines Attributes:
Asc.: Min. angle diff. between a line and the block boundary closest to it 8,7 %
Des.: Min. distance between a line and the block boundary most parallel to it 7,7 %
Asc.: Std. dev. of distance between a line and the line most perpendicular to it 7,6 %
Asc.: Mean length of lines 7,6 %
Des.: Std. dev. of distance between a line and its closest block boundary 7,4 %
Asc.: Maximum line length 7,3 %
Asc.: Std. dev. of distance between a line and its closest block boundary 7,2 %
Des.: Mean distance between a line and the block boundary closest to it 6,8 %

HOGs and Block Shape Attributes:
Block perimeter-area ratio 19,8 %
Block area 15,1 %
Block perimeter 14,4%
Asc.: HOG 2 (22◦ - 44◦) 8,9 %
Asc.: HOG 1 (0◦ - 22◦) 7,3 %
Block orientation 7,2 %
Asc.: HOG 3 (44◦ - 66◦) 7,1 %
Asc.: HOG 4 (66◦ - 88◦) 6,8 %

Dark and Bright Areas Attributes:
Asc., Int.: Number of CCs > 1000 pxl. - 9th 10-quantiles 12,8 %
Des., Coh.: Number of CCs > 500 pxl. - 7th 10-quantiles 11,5 %
Des., Int.: Area proportion of bright CCs - 7th 10-quantiles 10,9 %
Des., Coh.: Area proportion of dark CCs - 9th 10-quantiles 10,5 %
Asc., Int.: Number of CCs > 1000 pxl. - 5th 10-quantiles 10,3 %
Des., Int.: Number of CCs > 1000 pxl. - 9th 10-quantiles 10,0 %
Des., Int.: Number of CCs > 1000 pxl. - 7th 10-quantiles 9,7 %
Des., Int.: Area proportion of bright CCs - 9th 10-quantiles 9,6 %

Table 6.1: The most relevant attributes from each type. Before their names, the abbreviations
indicate from which image it was computed, i.e. whether from the coherence (Coh.) or intensity
(Int.) image from the ascending (Asc.) or the descending (Des.) looking direction.
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were performed combining the two different methods with the three different attribute sets. The

sets of attributes are composed of the ones derived from the ascending, the descending imagery

as well as from attributes derived from imagery obtained at both looking directions. Figure 6.1

shows the plot graphs from the overal accuracies of these classifications performed as explained

in Section 5.2.4. The experiments Ids identify the twenty-five different sample sets used to train

the models. It can be seen from Figure 6.1 that considering attributes from both image datasets

always causes an increase in the overall accuracy. The highest overal accuracies achieved by both

methods are very similar (of approximately 69%), as highlighted by the dashed lines in Figure

6.1. It can be seen also that classifications performed with attributes and MDPs derived from

the ascending images achieved most of the twenty-five times higher overal accuracies as those

performed with attributes and MDPs from the descending images.

(a) (b)

0 2 4 6 8 10 12 14 16 18 20 22 24
Classification Experiment's Id

56

58

60

62

64

66

68

70

72

O
v
e
ra

ll 
A

cc
u
ra

cy
 [

%
]

MDP Comparison Classifications

Ascending
Descending
Both Looking Dir.

0 2 4 6 8 10 12 14 16 18 20 22 24
Classification Experiment's Id

56

58

60

62

64

66

68

70

72

O
v
e
ra

ll 
A

cc
u
ra

cy
 [

%
]

RF Classifications

Ascending
Descending
Both Looking Dir.

69.69%
69.06%

Figure 6.1: Comparison of classifications performed with different methods and attribute sets. Twenty-
five different training samples sets were randomly selected. With each sample set, six classifications were
performed combining the two different methods with the three different attribute sets. The attribute sets
are defined based on whether the attributes were derived from the ascending, the descending images or
from the images acquired at both looking directions. a) Plot of the accuracies of classifications performed
with the MDP comparison strategy. b) Plot of the accuracies of classifications performed with the Random
Forest algorithm.

Table 6.2 presents the first-order statistics of the overal accuracies from Figure 6.1. Regarding

the Random Forest method, in comparison to classifications performed considering only attributes

from the ascending images, an average accuracy improvement of 3% was achieved when attributes

from both image datasets were considered. The accuracy improvement is in average of 5% in com-

parison to classifications performed only with attributes from the descending images. Regarding

the classification strategy of comparing the blocks MDPs, if the MDPs from both image datasets

are considered, an average accuracy improvement of respectively 3% and 4% is obtained in com-

parison to classifications performed with MDPs from the ascending and the descending datasets

alone. It is also noticeable from Table 6.2 that in general the Random Forest method performed

slightly better than the strategy of comparing the blocks MDPs.
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Looking Direction Method Min. (%) Mean (%) Max. (%) Std. Dev.

Ascending
Random Forest 61.30 64.09 66.44 1.35
MDPs Comp. 60.02 62.48 65.79 1.27

Descending
Random Forest 57.17 62.41 65.79 1.96
MDPs Comp. 58.69 61.45 63.33 1.34

Both Looking Dir.
Random Forest 64.34 67.15 69.69 1.30
MDPs Comp. 64.13 65.61 69.06 1.11

Table 6.2: First-order statistics of the overall accuracies from the classifications shown in Figure
6.1. An average accuracy increase of up to 5% is obtained if attributes from both image datasets
are considered.

6.2 Contextual Classifications

In this section, the results from the performed contextual classifications are presented. The first

subsection shows the extent to which the overal accuracies increase when the context of each

block is considered. The performance of each of the considered models, which differ according

to their parameterizations and the graph structures on which they are applied, is reported and

compared. The second subsection approaches the misclassifications of the standard and contextual

classifications performed based on samples collected in supervised way.

6.2.1 Parameterizations and Structures Comparison

Regarding their parameterizations, seven different types of models, coded according to Table 5.8,

were tested each on five different neighbourhood structures. Therefore, thirty-five different con-

textual classifications were performed with each training sample set. This section first evaluates

the classifications performed based on the samples collected in supervised way. Following, the

comparisons are extended to the classifications performed based on twenty-five different sample

sets collected randomly.

As discussed in Section 4.5.3, all the models considered in this thesis contain a parameter

λ which weights the influence of the interaction factors and thus establishes the strength of the

influence of context in the classification. This parameter can be defined empirically based on the

ratio between the number of blocks, which is the number of association factors, and the number of

pairwise neighbouring relationships between blocks, which is the number of pairwise interaction

factors. Table 6.3 shows this ratio and the number of interaction factors for the five types of

neighbourhood structures considered in this thesis and presented in Section 5.2.5. Instead of

defining λ empirically however, an exhaustive search of the optimal λ was performed by analysing

the overal accuracies obtained with a hundred different λ values from 0 to 1. The overal accuracies

refer to the classifications performed with training samples collected in supervised way. Figure

6.2 shows for the four different CRF models considered and the five different neighbourhood

structures the overal accuracies achieved with each of this lambda values. A dashed line indicates

the highest accuracies achieved by each CRF model. The continuous black line indicates the

overall accuracy of the standard classification, which was performed with the Random Forest

classifier and based on samples collected in supervised way. The class membership values output

by the Random Forest algorithm for each block were considered as the association potentials, as

explained in Section 4.5.3. It can be noticed that M7 is the model that performed the best with

all graph structures, followed, with the exception of Figure 6.2(a), by M4.

