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Abstract—The aim of non-intrusive load monitoring is to de-
termine the individual energy consumption of different devices on
the basis of the total energy consumption. The individual energy
consumption of a device is measured at a central point without
the need of individual measuring instruments on the devices
themselves. In this work we present a signal representation
frequency invariant transformation of periodic signals (FIT-PS)
[1] on high sampled signals.

We present a new method for signal separation, decomposition
of the signal into individual states and feature extraction. Fre-
quency invariant transformation of periodic signals (FIT-PS) is
based on a signal diagram similar to the concept of trajectories
[2]–[4] utilizing the periodicity of voltage and current, and their
correlation. This approach breaks down the current signal into its
individual periods using the voltage as a reference signal for the
determination of trigger points. Thereby, the phase information
between current and voltage is maintained and is inherently
part of the new signal representation. In common approaches
with high sample rates several signal forms must be combined
to achieve good results. The advantage of this method is that
the information contained in the signal is preserved entirely.
Hence, this single signal representation is sufficient to create
similar or even better results by using high sample rates. The
efficiency of the new signal representation and signal separation
is demonstrated by the example of an event detection algorithm.
For testing the BLUED dataset [5] was used reaching a sensitivity
in event detection of 99.45%.

I. INTRODUCTION

The disaggregation of electrical energy consumption (non-

intrusive load monitoring (NILM)) determines the energy

consumption of individual electrical appliances from the total

energy consumption [6]. In NILM the quantities v(t) and i(t)
are measured. They can be described as a function of the

amplitude V (t) or I(t) and the frequency f(t), respectively.

v(t) = V (t) · cos(2πf(t) · t+ ϕi(t)) (1)

i(t) = I(t) · cos(2πf(t) · t+ ϕv(t)) (2)

Equation (3) according to [7] describes the fundamental prob-

lem of modeling NILM.

y(t) =

D(t)
∑

d=1

yd(t) for t = 1, ..., T (3)

y(t) ∈ R describes the sum of power consumption of several

devices d at a time t. Where yd(t) is the power consumption of

the device d at time t and D(t) is the number of devices in the

building. In general, neither the number of devices nor their

characteristics are known and thus a distinct solution does not

exist.

Most of the methods in literature use a linear process for

disaggregation which are described with the following four

steps: event detection, feature extraction, classification and

tracking [8]. The event detection determines the corresponding

switching points of the on and off times of the individual

devices. The knowledge of the switching points allows a

further distinction of the signal state: There are stationary

states zi, zi+1, . . . and between each two stationary states there

is a transient state.

In the early days of NILM [6] the differential power ∆P

and ∆Q are used. Nowadays there are numerous features like

harmonics, switching transient waveform, current waveform or

eigenvalues [10], [11]. This features can be distinguished in

steady state features and transient state features. While, steady

state features utilize the signal section before and after the

turning-on or switching-off procedure, transient state features

only make use of the signal sequence during the turning-on

or switching-off process. [12] proposes a procedure in which

both features are used in combination. The classification, or

distinction of different devices, is based on the results provided

by the event detection and the feature extraction [13]. Therefor,

each event which is not identified leads to a reduction of the

recognition rate and each false positive event represents an

error source for the classification.

The energy - tracking, which assigns the energy consumption

to the individual devices is the last step of the NILM.

An important question for a NILM system is the choice

of the sampling rate. In literature the sampling rate ranges

from a few Hz [6], [14]–[17] to several kHz [18], [19]. The

number of features that can be defined increases with a higher

sampling rate but also the calculation effort and the costs

for the whole system increase. The optimal feature for event

detection and classification depends on the kind and number

of devices, as well as on their switching behavior. In [10]
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different combinations of features are used to produce better

results but it is hard to find a combination of features that suits

for all devices. The success of a NILM system depends highly

on the individual condition. Therefore, there is the possibility

to provide a variety of features in the hardware (HW) or to

customize the features by HW adjustment for the individual

equipment pool. In addition, the weighting of the features

should be adjusted depending on the application environment.

Frequency invariant transformation of periodic signals

(FIT-PS) is a new method of signal decomposition which

is independent of the main frequency and which results in

a signal representation without periodic oscillations. The

current is separated into its individual periods using the

voltage as a reference for the beginning of each period and

the determination of the subsequent sampling points in each

period.

In contrast to current waveform (CW) the voltage is used

as a trigger point for the determination of the periods.

Thereby, important information, such as active and reactive

power for example, remains. The decomposition results in

a multi-dimensional signal where all information, including

low and high frequencies, and the phase angle are preserved.

Furthermore, easy separation of steady states and transient

states is enabled.

The generated set of periods creates the feature space. Since

all information is preserved in this feature space, its solitary

application is sufficient. In this paper the versatility of the

introduced signal decomposition method is demonstrated at

the example of the event detection.

This paper is structured as follows: Section II introduces the

new signal representation FIT-PS. Section III presents an event

detection method which is optimized by using the new signal

representation. In section IV, the performance of an event

detection exploiting the new signal representation is shown.

The BLUED dataset [5] is used for the simulations. Addition-

ally, a measurement method is presented that functions without

converting data afterwards.

II. SIGNAL REPRESENTATION BY FIT-PS

This section describes the new feature space based on v(t)
(1) and i(t) (2). First, the sampling resulting in the new signal

representation is described. Next, the structure of the new

signal representation will be explained. Since the frequency

of the power grid is not constantly 50 Hz or 60 Hz a mains

frequency invariant representation of the current signal is

necessary. This is realized using the permanently available

voltage signal.

FIT-PS splits the current signal i(t) into the individual

periods whereby the voltage signal v(t) is used as a synchro-

nization signal. This is shown in the first three plots of Fig.

1. Thus, the information of the phase angle between current

and voltage is preserved. This results in a nl×nk dimensional

feature space where nl is the number of periods and nk is the

number of sampling points in each period as it can be seen in

the last plot of Fig. 1.
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b) Interpolation of the individual periods
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Fig. 1. Graphic illustration of FIT-PS

The value of the signal i(t) is calculated by applying Eq.