Figure 6.3 shows for each neighbourhood structure and for model M7 and each of the three

MRF models considered the profiles of λ values and respective overal accuracies achieved. Just

as in Figure 6.2, the dashed lines indicate the highest overall accuracy achieved by each model



6.2. Contextual Classifications 83

Int. Factors Ass./Int. Factors

Fixed Radius of 140 m 2233 0.75
3-Nearest Neighbours 1487 1.13
Adaptive Radius 2360 0.71
Fixed Radius of 240 m 7178 0.23
Block-adjacency 4280 0.39

Table 6.3: Number of interaction factors from the five different neighbourhood structures and the
ratio between association and interation factors. The number of association factors, and hence of
blocks from the study site, is of 1695.

and the continuous black line indicates the overall accuracy of the standard classification. It can

be observed that none of the MRF models performed better than the best CRF model (M7).

Among the MRF models, with the exception of Figure 6.3(b), M1 and specially M2 are the ones

that performed best.

The maximum overal accuracies achieved by each model and neighbourhood structure combi-

nation are reported in Table 6.4. The highest overall accuracy achieved with each different graph

structure is highlighted in blue. All models except M3 achieved the highest overal accuracies

when applied on the graph structure defined by a fixed radius of 240 m. M3 performed better

when the graph structure is defined by the criterion of block adjacency. Among all MRF models

(M1, M2 and M3) tested with the structure defined by the criterion of 3-nearest neighbours, M3

is the one that performed best. When considering this type of structure, M3 also achieved higher

overal accuracies than the other CRF models (M4, M5, M6, M7) with the exception of M7. In

fact, M7 is the model that achieved the highest overal accuracies when considering any of the

five graph structures. It is then logical that the overall highest accuracy among all models and

structures combination was achieved by M7 with a graph/neighbourhood structure defined by a

fixed radius of 240 m. Given that M7 performed better than all other CRF models, it can be

concluded that apparently it worths the effort of inserting the additional association factors de-

fined by the outcomes of the MDPs-based classification. This is partially confirmed by the overal

accuracies achieved by the MRF models. M2, which also includes these extra association factors,

performed better than the other two MRF models when three out of five graph structures are

considered. Furthermore, among the MRF models, M2 obtained the highest mean and maximum

overall accuracy over all five structures. It can be observed from Table 6.4 that, except when

considering the 3-nearest neighbours structure, third-order interaction factors do not increase the

accuracy. (It does however increases processing time!). It should be stressed that in general the

CRF models performed better than the MRF ones. Also, despite being the simplest MRF and

CRF models, M1 and M4 achieved decent overal accuracies, specially when applied on structures

defined by the criteria of block adjacency and of a fixed radius of 240 m. In this former case,

M1 and M4 actually achieved the highest overal accuracies among the MRF and CRF models

respectively. Surprisingly though, M5 and M6 only performed better than M1 and M3 considering

the mean and maximum statistics.

In order to evaluate the consistency of the models, their performances on twenty-five differ-

ent classification experiments were analysed. Each experiment differs only on the set of training

samples, which, as mentioned, was in all cases collected randomly. At each of the classification

experiments, the best λ parameter for each model and graph structure was searched. This search

consisted in firstly identifying the best λ value for the respective model and graph structure ac-

cording to the classifications based on the training samples collected in supervised way. Following,

each model was tested with twenty λ values centered on this value of reference and differing on

0.01. For example, it can be seen from Figure 6.2(a) that model M4 achieved the highest accuracy
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Figure 6.2: Overall accuracies achieved by setting the lambda parameter to a hundred values between 0
to 1 for the CRF models considered. a) to e) Results for the graph structures defined by the five different
criteria considered in this thesis. A dashed line indicates the highest accuracies achieved by each CRF
model. The continuous black line indicates the overall accuracy of the standard classification, which was
performed with the Random Forest classifier and based on samples collected in supervised way.
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Figure 6.3: Overall accuracies achieved by setting the lambda parameter to a hundred values between 0
and 1 for M7 and the MRF models considered. a) to e) Results for the graph structures defined by the
five different criteria considered in this thesis. A dashed line indicates the highest accuracies achieved by
each model. The continuous black line indicates the overall accuracy of the standard classification, which
was performed with the Random Forest classifier and based on samples collected in supervised way.
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M1 M2 M3 M4 M5 M6 M7 Mean Max.

Fix. rad. of 140 m 71.88 73.40 71.52 72.75 73.40 71.88 73.91 72.67 73.91
3-nearest neighb. 71.52 72.31 72.60 72.24 71.59 71.44 73.04 72.10 73.04
Adaptive rad. 73.33 74.34 72.24 73.84 73.26 73.62 74.85 73.64 74.85
Block Adj. 74.63 74.12 73.83 75.21 74.70 74.77 75.21 74.63 75.21
Fixed rad. of 240 m 74.71 75.00 72.39 75.94 75.14 75.00 76.01 74.88 76.01

Mean 73.21 73.83 72.51 73.99 73.61 73.34 74.60
Max. 74.71 75.00 73.83 75.94 75.14 75.00 76.01

Table 6.4: Overall accuracies achieved by the different contextual classification models applied at
different graph/neighbourhood structures. The contextual classifications were performed based
on training samples collected in supervised way. The highest overall accuracy achieved with each
structure is highlighted in blue.

with a λ of about 0.6. Hence, at each of the twenty-five experiments conducted with M4 and the

structure defined by the fixed radius of 140 m, the best λ was found by testing the twenty values

between 0.5 and 0.7.

Figure 6.4 depicts the plot graphs with the overal accuracies achieved by each model and graph

structure at each of these twenty-five classification experiments. It can be seen that the standard

classifications overal accuracies vary significantly according to the experiment. This is reasonable

since the number of samples from each class is relatively low (63) and the inner-class variability

is high. Surprisingly, however, the contextual classification model that performs best at each

experiment varies a lot for each of the considered graph structures. This leads to the conclusions

that there is no overall best model and that, instead, the models performances depend strongly

on the set of training samples, based on which the standard classification and thus the association

potentials are defined.

The performance and consistency of the models can also be evaluated based on Table 6.5. It

presents for each graph structure the first-order statistics of the models overal accuracies achieved

throughout the twenty-five experiments. It can be observed that indeed the graph structure with

which the highest overal accuracies are achieved is the one defined by a fixed radius of 240 m,

followed by the ones defined by the blocks adjacencies and by the blocks adaptive radius. In Table

6.5, the highest mean and maximum overal accuracies achieved with each structure is highlighted.

When contextual classification is performed with the structure defined by the blocks 3-nearest

neighbours, just as when the samples were collected in supervised-way, the highest overall accuracy

is achieved with model M3, which contains third-order interaction factors. When the structure

was defined by the blocks adjacencies, the highest mean and maximum overal accuracies were

achieved by M6, which takes into consideration the blocks shape similarity for defining their

potential of belonging to the same class. Differently from when the samples were collected in

supervised way, the overall highest mean and maximum overal accuracies were achieved by model

M4 instead of by model M7. However, it can be observed that M7 is after M4 the model that

most of the times performed best. Regarding the MRF models, M1 overcome most of the times

the performances from M2 and M3, what also does not agree with the results shown in Table

6.4, where it can be seen that M2 is the model which performed best for three out of five graph

structures.

Table 6.5 also presents the standard deviations from the overal accuracies achieved by each

model when applied over each of the five graph structures. The overal accuracies standard de-

viations are never higher than 1.89 and do not vary a lot, which means that the mean overall

accuracy improvement achieved by considering context in the classification is representative. The

mean overall accuracy improvement is also shown in Table 6.5 for each model and structure com-
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Mean Overall Accuracy (%):

M1 M2 M3 M4 M5 M6 M7

Fix. rad. of 140 m 72.77 72.81 71.68 73.25 72.91 72.67 73.25
3-nearest neighb. 71.71 71.51 72.42 71.84 71.80 70.91 71.92
Adaptive rad. 73.64 73.30 73.00 74.03 73.75 73.47 73.90
Block Adj. 74.82 74.44 73.48 74.24 73.86 74.80 74.22
Fixed rad. of 240 m 75.17 75.16 73.61 75.93 75.51 75.35 75.48

Maximum Overall Accuracy (%):

M1 M2 M3 M4 M5 M6 M7

Fix. rad. of 140 m 75.07 75.43 74.56 75.86 75.65 75.28 75.94
3-nearest neighb. 73.91 74.20 75.43 73.69 74.05 73.62 73.55
Adaptive rad. 76.08 75.72 75.36 77.39 76.44 76.88 76.30
Block Adj. 76.81 76.30 75.72 76.66 76.37 76.95 76.23
Fixed rad. of 240 m 77.46 77.02 75.79 78.26 77.39 76.95 77.68

Standard Deviation:

M1 M2 M3 M4 M5 M6 M7

Fix. rad. of 140 m 1.22 1.38 1.31 1.44 1.39 1.41 1.30
3-nearest neighb. 1.18 1.17 1.25 1.26 1.04 1.22 1.01
Adaptive rad. 1.27 1.33 1.26 1.53 1.40 1.51 1.39
Block Adj. 1.35 1.26 1.89 1.38 1.34 1.29 1.32
Fixed rad. of 240 m 1.40 1.27 1.20 1.22 1.22 1.08 1.27

Mean Accuracy Improvement (%):

M1 M2 M3 M4 M5 M6 M7

Fix. rad. of 140 m 5.47 5.56 4.36 5.98 5.63 5.35 5.98
3-nearest neighb. 4.39 4.22 5.10 4.50 4.48 3.56 4.61
Adaptive rad. 6.37 6.05 5.69 6.76 6.48 6.18 6.59
Block Adj. 7.50 7.12 6.16 6.92 6.54 7.48 6.90
Fixed rad. of 240 m 7.91 7.91 6.30 8.63 8.23 8.06 8.19

Table 6.5: First-order statistics of the overall accuracies from the twenty-five contextual classifica-
tion experiments. The highest mean and maximum overal accuracies achieved with each structure
is highlighted.

bination. It can be seen from this part of the table that applying any of the CRF models (M4,

M5, M6 and M7) over the structure defined by the fixed radius of 240 m is expected to deliver

the highest overall accuracy improvements.

6.2.2 Misclassification Analysis

This section briefly discusses the missclassifications from the standard and best contextual classi-

fications obtained based on the samples collected in supervised way. As shown by Table 6.4 and

Figures 6.2 and 6.3, the best contextual classification was achieved with model M7 applied on the

neighbourhood structure defined by a fixed radius of 240 m. Figure 6.5 shows this and the stan-

dard classification, as well as the official UST map of the study site generalized to the five classes

according to Table 5.4. An overall accuracy improvement of approximately 7,2% (from 68,9% to

76,06%) was achieved by considering contextual relationships in the classification. It can be seen

from Figure 6.5 that a smoothing effect is obtained by considering context in the classification.

This was expected, since the energy functions of which the models are consisted are penalized
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Figure 6.4: Plot graphs with the overall accuracies achieved by each model and graph structure at each of
the twenty-five classification experiments. The experiments differ only on the training sample sets. a) to
e) Plot graphs from the different graph/neighbourhood considered.
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when two neighbouring blocks assume different classes. This smoothing effect causes most of the

times the correction of misclassifications from the standard classification. However, at times it

causes also incorrect class assignment changes. Examples of these two effects are shown in Figure

6.6.

In order to further analyse the percentage of blocks that had successfull and unsuccessfull class

changes, Table 6.6 was created. It shows for model M7 applied over each of the five considered

graph structures the percentange of the four possible before-and-after classification status, which

are the following: correct-false (CF), false-false (FF), false-correct (FC) and correct-correct (CC).

These percentages are shown only for when model M7 is applied, because it is when the highest

overall accuracy improvement is achieved for each of the five graph structures, as it can be seen

in Table 6.4. Table 6.6 shows that, for all graph structures, the percentages of CF is always lower

than FC, indicating that there was more successfull class changes than unsuccessfull ones. The

difference between FC and CF is largest for the structure defined by a fixed radius of 240 m.

The structure which yields the most class assignment changes is the one defined by the blocks

adjacencies.

Misclassifications are most commonly analysed based on a confusion matrix. Table 6.7 shows

the confusion matrices of the standard classification as well as of the contextual classification

shown in Figure 6.5. As mentioned, the contextual classification shown in Figure 6.5 is the one

produced with model M7 and the graph structure defined by a fixed radius of 240 m. It yielded

an increase in the Kappa index of 0.09 (from 0.57 to 0.66). Aiming to spare space, the names

of the classes in Table 6.7 and in the following ones are written in abbreviated form. These

abbreviations are first indicated in Table 5.4 and are adopted for the rest of this section.

Regarding the confusion matrix of the standard classification in Table 6.7, it can be seen that

classes PVA, RBD and DSDH get mutually confused. This is probably because these are classes

where vegetation occupies frequently a good proportion of the blocks area. Classes DBD, RBD

and LBIA get also mutually confused presumably because they share the trait of having buildings

which sometimes may appear with similar shapes and densities. Regarding the confusion matrix of

the contextual classification, Table 6.7 shows that the user’s accuracy has declined only for classes

PVA and LBIA. This might be because the distribution of the blocks belonging to these classes

are not as clustered as the others, what makes them more vulnerable to the inherent smoothing

effect of the contextual classification. If the association potential of the blocks correctly classified

as PVA or LBIA is not strong enough, it is likely that they will suffer incorrect class changes.