(4). In Eq. (4) l numbers the periods of the signal i(t) and k

is the sample number within one period of the signal i(t).

N,N→ R

l, k 7→ i((l − 1) · Tg
︸ ︷︷ ︸

period

+ Ts · k
︸ ︷︷ ︸

inside one period

) (4)

Tg is the length of one period in seconds and Ts is the time

in seconds between two measurement points.

In Fig. 2 the FIT-PS representation of a i(t) is shown as a

colored surface. Here 600 periods are considered. Those 600
periods contain two different steady states and a transient state.

Initially Fig. 2 shows the steady state zi of device 1. After the

300th period, device 2 is connected. Following an amplitude

change that is clearly apparent in all dimensions, the system

is in a transient state. Subsequently, the signal again reaches

a stationary state, the second steady state zi+1. Both steady

states have their minimum (k = 148) and their maximum
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(k = 48) in the same dimension, but the waveform itself

has changed considerably from the steady state zi to zi+1.

At steady state zi, after the maximum in dimension k = 48,

the amplitude decreases quickly below zero (from the third

dimension on). Whereas at steady state zi+1, the value does

not reach a negative amplitude until the dimension k = 100.

The figure shows that the changes in each period l within a

steady state are very small.

Fig. 2. FIT-PS of a current signal. Steady state zi: device 1; Transient state:
switching on procedure of device 2; Steady state zi+1: device 1 and 2

A. The influence of the sampling rate

In Fig. 3 the influence of different sampling rate is shown.

Each figure shows the same part of the signal, where a device

is switched on and transformed with FIT-PS, but with different

sampling frequencies. l is the number of periods and k is the

number of dimensions which change with different sampling

rates. With 1.5 kHz far fewer details can be seen. Due to the

low-pass characteristic during down sampling briefly occurring

peaks are smoothed. Therefore, the amplitude also changes

here, which can be seen particularly clearly at 1.5kHz.

III. EVENT DETECTION

We increase the sampling rate to 12 kHz (200 samples per

period), compared to [1] where a sampling rate of 1.2 kHz (20

samples per period) was used. Using FIT-PS allows a simple

method with low complexity for detecting switching events.

To reduce the influence of disturbances a low-pass filter (5)

is applied in each dimension k of the signal i(t). With the

low-pass filter (5) we get ITP (6)

hTP (l) =

M
∑

g=0

bgδ[n− g] =

{

bn, 0 ≤ n ≤M

0, else
(5)

ITP (l, k) =

(

hTP ∗ I

)(

l, k

)

∀ k (6)

where M is the length of the low-pass filter and bn are

the filter coefficients. Usually, in the NILM context multiple

devices need to be detected. This creates a large number of

combinatorial possibilities which are displayed in the feature

space. For this reason it is useful to consider only the derivative

Fig. 3. FIT-PS with different sampling rate

Eq. (9) and (10) in order to utilize the feature space more

effectively. The case that two devices change their state at

exactly the same time is excluded.

Using this event detection algorithm directly on higher

sample frequencies will produce significantly more false pos-

itives. The reason for this is device specific current peaks of

some devices. These current peaks occur only in individual

dimensions of the high-sampled signal marked with arrows in

Fig. 4. In the case of signals which were recorded at a lower

frequency (1.2 kHz), these peaks can not be seen because of

the more marked low-pass characteristic. To use FIT-PS with

higher sampling rates, the event detection algorithm has to be

modified.

Also because of the increased number of dimensions k
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caused from the higher sample rate, a dimension reduction

using the principal component analysis (PCA) is included.

PCA gives the k-dimensional projection matrix (IPCA)l×k

where k << l.

IPCA = ITPW (7)

where W is a k by k matrix whose columns are the eigenvec-

tors of I⊤TP ITP .

Because there are obviously correlations between the single

dimensions (in ITP ) not all dimensions are needed after the

PCA. We are using only the first m loading vectors, so we get

only the first m principal components.

IPCAm = ITPWm (8)

This also reduces the problem of noise in some dimensions

as discussed in Fig. 4 and 5.

Fig. 4. current peaks at high sampled signal transformed with FIT-PS

Fig. 5. 3D view of current peaks at high sampled signal transformed with
FIT-PS

In order to reduce the computational effort and to decrease

the complexity, the event detector uses a two-step process. In

the first stage each possible event is detected with a simple

threshold which is applied to the derivate of the signal. This

threshold is adjusted in order to detect all true positive (TP)

events. This leads to higher numbers of false positive (FP)

events. The signal ranges where potential events are identified

are examined more closely in the second stage. In the second

stage, the difference between the stationary level before and

after the event is calculated and compared with a second

threshold.

The derivative of IPCAm in direction of l is calculated using

Eq. (9) and (10). Φl shows the index where the derivative has

its maximum and is above the threshold Tr1.

L :=

{

l

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂IPCAm(l,m)

∂l

∣

∣

∣

∣

≥ Tr1, ∀ k

}

(9)

Φl = argmax
k

∣

∣

∣

∣

∂IPCAm(l,m)

∂l

∣

∣

∣

∣

≥ Tr1 ∀ l ∈ L (10)

The advantage of using the maximum compared to the

average is that devices using a phase angle control can be

detected more efficiently because of the better signal-to-noise

ratio (SNR). These devices only use a part of the period

where the information is only conserved in a few dimensions.

The problem in event detection is the suppression of multiple

detections of the same event while maintaining the ability to

differentiate between events which are located very closely to

each other. Hence, a variable dead-time in which no additional

event is detected is introduced. The disadvantage of a dead-

time is that events which are too close to each other cannot

be recognized. In order to avoid losing events, the time range

in which no other event can be detected is set so that it starts

and terminates with the beginning and ending of each transient

state. For this purpose it is necessary to decompose the signal

into stationary and transient sections.

In Eq. (11) and (12) the start and end index, Φs
l

and Φe
l ,

of the transient states are calculated with respect to a fixed

maximum length α. The distances Φl − Φs
l and Φe

l − Φl,

respectively, depend on the specific devices.