Morevover, class LBIA is the most heterogeneous one concerning its blocks shape and appearance

in the SAR images. These might be reasons for this class reaching the lowest user’s accuracy.

The producer’s accuracy on the other hand has increased for all the five classes.

Another analysis presented in this section refers to relationship between misclassifications and

mixed blocks, i.e. blocks originally assigned to more than one UST class. As mentioned, according

to the official UST map of this thesis study site, 21.89% of the 1695 urban blocks are mixed. In

the standard classification performed with the training samples collected in supervised way, the

percentage of mixed blocks among the misclassified ones is of 28.67%, whereas the percentage of

misclassified blocks among the mixed ones is of 33.15%. These percentages from the contextual

classifications performed with model M7 and the five considered graph structures can be seen in

Table 6.8. According to it, these percentages do not change considerably depending on the graph

structure. It also leads to the conclusion that the misclassifications are only partially caused by

mixed blocks and that approximately two thirds of them are correctly classified, what is not so

different than the approximately 66% to 75% correctness of these classifications.
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Figure 6.5: Standard and contextual classification and ground-truth map from the study site. a) Standard
classification performed by the Random Forest algorithm based on the training samples collected in su-
pervised way. b) Contextual classification performed with model M7 and the graph structure defined by a
fixed radius of 240 m. c) the ground-truth UST map from the study site for the five general UST classes
considered. The overal accuracies of the standard and contextual classifications are of 68,9% and 76,06%
respectively.
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Std. Class. Contextual Class. Ground-Truth

 (a)

 (b)

 (c)

 (d)

 (e)
Urban Structure Types:

Parks and Vegetated Areas
Detached and Semi-detached Housing
Large Buildings and Industial Areas

Dense Block Development
Regular Block Development

Figure 6.6: Details of the standard and contextual classifications as well as of the ground-truth map. a)
to e) Examples of successfull and unsuccessfull class changes caused by the smoothing effect from the
contextual classification.

CF FF FC CC

Fixed radius of 140 m 4.8% 17.4% 7.9% 69.8%
3-neareast neighbours 1.9% 20.2% 5.0% 72.7%
Adpative radius 2.7% 18.1% 7.1% 71.9%
Block adjacency 9.8% 13.09% 12.21% 64.83%
Fixed radius of 240 m 5.2% 15.4% 9.8% 69.4%

Table 6.6: Percentages of the before-and-after class assignment changes regarding the contextual
classifications performed with model M7 and the five graph structures considered in this thesis.
Note: CF: correct-false, FF: false-false, FC: false-correct, CC: correct-correct. For all five graph
structures the percetages of CF is always lower than FC, indicating that there was always more
successfull class changes than unsuccessfull ones.
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Mapped Class

PVA DSDH LBIA DBD RBD Total User’s Acc. (%) Prod.’s Acc. (%)

Ground Truth
Standard classification:
PVA 184 10 3 3 15 215 85.58 84.40
DSDH 22 144 6 12 35 219 65.75 57.60
LBIA 2 5 42 6 7 62 67.77 30.00
DBD 3 25 61 491 48 628 78.18 85.68
RBD 7 66 28 64 91 256 35.54 46.42
Total 218 250 140 573 196

Contextual classification:
PVA 165 17 3 18 12 215 76.74 89.18
DSDH 9 177 2 4 27 219 80.82 62.54
LBIA 2 7 41 9 3 62 66.12 43.61
DBD 4 13 26 566 19 628 90.12 86.14
RBD 5 69 22 60 100 256 39.06 62.11
Total 185 283 94 657 161

Table 6.7: Confusion matrix of the standard and contextual classifications performed with training
samples collected in supervised way. The contextual classification was performed with model M7
and a graph structure defined by the criterion of fixed radius of 240 m. The overall accuracies
achieved by the standard and the contextual classifications are of 68.98 % and 76.01 % respectively.
The Kappa index improved from 0.57 to 0.65.

Mix. blks. among misclass. Misclass. among mix. blks.

Fixed radius of 140 m 31.30% 31.81%
3-nearest neighbors 30.05% 30.46%
Adaptive radius 32.77% 31.27%
Block adjacency 33.43% 35.04%
Fixed radius of 240 m 30.77% 29.11%

Table 6.8: Percentages of mixed blocks among the misclassified ones and the percentages of
misclassified blocks among the mixed ones for the five considered graph structures.

6.3 Spatial Autocorrelation Analysis

In this section, the assumption that the spatial distribution of the USTs in the study site is not

random is evaluated. The extent to which the USTs distribution is spatially autocorrelated is

considered to be the extent to which this assumption holds. In the ground-truth map shown in

Figure 6.5(c) it can be seen that blocks are frequently surrounded by blocks of the same class. In

other words, the UST classes are to a good extent spatially clustered and not randomly distributed.

Besides this qualitative visual analysis, two measures for evaluating the spatial autocorrelation of

the USTs were used. These measures, presented in Section 4.5.1, are the assortativity index and

the Join Counts statistics. These analysis were performed based on the ground-truth map from

Figure 6.5(c) which is the generalization of the official UST map from Munich shown in Figure 5.2

according to Table 5.4. Another purpose of the autocorrelation analysis is to investigate whether

there is correlation between spatial autocorrelation values and the contextual classifications overal

accuracies achieved with the different graph/neighborhood structures.



6.3. Spatial Autocorrelation Analysis 93

6.3.1 Based on the Assortativity Index

Table 6.9 shows for the different neighborhood structures the assortativity index, the number of

pairs of neighbors as well as the overal accuracies achieved by different contextual classification

models. The assortativity index is 1 if all blocks are always neighbors of blocks from the same

class and it is 0 if no pair of neighboring blocks belongs to the same class. It can be seen that

all neighborhood structures yield good assortative mix, indicating global spatial autocorrelation

of the USTs. From observing Table 6.9, one notices that as the number of interaction factors

increases, the assortativity index tends to decrease. The only exception to that trend is the

neighborhood criterion defined by an adaptive radius. A possible reason might be that, according

to this neighborhood defining criterion, small blocks will only have its nearby blocks as neighbors,

whereas very large blocks might not be associated to any neighboring pair due to the maximum

distance threshold th′ (see equation 4.18). Therefore, if it is assumed that closeby blocks of

similar size have higher chance of belonging to the same class, this structure is likely to yield

higher assortativity values than the one defined by a fixed radius of 140 m, for example.

According to Table 6.9, there is correlation between the number of interaction factors (i.e.

pairs of neighboring blocks) and the obtained overal accuracies. When the former increases the

overal accuracies obtained with models M1, M2, M4, M6 and M7 also increase. Thus, with

the exception of the neighborhood structure defined by the criterion of adaptive radius, there is

inverse correlation between the assortativity index and the obtained overal accuracies and the

number of interaction factors.

Overall Accuracy (%)

Assort. Idx. Pairwise Neigh. M1 M2 M4 M6 M7

Fixed radius of 240 m 0.36 7178 74.71 75.00 75.94 75.00 76.06
Block adjacency 0.41 4280 74.63 74.12 75.21 74.77 75.21
Fixed radius of 140 m 0.43 2233 71.88 73.40 72.75 71.88 73.91
3-nearest neighbors 0.45 1487 71.52 72.31 72.24 71.44 73.04
Adaptive radius 0.46 2360 73.33 74.34 73.84 73.62 74.85

Table 6.9: Assortativity index computed for the different graph/neighborhood structures. The
number of interaction factors and the overall accuracy obtained by different models is also shown
for the five graph structures considered.

6.3.2 Based on the Join Count Statistics

The analysis of the USTs spatial autocorrelation based on the JC statistics has focused on three

neighborhood structures only, namely, the ones defined by (i) the blocks 3-nearest neighbors, (ii)

the blocks adjacencies and (iii) by a fixed radius of 240 m. The first of these structures was chosen

because it has the least pairs of neighboring blocks and yet the second largest assortativity index.

The second was chosen because it is arguably the most intuitive and generic way of establishing

neighboring relationships between blocks and it does not require the definition of any parameter

to do so. The third of these structures was chosen because it is the one that yielded the highest

overal accuracies, as already discussed. Table 6.10 shows for each of the five considered UST

classes the number of BB, BW and WW occurences from all pairs of neighboring blocks defined

by each of these three graph structures. B represents the occurence of class k and W the occurence

of any other class. Hence, BB stands for the pairs of neighbors in which both blocks belong to k,

as BW represents the case in which one block belongs to k and the other to a class different than

k. Table 6.10 also shows the mean and maximum values of BB, BW and WW computed from

10.000 random permutations of the B and W values from each class.
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The existence of spatial autocorrelation for a certain class can be attested when the number

of observed BB pairs is higher than the mean number of BB pairs from the n permutations, as

well as when the number of observed BWs pairs is lower than the mean BW pairs randomly

produced in the permutations. With a single exception concerning class Large Buildings and

Industrial Areas and the structure defined by 3-nearest neighbors, this occurs with all classes

and structures. In fact, the number of observed BB occurences is always fairly larger than the

mean number of BB occurences computed from the permutations. The opposite holds for the

BW occurences, i.e. the number of observed BW pairs is always significantly lower than the

mean one computed from the permutations. It can also be noticed from Table 6.10 that very

frequently the number of BB pairs is larger than the maximum number of BB pairs produced by

the random permutations. Accordingly, the number of observed BW pairs is also very frequently

lower than the minimum number of BW occurences produced in the random permutations. The

few exceptions concern classes Large Buildings and Industrial Areas and Parks and Vegetated

Areas, which are the ones with fewer instances. Therefore, there is higher probability that in at

least one of the permutations the autocorrelation for these classes will be higher than the actually

observed one.

Based on the permutations, pseudo p-values for the BB and BW counts can be computed

using equation 4.15. The pseudo p-values for the BB counts express the percentage of times that

the observed BBs were counted to be lower than the BBs from one of the n permutations. Pseudo

p-values for the BW counts express the number of times that the number of observed BW were

counted to be higher than that of one of the n permutations. Table 6.11 depicts these pseudo

p-values for all five classes and the three graph/neighborhood structures considered in this section.

As it can be seen, the null hypothesis of spatial randomness can be rejected most of the times.

The results for the BW counts show for all classes a probability of 1.0 under the null hypothesis

of negative spatial autocorrelation. Again, this strongly supports the assumption that there is

positive spatial autocorrelation on the USTs distribution.

6.3.3 Based on the Classes neighboring Relationship Proportions

The spatial autocorrelation of the USTs can also be analysed by creating for each class k his-

tograms of the proportions of neighboring relationships between k and all UST classes. As with

the JC statistics, such histograms were produced only for the graph/neighborhood structures

defined by the criteria of 3-nearest neighbor, blocks adjacencies and fixed radius of 240 m. These

histograms are shown in Figure 6.7. In general terms, they do not change considerably according

to the neighborhood structure. The most significant common trait is that blocks from class Dense

Block Development, along with those from classes Regular Block Development and Detached and

Semi-Detached Housing appear clustered concerning the three different neighborhood structures.

In other words, blocks from these classes are predominantly neighbors from blocks of the same

class. Therefore, the assortativity values computed for these three structures are mostly influ-

enced by these three classes, specially by class Dense Block Development, which, as it can be seen

from Table 5.4, is the one with most instances.

Regarding the neighborhood structure defined by the blocks adjacencies, it can be noticed

that with the exception of class Parks and Vegetated Areas, all other classes mantain neighboring

relationships mostly with blocks from the same class. This also happens when the structure is

defined by the 3-nearest neighbor criterion. However, in this case the exception is with class Large

Buildings and Industrial Areas. These two classes are the only ones at which a clustered spatial

distribution does not hold when longer range contextual relations are considered by defining the

neighborhood structure based on the criterion of a fixed radius of 240 m. This effect is surely
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3-Nearest neighbors:

Observed Randomly Permuted

Classes: BB BW WW Mean BB Mean BW Max. BB Min. BW

PVA 118 333 1036 38.87 403.80 67 315
DSDH 179 159 1149 39.99 408.32 72 329
LBIA 4 44 1439 7.81 201.11 25 144
DBD 475 318 694 240.50 715.73 308 645
RBD 147 226 1114 51.12 450.35 82 367

Block adjacency:

Observed Randomly Permuted

Classes: BB BW WW Mean BB Mean BW Max. BB Min. BW

PVA 144 911 3218 111.69 1160.92 158 1053
DSDH 349 535 3389 114.80 1173.53 160 1054
LBIA 116 466 3691 22.52 576.98 42 482
DBD 1369 945 1959 691.44 2057.27 784 1911
RBD 419 802 3052 146.78 1293.15 199 1156

Fixed Radius of 240 m:

Observed Randomly Permuted

Classes: BB BW WW Mean BB Mean BW Max. BB Min. BW

PVA 303 1605 5274 187.93 1950.68 252 1774
DSDH 689 917 5576 193.11 1972.39 257 1755
LBIA 54 395 6733 37.85 970.62 73 812
DBD 2406 1659 3117 1161.70 3456.24 1318 3274
RBD 677 1320 5185 247.25 2174.04 336 1997

Table 6.10: Join Count statistics of all five classes according to three different neighborhood
structures. The number of permutations was set to 10.000. The numbers support the assumption
that there is spatial autocorrelation of the USTs for the three graph/neighborhood structures
considered.