Φs
l = argmin

α
Var(IPCAm(α,Φl)) (11)

with α = l, ...l +NA ∀ l ∈ L

Φe
l = argmin

α
Var(IPCAm(α,Φl)) (12)

with α = l −NB , ...l ∀ l ∈ L

Where NA and NB are constants.

After determining the exact position of the transient section, a

second threshold Tr2 is used in (14) to reduce the number of

false positives. Here, the information of the steady state before

and after the detected event is used. As shown in (9) and (10)

a threshold is applied to the dimension with

τl =

Φs

l
∑

n=Φs

l
−(M−1)

IPCAm(n,Φl)

M

−

Φe

l
+(M−1)
∑

n=Φe

l

IPCAm(n,Φl)

M
∀ l ∈ L (13)

over the mean of M values of the steady state before and after

the event. In equation (14) we get the final result, the indices

of the events E.

E = |τl| ≥ Tr2 ∀ l ∈ L (14)
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IV. RESULTS

Applying the proposed feature space and the event detector

on the BLUED dataset, [5] allows a better comparability. In

difference to [1] where a sample frequency of 1.2 kHz was

used, a 12 kHz frequency was used for this work.

Due to the varying net frequency, measurement points also

have to vary during different periods. But for trajectories as

well as for our new approach constant points are required.

As first trigger point in a period, we decided to use the zero

crossing from negative to positive. The remaining 19 trigger

points were regularly distributed over this period. Signals

provided by the BLUED dataset [5] were used and converted

using voltage as reference.

Performance metrics (15) and (16) depend on TP, false

negative (FN) and FP and were used to receive a better

comparability.

Precall =
TP

TP + FN
(15)

Pprecision =
TP

TP + FP
(16)

Tab. I and II show the results of the event detection

based on FIT-PS (sample frequency of 1.2 kHz and 57 Hz)

in comparison to [20], where a modified generalize likelihood

ratio detector combined with a higher sampling rate was used.

The performance of all event detectors depends highly on each

phase considered.

TABLE I
DETECTION PERFORMANCE BLUED PHASE A

BLUED (A) FIT-PS
12 kHz PCA

FIT-PS
1.2 kHz [1]

[20]

Precall 99.45% 99.31% 98.16%

Pprecision 98.15% 97.51% 97.94%

TABLE II
DETECTION PERFORMANCE BLUED PHASE B

BLUED (B) FIT-PS
12 kHz PCA

FIT-PS
1.2 kHz [1]

[20]

Precall 93.98% 87.37% 70.40%

Pprecision 83.50% 82.08% 87.29%

Concerning the sensitivity (Precall) FIT-PS with 12 kHz

at phase A leads to better results compared to the method

presented in [20] without significant loss of precision. In

contrast, the results of FIT-PS 1.2 Hz are slightly behind [20]

and FIT-PS with 12 kHz. The biggest advantage of FIT-PS

was shown when phase B was used. Even at the lower sample

rate, the sensitivity of FIT-PS outperforms the event detector

used in [20] significantly, with only minimal lower Pprecision

than [20]. Due to the dramatically reduced amount of data

and the subsequently difficult noise filtering, FIT-PS 1.2 kHz

shows reduced sensitivity and precision if compared to the

other FIT-PS.

Because a lot of electronic and appliances overlap at phase

B [5], the results for phase A were significantly better.

V. CONCLUSION

We present the frequency invariant transformation of peri-

odic signals FIT-PS for higher sample rates. We could show

that the use of higher sample rate entail better results.

The voltage is used as reference signal for the determination

of trigger points. With this information the current signal

is interpolated and fragmented into its individual periods.

Thereby the signal representation is independent from the

mains frequency. The entire information of the original signal

is retained.

Because of the highly increased number of dimensions (20

with 1.2 kHz to 200 with 12 kHz) the PCA is used to reduce

dimensions. Depending on the used thresholds Tr1 and Tr2 a

reduction to two or three dimensions leads to the best results.

The reason for this is the following event detection method.

Since the used event detection method is not complex enough

to completely take account of all available information, this

information has a disturbing effect on the event detector. PCA

reduces the number of information to an amount which can

be processed by the event detector.

For event detection this method was applied to the BLUED

dataset [5] resulting in a sensitivity of up to 99.45%.

In future, we plan to apply FIT-PS for a classification in

NILM. The issue of peaks in some dimensions caused by a

higher sampling rate for the event detector can thereby used

as additional feature.

This work was created as part of the iMon project (funding

number 03FH001IX4).
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Abstract—Chase decoding is an established soft-input decoding

method for algebraic error correcting codes. This paper analyses

the performance of Chase type II decoding using quantized

input data, where transmission of binary data over the additive

white Gaussian noise (AWGN) channel is assumed. The channel

output symbols are quantized with a small number of decision

thresholds. This channel model is applicable for data storage

in flash memories. Simulation results demonstrate that the soft

decoding performance of the Chase algorithm can be improved

by optimizing the threshold values for the quantization.

I. INTRODUCTION

Flash memories are becoming more and more important for

non-volatile mass storages, where a flash memory stores the

information in floating gates which can be charged and erased.

These floating gates keep their electrical charge without a

power supply. However, information may be read erroneously.

The error probability depends on the storage density. The

NAND Flash used different type of levels as single-level-cell

(SLC), and currently the devices used multiple levels and are

mentioned to as multiple-level cell (MLC) flash or triple-level

cell (TLC) and on the number of program and write cycles [1].

In flash memories, error correction coding (ECC) is required

in order to ensure integrity and reliability [2], [3]. Soft-input

decoding can improve the error correcting capability compared

to hard-input decoding, where the soft-input decoding is based

on reliability information from the channel [4], [5]. To obtain

reliability information the medium must be read several times

using different read threshold voltages. Typically only a small

number of reads is used resulting in reliability information

with coarse quantization.