Class pseudo p-value BB pseudo p-value BW

Fx. Rd. of 240 m Blk. Adj. 3-NN Fx. Rd. of 240 m Blk. Adj. 3-NN

PVA 0.0 0.003 0.0 1.0 1.0 1.0
DSDH 0.0 0.0 0.0 1.0 1.0 1.0
LBIA 0.016 0.0 0.94 1.0 1.0 1.0
DBD 0.0 0.0 0.0 1.0 1.0 1.0
RBD 0.0 0.0 0.0 1.0 1.0 1.0

Table 6.11: Pseudo p-values of the Join Counts statistics for the five classes and the three different
neighborhood structures. The pseudo p-values are inferred for each class based on the random
permutations of the B and W values and using equation 4.15.
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influenced by the facts that these are the classes with fewer instances and usually the largest

block sizes.

6.3.4 Considering the Blocks Shape Similarity

This section intends to analyse whether the probability of two neighboring blocks belonging to the

same class increases as the similarity of these blocks shapes also increases. The assumption that

this does happen was the rationale for creating the contextual classification model M6. Figure 6.8

shows the cumulative frequency distributions of the shape similarity measure introduced in Section

4.5.2 (equation 4.16) for three different neighborhood structures. It also shows together with these

cumulative frequency distributions the percentage of pairs of neighboring blocks belonging to the

same and to different classes and whose shape similarity values lie below the value on the abscissa.

It can be observed that the lower the values on the abscissa, i.e. the higher the shape similarities,

the more probable it is that a pair of neighboring blocks with equal or higher similarity belong

to the same class. This trend persists through the accumulation of more than 80% of the pairs

of neighboring blocks. It is not that intense in the case when neighbors are defined by the blocks

adjacencies. However, it is strong enough in the cases of the other two structures so that it can be

stated that the assumption holds. In the cases of all three structures, the overall probability that

two neighboring blocks belong to the same class is of about 56%, which means that, regardless

of the criterion for establishing neighboring relationships between blocks, context can provide

valuable information in estimating the UST class from each block.
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Figure 6.7: Histograms of the proportions of class-wise relationships between neighboring blocks. a)
Histograms for the case when neighboring relationships are defined by the 3-nearest neighbors criterion.
b) Histograms for the case when neighboring relationships are defined by the criterion of block adjacency.
c) Histograms for the case when neighboring relationships are defined by a fixed radius of 240 m.
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Figure 6.8: Cumulative frequency distribution of the shape similarity measure for three different graph
definition criteria. a) Cumulative frequency distribution for the case when the neighboring relationships
between blocks is defined by the criterion of 3-nearest neighbors. b) Cumulative frequency distribution for
the case when the neighboring relationships between blocks is defined by the criterion of block adjacency.
c) Cumulative frequency distribution for the case when the neighboring relationships between blocks is
defined by the criterion of a fixed radius of 240 m.
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7 Discussion

7.1 On the Application and Dataset

The distinction of USTs using remote sensing imagery is for a number of reasons a difficult task.

USTs are defined based on physical, environmental and functional aspects which are considered

at the level of some spatial aggregate, like user-defined grids, census tracts or, more commonly,

urban blocks. By using his empirical knowledge and subjectiveness, it might be intuitive for

a human expert to distinguish the USTs of urban blocks. However, it is not easy to translate

the evidences and criteria a human considers into quantitative image-derived attributes. The

challenge lies in computing attributes that expressively describe the composition and structure

of different urban features, e.g. buildings, sealed areas and vegetated areas, found inside these

spatial aggregates. The fact though that USTs are at times partially (at times even entirely)

defined by functional aspects sets limits to their distinction based on quantitative image-derived

attributes. It seems thus reasonable to assume that the upper limit of the extent to which USTs

can be distinguished based on RS imagery depends on the extent to which the classes are defined

by physical and environmental aspects. It should be mentioned that fortunately functional aspects

have frequently a physical expression, as in the cases of residential and industrial uses which give

rise to very distinguishable types of buildings and urban environments. A way to get around this

dependency on physical aspects is by considering more general classes resulting from the grouping

of the original and more specific ones based on their physical similarities. Whether and how this

can be made depends on the specific study site and on the purposes for distinguishing USTs.

If on one hand it is hard to emulate human reasoning through image-derived attributes and

classification strategies, the automatic distinction of USTs from remote sensing imagery has the

advantage that it is performed based on objective criteria and thus human subjectiveness is

eliminated. This is preferable when the UST map is used as an input to systems dedicated to

model phenomena like radiant energy balance and carbon sequestration, or when it is used as

a variable for estimating climate confort and other quality of life indicators. In these types of

analyses, the input data referring to the city’s built-up structures have to concern the physical and

environmental aspects of the classes, such as the presence and structure of vegetated areas and

the size and density of the buildings. Remote sensing imagery and methods offer great potential

for categorizing urban settlements according to such criteria.

Independently from the methods applied, the distinction of USTs with remote sensing data

requires the use of imagery with spatial resolution high enough so that the features that charac-

terize the USTs can be effectively detected. Spaceborne sensors, both SAR and optical ones, fulfill

this requirement well, what is important regarding the distinction of USTs in parts of the world

where airborne remote sensing data may be lacking. In comparison to optical imagery though, the

distinction of USTs with SAR/InSAR imagery is a bit more difficult. As discussed in Chapter 2,

the most seminal works on block-based distinction of USTs rely on a previously performed, and

sometimes detailed, land cover classification. However, few experts would disagree that urban

land cover classification is harder to perform with SAR/InSAR data. While on optical sensors



100 7. Discussion

the backscattered energy is strongly influenced by the physical-chemical properties of the objects

on the surface, on SAR systems it is dependent on the moisture content, geometrical structure,

roughness, condictivity and orientation of the objects in relation to the sensor’s azymuth direc-

tion. This requires, or at least encourages, the development of approaches specific for the case

when the objects must be extracted from the urban blocks using SAR/InSAR images. This thesis

advogates that block attributes computed from InSAR imagery should rely on the expressiveness

of the coherence image for the extraction of vegetated and sealed areas, as well as on the intensity

image for the extraction of shadow and corner reflection features. As shown in this thesis though,

3D information extracted from interferometrically derived DEMs are not expressive enough for

accurately extracting buildings inside urban blocks. This is mainly because of the complexity

of urban areas regarding the SAR-inherent effects, what strongly influences the performance of

phase unwrapping methods and hence the accuracy of InSAR-derived DEMs.

Another idiosyncracy of USTs distinction and urban land use classification is that, differently

from land cover classes, the built-up structure pattern of each UST class may vary significantly

from city to city. Although in a region, country and even a continent cities may be structurally

similar, environmental, cultural and economic conditions are frequently the causes for city-specific

class definitions and class appearances. This makes the transferability of any methodological

approach more difficult, not to mention specific model parameterizations. Moreover, UST classes

are internally heterogenous regarding their defining traits and regarding also the shape and size of

the blocks assigned to a class. That makes each block unique and only to a certain extent similar

to other blocks from the same UST class. These factors motivate the adoption of approaches

which take uncertainty into account at assigning classes to blocks.