Chase decoding algorithms are reliability based decoding

procedures that generate a list of candidate codeword by

flipping bits in the received word [6], [7]. The test patterns

for the bit flipping are based on the least reliable positions of

the received word. For each test pattern, algebraic hard-input

decoding is employed. Finally, the best candidate from the list

is obtained by minimizing the Euclidean distance between the

candidate codewords and the received word. Chase devised

three different algorithms. The main difference between the

algorithms is the number of test patterns. The complexity of

Chase decoding depends on the size of the list of the candi-

dates. In this paper, we investigated Chase type II decoding for

quantized reliability information. In particular, we optimize the

read threshold in order to improve the decoding performance

with quantized reliability information.

This paper is structured as follows. Section II introduces the

threshold voltage of flash memories and the channel model.

In Section III the Chase decoding algorithm is described.

Simulation results are presented in Section IV.

II. THRESHOLD VALUES

With flash memories, the cells are addressed with so-called

word-lines, where a threshold voltage is required to turn on

a particular transistor. The value of the threshold voltage

varies from cell to cell. The probability density function of

the variation of threshold voltages is usually modelled by a

Gaussian distribution. Hence, the channel model for flash cells

is equivalent to an additive white Gaussian noise (AWGN)

channel. However, in order to obtain reliability information

for the channel input values, multiple reads with different

threshold values are required. The reading procedure for relia-

bility information causes additional latency. Thus, only a small

number of thresholds are applied in practice. Assuming i.i.d.

Gaussian threshold voltages, the channel of a flash memory

with reliability information can be considered as an AWGN

channel with quantized channels values.

In the following, we assume a reading procedure with five

threshold voltages. Fig. 1 shows the probability distribution of

the threshold values, where the reading threshold voltages are

denoted by δ1 and δ2. Hence, for the area between 0 and −δ1
or −δ1 corresponds to the most unreliable input values. We

assume that the flash channel can be modelled as quantized

AWGN channel with the following quantization function

r̃i =































1 , ri > δ2
δ2 , δ1 < ri ≤ δ2
δ1 , 0 ≤ ri ≤ δ1
−δ1 , 0 > ri ≥ −δ1
−δ2 ,−δ1 > ri ≥ −δ2
−1 , ri < −δ2

(1)

where ri denotes the i-th channel value and r̃i the correspond-

ing quantized channel value. In this work, we optimize the

values δ1 and δ2 for Chase decoding.
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Fig. 1. Probability density function with reading thresholds δ1 and δ2.

III. CHASE DECODING ALGORITHM

The Chase algorithm is a multi-trial procedure where bit

flipping is applied to the least reliable received values. Then

algebraic decoding is applied to determine a valid codeword.

Using different test patterns for the bit flipping, a list of

candidate codewords is obtained. Finally, the most likely

codeword is selected from this list. For the AWGN channel,

the most likely codeword can be determined by minimizing

the Euclidean distance between the received word and the

codewords in the list of candidates. With Chase type II

decoding a list of 2m candidates is obtained by systematically

testing all combinations of the m least reliable positions within

the received codeword. Typically, the parameter m is chosen

as m = dmin

2
, where dmin is the minimum Hamming distance

of the code. Note that Chase type II decoding is a suboptimal

decoding procedure, because the maximum likelihood code-

word is not always in the list of candidates obtained by bit

flipping.

With Chase decoding, typically unquantized channel values

are assumed. In this work, we investigate Chase decoding with

quantized channel values. Note that with quantized channel

inputs, the set of the dmin

2
least reliable positions is not always

unique. Moreover, minimization of the Euclidean distance

among the list of candidates does not always result in a

unique solution. We propose some modifications to the Chase

algorithms taking the quantization into consideration.

We consider binary codes of length n. The received se-

quence is denoted by r = (r1, r2, ..., rn). z = (z1, z2, ..., zn)
is the binary hard-decision sequence corresponding to the

received sequence r. If z is a valid codeword, then it is the

the maximum likelihood codeword [5]. Thus, we calculate the

syndrome value for z and apply the Chase decoding only for

non-zero syndrome values as shown in Fig. 2. Moreover, we

choose m = dmin

2
+1, because the set of the dmin

2
least reliable

positions can not always be determined uniquely.

Finally, we propose a decoding procedure that may declare a

decoding failure. With quantized input values, Chase decoding

does not always result in a unique codeword, i.e., there might

be two or more codewords in the list of candidates which

have the same Euclidean distance to the received word. In this

case, the probability of a decoding error is high, because the

probability of selecting the correct codeword is at most a half.

If the decoding procedure is used in a concatenated coding

scheme, the decoder may declare a failure. Such a decoding

failure can be exploited using error and erasure decoding in

the next decoding stage.

Received word

Syndrome checkingz

Syndrome=0 Syndrome6= 0

Chase II decoding

c

r̃

Fig. 2. Flow chart of the decoding process

IV. SIMULATION RESULT

In this section, we present simulation results that demon-

strate the influence of the quantization on the decoding perfor-

mance. All simulations are based on a binary Bose-Chaudhuri-

Hocquenghem (BCH) code of length n = 118 and minimum

Hamming distance dmin = 4. Hence, we choose m = 3.

This code can be used as inner code in a concatenated code

as proposed in [5], [8]. The first simulation results consider

transmission over the AWGN channel without quantization.

We compare the performance of Chase type II and III decoding

with algebraic hard-input decoding.

In Fig. 3, Chase II has the lowest word error rate (WER)

compared with Chase III and hard-input decoding. Chase

II shows approximately 0.5 dB and 1.2 dB gain compared

with Chase III and hard-input decoding, respectively. For the

considered code, Chase II is twice as complex as Chase III,

i.e., type II decoding considers 8 test patterns and type III only

4.

A. Threshold values

In the following, we consider simulations with quantization.