7.2 On the Proposed Approach

This thesis proposes a block-based approach for distinguishing USTs. Urban blocks were chosen

as elements of analysis because they are usually the spatial entities at the level of which USTs

and urban land use classes are defined by official planning and city administration agencies. This

is because blocks are bounded by streets, which in turn define the structure of a city’s circulation

dynamics as well as the largest areas available for construction in a city. Thus, urban zoning laws

and other intervention and monitoring regulations are defined based on this type of spatial entity.

Classifying USTs at the level of urban blocks require their extraction, what can be performed

straightforwardly if a street network is available. Fortunately, such a data is frequently available

and can be provided by the city administration and planning agencies.

The main factors that enable an UST class to be effectively distinguished from remote sensing

images are two, namely, the defining traits and the number of instances of this class. The former

concerns the aspects and criteria that defines a class as opposed to all others. If an UST class is

defined essentialy by a functional or cultural aspect (e.g. sport facilities, historical areas) most

likely such class will be frequently misclassified. The second aspect refers to the necessity of

training the classification algorithm with a reasonable number of samples from each class. Hence,

specific and rare classes should also be merged with others. In order to increase the number of

distinguishable classes, the study site would thus have to be enlarged so that enough training

samples from the additional classes could be collected. This thesis has satisfactorily distinguished

five general UST classes. The five classes cover the whole spectrum of the most commom built-up

and permeable surface structures.

Instead of distinguishing USTs based on attributes that regard the structure of the land cover

classification from inside each block, the strategy adopted in this work was of extracting lines

and polygons features from inside each block and then computing attributes that decribe the
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presence, structure and spatial disposition of these features. Although in this way a previous land

cover classification could be spared, the expressiveness of such attributes depends on favourable

relative orientation between the buildings and the SAR range axis. This is because in order for

buildings to appear in a SAR intensity image in the form of shadow and double-bounce features,

this appropriate relative orientation must exist. This dependency can partially but surely be

mitigated by considering images acquired at the satellite’s both looking directions. Ideally, having

SAR acquisitions from multiple aspects would guarantee the appearance of such shadow and

double-bounce features, whereas in optical imagery the appearance and shape of shadows depend

on the illumnination conditions and the lines may not correspond to roof edges. Although several

attributes were explored which describe the spatial disposition of the lines and polygons features

inside the blocks, many of these attributes were found to be less expressive than more simple

and commonly used composition attributes, like the features-to-block area proportion, the mean

length of lines, etc. This is probably because such attributes are more generic and hence describe

more expressively the variability of appearances from the UST classes.

Nowadays, many powerful classification methods can be applied on remote sensing images.

Each method poses advantages and disadvantages in light of the conditions and constraints of each

application. In this thesis, the classification of USTs based on the comparison of MDPs generated

for each block has achieved comparable results as the ones obtained with Random Forest, which is

one of the algorithms of choice for several remote sensing imagery classification applications. The

proposed strategy for extracting CCs and creating MDPs with them can easely be transposed,

since it does not require the tunning of any parameter except the number of percentiles of the

images digital numbers, which are to be considered as the thresholds values based on which

the CCs are extracted through image thresholding. The use of the relative entropy metric for

comparing the blocks MDPs does not require the setting of any parameter either.

Regarding the motivation for considering context in the classification of USTs, spatial auto-

correlation analyses performed in this thesis has shown that for the city of Munich, a typical large

european city, the five considered classes are not spatially distributed in random manner. They

are in fact disposed in spatial clusters. This can be expected to occur in cities with similar growth

and planning history and more generally on cities where the distribution of USTs is regulated and

controlled by urban zoning laws, a common fact in many important cities at the present time.

Regaring the method through which contextual relations between blocks are considered in the

classification, it is safe to say that PGMs are presently the most statistically sound and flexible

framework for that. All constituent parts of a PGM (i.e. its structure, potential functions and

inference algorithm) are independent from each other, what enables easy adaption to other con-

ditions, such as study site, input data and computational resources. One particularly important

advantage is the fact that any classifier can be used as the association potential functions, as

long as it outputs for each element a relevance value to each of the considered classes. Likewise,

the interaction potential functions can also be altered or adapted without any influence on the

other model parts. In this thesis, I investigated and compared what seems to be the most gen-

eral neighborhood structures and interaction potential functions for the block-based distinction

of USTs.

7.3 On the Assumptions and Results

The results obtained in this thesis support the assumption that considering the context of each

urban block in the UST classification increases the overall accuracy. At times, the accuracy

improvement has reached up to 10%. In the high majority of times though it was of about 7 to

8%. The obtaining of standard and contextual classifications with accuracies of approximately
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70% and 80% respectively supports the assertion that HR spaceborne InSAR images can be used

to distinguish general USTs.

Section 2.3 shows examples of urban blocks where certain features would not be possible to

be extracted if only images from one looking direction were available. Since most attributes

considered in the classifications are computed based on such extracted features, it was assumed

that classifications performed with attributes derived from images acquired at both looking direc-

tions would always achieve higher accuracy indexes. The results from classification experiments

conducted with one training sample set collected in supervised way and with other twenty-five

sample sets collected randomly have shown that this assumption could be confirmed. In all

of these twenty-six classification experiments, the accuracy has increased in average 5% when

considering also attributes computed from images obtained at the other looking direction.
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8 Conclusion and Outlook

This chapter closes the thesis by making the last commentaries and drawing the main conclusions.

Suggestions for future works are made and tasks still to be accomplished are addressed.

8.1 Summary and Conclusions

The main goal of this thesis is to distinguish USTs based on remote sensing imagery. The proposed

approach considers the urban blocks as the elements of analysis, what is in agreement with the

official UST map from the study site, i.e. Munich (Germany), and from many other cities in the

world as well. Nothing hinders though the application of the methods proposed in this work on

other types of spatial entities like census tracts or user-defined grids and regions. UST classes are

defined mainly by the presence, geometrical structure and spatial disposition of urban features,

e.g. buildings and vegetated areas, located inside these spatial entities. This fact, together with

the number of shapes and sizes that urban blocks may assume, gives rise to great variability in the

appearance of each UST class. The conception and computation of attributes that expressively

describe the blocks according to these features is an art, for one is not dealing with classes that

have a more or less fixed spectral or structural signature. On the contrary, the classes are complex

and heterogenous as the ways in which human constructions may be.

USTs official maps are frequently produced based on aspects that cannot be quantitatively

or objectively formulated. Frequently, it is not even produced and updated by the same expert,

that is to say, with the same subjectivity. To evaluate automatic USTs classifications taking into

consideration the official UST maps as ground-truth is surely the most appropriate thing to do.

However, the performance of a classification approach should not be evaluated solely based on

the crisp analysis of whether a class assignment corresponds exactly to the one from the official

map. Perhaps, automatic USTs classifications should also be evaluated based on the consistency

of the classes, i.e. based on whether the instancies from each class are similar regarding their

built-up structure. In other words, the question that should be asked is: is the UST classification

meaningful and therefore useful regarding the purposes for which the UST map is used? In

this sense, the main point concerns not so much the achieved overall accuracy, but rather if the

attributes that are to be used to distinguish the classes are reasonable and if the features based

on which the attributes are computed could be effectively extracted.

This thesis main argument is that the most important key concept in the distinction of USTs

based on remote sensing imagery is the description, modeling and consideration of context. This

was approached in two different levels, namely, internally to each urban block and externally at

the level of the mutual influences between neighboring blocks regarding their class assignments.

The first level refers to the spatial disposition of the image features which presumably indicate

the presence and geometrical properties of certain urban features, such as buildings and vegetated

areas. In this thesis, several attributes were proposed and used which describe the position and

orientation of the features in relation to each other and to the boundaries of the blocks. The
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features spatial disposition was also described by means of creating for each block a network

connecting the features extracted in it and then by extracting the network’s structural properties

and autocorrelation measures referring to the features different geometrical properties. Although

this is certainly pertinent from a theoretical perspective, the practice has shown that more simple

attributes are most of the times more relevant. The relevance of the attributes, however, should

be considered in light of the classification method used to evaluate them. Perhaps, knowledge-

based approaches, which are flexible and powerful in terms of emulating human reasoning, could

consider attributes that become relevant according to their class-membership functions and in the

context of the user-defined class despriction rules, as done by Novack & Kux [2010] and Novack

et al. [2014]. The difference in the potential of optical and SAR imagery for distinguishing USTs

lies therefore in the effectiveness with which certain image features can be extracted. In other

words, if the features are effectively extracted, the class-describing attributes will be expressive.

In this sense, this thesis contributed in showing that having imagery from the satellite’s ascending

and descending looking directions considerably increases the chances of effectively extracting these

features. It was also demonstrated by experiments and results that the classification accuracy

would have been lower if imagery from only one of the satellite’s looking directions were available.

The second level at which context was considered in the distinction of USTs refers to the

mutual influence of neighboring blocks regarding their class assignment. These influences were

modelled by means of different PGMs. It is secure to say that in the state-of-the-art PGMs

offer the most flexible and statistically sound approach to model contextual relationships be-

tween spatial entities in geographical analysis and image processing applications. Based on the

assumption that the spatial distribution of the USTs in a city is not random, this thesis is the

first to explore contextual information and probability theory as a way to model uncertainty and

explore the information from the context of each block as a way to improve the accuracy of stan-

dard block-based classification. Presumably, the accuracy improvement observed in all contextual

classifications performed in this thesis is partially caused by the effect that blocks whose shape

and appearance differ considerably from the ones from the class to which it belongs become less

vulnerable to misclassifications if they are surrounded by blocks with strong association poten-

tials to the correct and same class as the concerning block. Commonly adopted and proposed

ways of modeling the contextual interaction between urban blocks were considered by means of

different parameterizations of the PGMs as well as by defining the structure of the models based

on different criteria. The overal accuracy improvements obtained in all contextual classification

experiments showed that this is a worthwhile effort in the UST and urban land use classification.

8.2 Outlook

The results presented in this thesis and on correlated papers published during its realization

are expected to encourage the consideration of contextual relations between neighboring blocks

regarding their class assignments. PGMs are such a flexible and powerfull framework that it

is hard to imagine another approach through which contextual relations can be modelled and

considered in block-based USTs and land-use classifications. As mentioned, one important feature

of PGMs is that they allow the inclusion of other terms in the model that are not the necessarly

existent association and interaction terms. In this thesis a third term was included in two of the

models, but they were only a second association term. As shown in Section 3.4, multi-temporal

and multi-scale classification has been performed with models containing such additional terms.

Therefore, multi-temporal, hierarchical and contextual classification of USTs are expected to be

performed with PGMs in the near future.

In this thesis, the parameterization of the interaction factors were defined by standard and

contrast-sensitive Potts models. These functions penalize the energy when two neighboring blocks
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are assigned to different classes. This might smooth the classification at occasions on which it

should not, that is to say when two different classes are related in such a way that causes them to

be spatially close to one another. A simple example concerns the UST class ’Parks and Vegetated

Areas’, which is frequently observed to be surrounded by blocks belonging to other related classes,

like ’Detached and Semi-detached Housing’ or ’Dense Block Development’. Inversely, it might be

less probable that two blocks belonging to class ’Parks and Vegetated Areas’ are found to be direct

neighbors. These type of contextual relationships can easely be modelled by the parameterization

of the interaction factors.

As shown in Section 6.2.2, approximately 30% of the blocks in the study site are assigned to

more than one UST class. However, the issue of mixed blocks was not addressed in this work.

To the best of our knowledge, this is a gap still to be filled in the field of block-based UST

distinction. The detection, internal segmentation and classification of mixed blocks brings the

question on how to evaluate the accuracy of these tasks when they are performed automatically.

At least in the case of Munich, it seems very hard to obtain by automatic methods the same

internal segmentation of mixed blocks as the ones from the official map. Figure 8.1 shows two

examples of mixed blocks concerning their segmentation and classification before and after the

class generalization process explained in Section 5.2.1. It can be seen that their exact internal

segmentation could hardly be obtained by an automatic method.

An important requirement for improving the results obtained with the proposed approach is

the improvement of the spatial resolution of the (In)SAR images. This would enable a better

effectiveness of the proposed line and polygon extractors as well as the development of more

powerfull ones, making the attributes based on these features more expressive. Furthermore, the

interferometrically derived DEMs would also be expressive enough to enable much more accurate

distinction of certain classes. The basic condition for enhancing the spatial resolution of the

SAR imagery is the acquisition of imagery by airborne sensors. Airborne SARs are able to

acquire images at different, also orthogonal, aspect angles. Having SAR/InSAR acquisitions from

four orthogonal aspects angles increases tremendously the chances of effectively and accurately

extracting image features which indicate the presence and geometrical properties of the buildings

inside the blocks, as demonstrated by Schmitt [2014]. However, it should be stressed, none of

this improvements on the side of the input image data reduces the inherent complexity of the

UST classes. Hence, the difficulty of distinguishing them from remote sensing imagery would

fundamentally persist.

Another aspect of the field of USTs distinction with remote sensing imagery that has not

been explored yet concerns the extraction of streets from the imagery as a way to abdicate from

auxiliary data provided by third-parties. Automatically extracting lines corresponding to streets

and using those as boundaries from closed segments which hopefully correspond to the urban

blocks of the city is an effort that would be fairly appreciated by the scientific community in this

field. Such an approach would be in particular pertinent in cities where auxiliary data concerning

the streets network is not available or is not reliable.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 8.1: Two examples of mixed blocks concerning their segmentation and classification before and after
the class generalization process explained in Section 5.2.1. a) and e) Ground-truth internal segmentation
of two mixed blocks. b) and f) Ground-truth original classification of two mixed block. c) and g) Merge of
the internal segments of the two mixed block. d) and h) Result of the class generalization process which
produced the final ground-truth classification of the two mixed blocks.
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