In communication systems, typically linear quantization is

used where the values of the quantization thresholds are

uniformly spaced. If B = 3 bits represent the amplitude of

a sample, linear quantization results in the threshold values

δ1 = 0.25 and δ2 = 0.5 for the smallest quantization

thresholds. However, these values to not lead to the best

possible decoding performance. We demonstrate this in Fig. 4,

where we choose δ2 = 0.5 and vary the value of δ1. Fig. 4

shows that the decoding performance heavily depends on the
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Fig. 3. A comparison between Chase II, Chase III, and hard-input decoding
for the AWGN channel without quantization.

threshold values, where the best performance is obtained with

δ1 = 0.2.
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Fig. 4. A comparison of different values of δ1 for a fixed value of δ2 = 0.5.

In Fig 4, the values δ1 = 0.15 and 0.2 result in a similar

performance with an average gain of 0.5dB compared with

δ1 = 0.05. In order to optimize both threshold values, we

choose δ1 in the interval from 0.1 to 0.2 and vary the second

threshold δ2, where the best results are obtained for δ1 = 0.15.

In Fig. 5, the second threshold value δ2 is adjusted based

on δ1 = 0.15. The dependency of the decoding performance

on δ2 is smaller than on δ1. For low SNR values the curves

are close to each other. The value δ2 = 0.4 is chosen for the

second threshold.

Fig. 6 shows results for a fixed δ2 = 0.4 and different values

of δ1. The thresholds δ1 = 0.15 results in the best performance
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= 0.15, δ

2
= 0.35

BLER δ
1
= 0.15, δ

2
= 0.40

BLER δ
1
= 0.15, δ

2
= 0.45

Fig. 5. A comparison for different values of the second threshold δ2 and a
fixed value of δ1 = 0.15
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Fig. 6. A Comparison between different values of first threshold δ1 with a
fixed value of δ2= 0.4

for the complete range of SNR values, where the differences

are very small for high SNR values.

Finally, we consider a comparison of the performance

with quantized versus unquantized reliability information. The

corresponding simulation results are plotted in Fig. 7. The per-

formance degradation with quantized input with the optimized

threshold values is very small. For high SNR values the loss

is less than 0.1dB.

B. Decoding failure declaration

Next we consider the performance of the failure declaring

decoder. The quantization values of δ1 and δ2 are 0.15 and

0.4, respectively for this simulation. With this simulations,

the decoder declares a failure when the choice of the best
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Fig. 7. Performance of Chase II decoding algorithm with quantized and
unquantized inputs.

candidate is not unique. In this case, we have to error events:

a decoding failure and a decoding error (word error). In a

concatenated scheme, failures can be exploit using algebraic

errors and erasures decoding procedures. For instance, a de-

coder for Reed-Solomon codes that can correct t errors can

correct up to 2t erasures.

SNR [dB]
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Fig. 8. Performance of Chase II algorithm with and without code block
erasure.

In Fig. 8 it can be seen that the WER with erasure decoding

is lower than the WER of the same code without erasure

decoding. The decoding failure declaration shows an average

gain of 0.3dB compared with decoding without decoding

failure declaration.

V. CONCLUSION

In this paper we have investigated Chase II decoding with

quantized input. The simulation results demonstrate that the

performance loss due to quantization can be reduced by a

suitable choice of threshold values. This optimization has

applications to NAND flash memories, where reliability infor-

mation is obtained by a multiple-read procedure with different

threshold voltages.

With quantized input values, Chase decoding does not

always result in a unique codeword. In this case, the decoder

may declare a failure, because the probability of a decoding

error is high. In a concatenated coding scheme, such decoding

failures can be exploited using error and erasure decoding. The

presented simulation results shown that the decoding failure

declaration can improve the error and erasure performance.

ACKNOWLEDGMENT

We thank Hyperstone GmbH, Konstanz for supporting

this project. The German Federal Ministry of Research and

Education (BMBF) supported the research for this article

(03FH025IX5).

REFERENCES

[1] R. Micheloni, A. Marelli, and R. Ravasio, Error Correction Codes for
Non-Volatile Memories. Springer, 2008.

[2] E. Yaakobi, J. Ma, L. Grupp, P. Siegel, S. Swanson, and J. Wolf,
“Error characterization and coding schemes for flash memories,” in IEEE
GLOBECOM Workshops, Dec. 2010, pp. 1856–1860.

[3] J. Freudenberger and J. Spinner, “A configurable Bose-Chaudhuri-
Hocquenghem codec architecture for flash controller applications,” Jour-
nal of Circuits, Systems, and Computers, vol. 23, no. 2, pp. 1–15, Feb
2014.

[4] G. Dong, N. Xie, and T. Zhang, “On the use of soft-decision error-
correction codes in NAND Flash memory,” IEEE Transactions on Circuits
and Systems I: Regular Papers, vol. 58, no. 2, pp. 429–439, Feb 2011.

[5] J. Spinner, J. Freudenberger, and S. Shavgulidze, “A soft input decoding
algorithm for generalized concatenated codes,” IEEE Transactions on
Communications, vol. 64, no. 9, pp. 3585–3595, Sept 2016.

[6] D. Chase, “Class of algorithms for decoding block codes with channel
measurement information,” IEEE Transactions on Information Theory,
pp. 170–182, 1972.

[7] M. P. Fossorier and S. Lin, “Chase-type and GMD coset decodings,” IEEE
Transactions on Communications, vol. 48, no. 3, pp. 345–350, 2000.

[8] J. Spinner, M. Rajab, and J. Freudenberger, “Construction of high-rate
generalized concatenated codes for applications in non-volatile flash
memories,” in 2016 IEEE 8th International Memory Workshop (IMW),
May 2016, pp. 1–4.

BW-CAR Symposium on Information and Communication Systems (SInCom) 2016

10



Improving gradient-based LSTM training for o�ine
handwriting recognition by careful selection of the

optimization method

Martin Schall
Institute for Optical Systems
University of Applied Sciences

Constance, Germany
Email: martin.schall@htwg-konstanz.de

Marc-Peter Schambach
Siemens Postal, Parcel &
Airport Logistics GmbH
Constance, Germany

Email: marc-peter.schambach@siemens.com

Matthias O. Franz
Institute for Optical Systems
University of Applied Sciences

Constance, Germany
Email: mfranz@htwg-konstanz.de

Abstract—Recent years have seen the proposal of several
di�erent gradient-based optimization methods for training
arti�cial neural networks. Traditional methods include steep-
est descent with momentum, newer methods are based on
per-parameter learning rates and some approximate Newton-
step updates. This work contains the result of several experi-
ments comparing di�erent optimization methods. The exper-
iments were targeted at o�line handwriting recognition using
hierarchical subsampling networks with recurrent LSTM
layers. We present an overview of the used optimization
methods, the results that were achieved and a discussion of
why the methods lead to di�erent results.

Index Terms—o�line handwriting recognition; recurrent
neural network; long-short-term-memory; connectionist tem-
poral classi�cation; gradient-based learning; adadelta; rm-
sprop

I. Introduction

Advances in the �eld of unconstrained and segmentation-
free o�ine handwriting recognition using arti�cial neural
networks have been considerable in the last years [1] and
complete systems for this task have been published [2].
O�ine handwriting recognition is in use in applications
such as postal automation, banking and historical document
analysis.

State of the art solutions for Latin script o�ine handwrit-
ing recognition are based on Multi-Dimensional Long-Short-
Term-Memory MDLSTM [3] [4] recurrent neural networks
organized as hierarchical subsampling networks [5]. Such
networks can be trained for sequence classi�cation using
Connectionist Temporal Classi�cation CTC [6]. CTC allows
the training of networks for segmentation-free sequence clas-
si�cation without knowledge about the location of contained
labels, based only on knowledge about the correct label
sequence.

Newton’s method can be used to determine an individual
step-size for each parameter during backpropagation training
of the arti�cial neural network [7]. Using Newton’s method
leads to fast convergence rates but requires the calculation
of second-order derivatives of the error function. Since the
calculation of second-order information is computationally
expensive during backpropagation-based training, methods

like AdaDelta [8] try to approximate it using only �rst-order
information.

RProp [9] [10] provides an individual learning rate per
parameter using only the changes in the sign of the partial
derivative, similar to the Manhattan rule. RMSProp [11] im-
proves on this concept by generalizing to mini-batch training
variants of the backpropagation algorithm. RMSProp does so
by normalizing the gradient using the rolling mean value of
the previous �rst-order derivatives.

This work provides an overview and comparison of con-
temporary gradient-based optimization methods for training
hierarchical subsampling MDLSTM-networks using CTC. All
experiments were done using the IAM o�ine handwriting
database [12]. It is meant as a guide for practitioners in the
�eld of o�ine handwriting recognition. In addition, this work
includes theoretical interpretations of the observed results.

The paper starts by describing the used network topology
in section II, the investigated optimization methods in section
III and the experiments executed in section IV. Section V
presents the results of the experiments and section VI dis-
cusses the problems arising with the optimization methods.
Section VII concludes the paper.

II. Network

The network topology was identical for all experiments
and is based on the hierarchical subsampling network using
MDLSTM-cells applied for Arabic handwriting recognition
[2] [5]. While the network topology was unchanged, the hy-
perparameters and sizes of the neuron layers were modi�ed.
The exact network topology, beginning at the network input,
and hyperparameters are described in table I.

The LSTM variant [13] used in the comparisons includes
forget gates, peephole connections, bias values and the full
gradient for backpropagation. The fully connected feedfor-
ward neurons had no bias, except for the very last neuron
layer. The non-linearities are the standard logistic sigmoid
φ(x) = 1

1+e−x for the LSTM gates and the hyperbolic tangent
tanh(x) for all other activations. The network consists of
a total of 148799 parameters, all of which were initialized
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TABLE I
Network topology used for the experiments

Type of layer Con�guration
Input image Grayscale; 81 pixel in height
Subsampling 2× 3 (width × height)
MDLSTM 2 cells per scan direction
Subsampling 2× 3 (width × height)
Fully connected feedforward 6 neurons; no bias
MDLSTM 10 cells per scan direction
Subsampling 2× 3 (width × height)
Fully connected feedforward 20 neurons; no bias
MDLSTM 50 cells per scan direction
Fully connected feedforward 79 neurons; with bias
Collapse
Softmax
CTC 78 glyph labels; 1 blank label

drawing from a random uniform distribution in the interval
[−0.1;+0.1].

III. Methods

The following paragraphs outline the gradient-based op-
timization methods: Steepest descent with momentum, RM-
SProp and AdaDelta. In all equations, gt is the gradient at
time t and δxt the parameter updates at time t. µ is always
the learning rate, α the decay rate and β the dampening
factor. All variables are initialized to zero if not otherwise
de�ned.

Algorithm 1 Steepest descent with momentum

δxt = (µ× gt) + (α× δxt−1)

Algorithm 1 describes the steepest descent optimizer with
a simple momentum term added. It scales the �rst-order
derivative of the error function by a constant learning
rate, thus generating parameter updates that are directly
proportional to the gradient. The added momentum term
prevents the optimizer from following jitters in the error
function along the current path. Figuratively speaking, if
the optimization process is a ball moving down the error
landscape, momentum changes the gradient from being a
vector of movement to a vector of force applied to the ball.

Algorithm 2 RMSProp

E[g2]t = ((1− α)× g2t ) + (α× E[g2]t−1)
δxt = µ× gt√

E[g2]t

RMSProp, outlined in Algorithm 2, is a generalization of
RProp that allows mini-batch training. Both only take the
sign of the gradient into account but determine the step size
of parameter updates independently from the absolute value
of the gradient. RMSProp does so by using a rolling mean
of the gradient for normalization. It e�ectively allows the
user to choose the actual step size of parameter updates as
a hyperparameter.

Algorithm 3 describes AdaDelta, which uses an approxima-
tion of the diagonal values of the Hessian matrix to do quasi-

Algorithm 3 AdaDelta with additional learning rate

E[g2]t = ((1− α)× g2t ) + (α× E[g2]t−1)

ut = gt ×

√
E[δx2]t−1+β√
E[g2]t+β

E[δx2]t = ((1− α)× u2

t ) + (α× E[δx2]t−1)
δxt = µ× ut

Newton updates. AdaDelta provides per-dimension step sizes
and basically removes the need to manually choose a learning
rate. The idea behind AdaDelta is outlined in the according
publication [8], calculating the parameter updates based on
the inverse Hessian as δx

g
. Since both the total parameter

updates δx and the total gradient g for the Newton step are
unknown, they are approximated using a rolling mean of the
last values. A variant of AdaDelta adds an additional learning
rate µ, which should be chosen as a value near 1.0 since the
unmodi�ed AdaDelta implies a global learning rate of 1.0.
When gradient clipping was applied, only the error signal

that is transported from a LSTM layer to its predecessor
was truncated. Recalling the network topology de�ned in
Table I, this concerns only the transition between the last
two MDLSTM layers and their previous fully connected
feedforward layers. The error signal was hard clipped to be
within the interval [−1;+1].

IV. Experiments

All experiments were carried out using the IAM o�ine
handwriting database [12] with the images being rescaled to
8-bit grayscale and �xed 81 pixel in height with a variable
width. A random subset of 90% (86809) samples were used
for training and 5% (4822) each for validation and evaluation.
A sample of the IAM database is shown in �gure 1.

Fig. 1. Example of the IAM database

The network is speci�ed in section II and the target
function of supervised training was CTC with 78 visible
character classes of the IAM database. No normalization of
labels was applied.
If not otherwise noted, the training was done using mini-

batch updates of size 8 and the full non-clipped gradient.
The gradients within a mini-batch were summed, but not
normalized afterwards. The training samples were processed
in a random permutation for each training epoch. The
experiments used early stopping until the validation error
rate did not improve for 5 epochs.
The following individual experiments were conducted in

this work:

1) Steepest descent with momentum and full gradient.
2) Steepest descent with momentum and gradient clip-

ping.
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3) RMSProp.
4) AdaDelta without additional learning rate.
5) AdaDelta with additional learning rate.

The hyperparameters were chosen on basis of previous
experiments with this network architecture and the IAM
database. The hyperparameters have proven to be suitable
for training this network for o�ine handwriting recognition.

Error rate was measured in terms of Character Error Rate
CER at the end of each training epoch. CER is de�ned as

the percentage CER(y, z) = 100×ED(y,z)

|y| . It measures the

part of the edit-distance [14] ED(y, z) between the correct
label string y and the decoded network output z in relation
to the length |y| of the correct label. The CER of these
experiments are averages over all samples within the training
set or validation set respectively.

V. Results

Fig. 2. Steepest descent with µ = 1e−4 and α = 0.9

Fig. 3. Steepest descent with µ = 1e−4 and α = 0.9 (gradient clipping)

Figures 2 and 3 show the convergence of the CER during
training using steepest descent with momentum. Hyperpa-
rameters were µ = 1e−4 and α = 0.9. The training using
the full non-clipped training did not converge to acceptable
error rates as can be seen in �gure 2. The use of gradient
clipping did improve the convergence of CER, see �gure 3,

during training. The convergence rate is still lower than with
RMSProp or AdaDelta, however.
As can be seen in �gure 2, the CER initially decreases for

some epochs but then started increasing again and stabilizes
at 99%.

Fig. 4. RMSProp with µ = 1e−3 and α = 0.9

Figure 4 shows the convergence of the error rate using
RMSProp with µ = 1e−3 and α = 0.9. It shows a faster
convergence rate than steepest descent with gradient clipping
and achieves a lower error rate.

Fig. 5. AdaDelta with µ = 1, α = 0.95 and β = 1e−6

Fig. 6. AdaDelta with µ = 0.5, α = 0.95 and β = 1e−6
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Figures 5 and 6 contain the results using AdaDelta. Both
use the hyperparameters α = 0.95 and β = 1e−6. The
experiment described in �gure 5 used a learning rate of
µ = 1, thus corresponds to the original work by the authors
of AdaDelta [8]. Figure 6 uses an additional learning rate of
µ = 0.5, which reduces the convergence rate by the same
factor. Using an additional learning rate proved to result in
lower �nal error rates.

The fastest convergence rate in these experiments was
achieved using AdaDelta with µ = 1, α = 0.95 and
β = 1e−6, the lowest error rate with AdaDelta and µ = 0.5.

VI. Discussion

Fig. 7. Exemplary saddle point of an error function in a two-dimensional
parameter space

In the following section, we discuss possible reasons for
why the compared optimization methods behave di�erently
in terms of convergence of network error. Recent work [15]
[16] has shown that saddle points in the error function
tend to be a major problem while training arti�cial neural
networks. Other potential problems arise from the interaction
between Backpropagation-Through-Time BPTT [17] and a
momentum term in the optimization method. Figure 7 shows
an error function with a saddle point that highlights the
di�erent behavior of the three optimization methods in this
situation. Saddle points in the error function are interesting
because they both consist of steep and shallow parts but the
direction of any gradient descent optimization will change
on a saddle point. Di�erences arise as soon as the gradient
descent optimization moves from the steep �ank of the error
function to somewhere near the saddle point.

Consider Algorithm 1 (steepest descent with momentum):
while descending down the steep part of the error function,
the momentum will increase accordingly. The absolute value
of the gradient will be very small in comparison to the gradi-
ent on the steep part, which results in only a small impact of
the current gradient when updating the parameters. In this
exemplary case, gradient descent will overshoot the saddle
point instead of following the gradient to the decreasing error
values.

RMSProp and AdaDelta, see algorithms 2 and 3, tackle
this problem by normalizing the parameter updates with the

expectation value of the absolute gradient. The expectation
value is again large after traversing the steep �ank of the
error function. After normalization, the relatively small gradi-
ent near the saddle point will be even smaller. The actual per-
parameter learning rate is decreased and thus the gradient
descent slows down near the saddle point. An increase in
the per-parameter learning rate will occur as soon as the
expectation value of the gradient has adapted to the small
gradient value. This behavior allows for a change of direction
near saddle points without overshooting it.
Another potential problem arises in the BPTT algorithm

in combination with training samples of variable sizes, e.g.
di�erent sizes of the input images. BPTT calculates the
gradient by virtually unrolling the recurrent network into a
feedforward network. Training samples of longer sequences
will result in ’deeper’ unrolled networks. Parameters of
recurrent layers are shared in the unrolled network and thus
their gradients need to be summed again before updating
their parameters. Similar to mini-batch training, the gradients
summed up to obtain the accumulated gradient for the
recurrent layer.
Steepest descent with momentum and full gradient is

prone to an e�ect similar to the ’exploding gradient’: The
absolute value of the gradient is directly proportional to the
sequence length. For a long sequence, the momentum will be
accumulated, while short sequences have little impact on gra-
dient descent. This again leads to overshooting of minimum
points or saddle points. This ’exploding gradient’ explains
why gradient clipping is e�ective for steepest descent, as
can be seen in the convergence rates of �gures 2 and 3.

VII. Conclusion

This work presents the results of several experiments
training hierarchical subsampling networks using LSTM-cells
for o�ine handwriting recognition. Three di�erent gradient-
based optimization methods were used: steepest descent, RM-
SProp and AdaDelta. Steepest descent was tested both with
the full, non-clipped, gradient and with gradient clipping.
The results show a better convergence rate for RMSProp

and AdaDelta than for normal steepest descent. Both RM-
SProp and AdaDelta are easy to implement and cause only a
linear overhead in memory consumption which makes them
reasonable choices for practitioners. AdaDelta with a reduced
learning rate of 0.5 achieved the lowest error rate of all
experiments.
Section VI rationales why steepest descent shows a worse

behavior than RMSProp or AdaDelta in the presence of saddle
points or when using BPTT for recurrent neural networks.
Saddle points can be expected [16] in high-dimensional non-
convex optimization problems such as o�ine handwriting
recognition. BPTT is the establish method for gradient-
based training of recurrent neural networks and as such,
problems arising out of the interaction between BPTT and
the optimization method should be considered.
Based on the observations during the experiments and

the following re�ections, the authors are suggesting to use
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AdaDelta for training LSTM networks for o�ine handwriting
recognition. Newer optimization methods, such as Adam [18],
were not taken into consideration but may give even results.
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Abstract—This paper presents a method to calculate the depth
values of 3D points by means of a plenoptic camera. Opposed
to other approaches which use the totally focused image to
detect points, we operate directly on the micro images taking
thus advantage of the higher resolution of the plenoptic cameras
raw image. Depth estimation takes place only for the points of
interest, resulting in a semi-dense approach. The detected points
can further be used in a subsequent simultaneous localization
and mapping (SLAM) process.

Index Terms - depth estimation, focused plenoptic camera,
micro images

I. INTRODUCTION

The concept of a plenoptic camera is known for over one
hundred years (Ives, 1903 [1], Lippmann, 1908 [2]) but only
due to the capabilities of nowadays graphic processor units
(CPUs) an evaluation of video sequences with acceptable
frame rates is possible.

The main advantage of a plenoptic camera is the depth
information which can be estimated from only a single im-
age. A traditional camera, which captures a 2D image of a
scene, does not provide any depth estimation from one shot.
In comparison, a plenoptic camera captures a complete 4D
lightfield representation, which is suitable to calculate depth
information [3][4].

There have been developed two concepts of plenoptic cam-
eras: The unfocused plenoptic camera [5] and the focused
plenoptic camera [6]. In this paper we work with focused
plenoptic cameras. In these, a micro lens array (MLA) which is
placed between the main lens and the sensor focuses the image
of the former on the later. Thus, the raw image of this type
of camera consists of many micro images, which each show
a portion of the main lens image. These portions are pictured
from a slightly different perspective in neighboring micro
images. The disparities of corresponding points in the micro
images enable the estimation of depth. The procedure for depth
estimation with this type of camera is described e.g in [7].
This depth is in a first instance a virtual depth, i.e. related
to internal parameters of the camera. However, calibrating
the camera allows to compute metrical depth values. For the
calibration process of the camera as well as for the procedures
to synthesize a totally focused image please refer to [8].

A. Contribution of this work

This paper focuses on simplifying depth estimation by
detecting points of interest (POI) directly in the raw image
and not in the synthesized totally focused image. By matching
POIs in the raw image that represent the same 3D point,
its depth will be estimated. Because depth estimation mainly
relies on the quality of matching the POIs from different micro
images, different POI detectors are used and compared. It is
of particular interest whether ordinary detectors which have
been developed for traditional images can also be used for the
raw image provided by a focused plenoptic camera.

Correspondence for points in different micro images is
sought using epipolar geometry. Since the sensor is placed in
front of the main lenses image, the image coordinates of points
in the micro image differ from those in the (virtual) image of
the main lens. This has to be accounted for in depth estimation,
which is done by a linear regression. With a subsequent
consideration of the depth information and calculation of the
error between the actual projections and the matched features,
the results of the depth estimation can further be improved.

The paper is structured as follows. In section II.A the
concept of the focused plenoptic camera which is used in our
approach is described. The depth estimation is explained based
on this configuration. The particularities of POI detection in
raw images are presented in section III. Section IV deals
with matching the points highlighted by the detectors in
different micro images. In section V we formulate the depth
estimation for the matched image points. Section VI presents
the results of the depth estimation by using different detectors
and compares them. We conclude with section VII.

II. THE FOCUSED PLENOPTIC CAMERA

To highlight the differences between the set-up of a tradi-
tional camera and a plenoptic camera, the optical path of a thin
lens is displayed in Figure 1. For a traditional camera the thin
lens equation as given in eq. (1) can be used to describe the
relation between the object distance aL and the image distance
bL using the focal length fL of the main lens.

1

fL
=

1

aL
+

1

bL
(1)
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Fig. 1. Optical path of a thin lens [9]

With the configuration of traditional cameras displayed in
Figure 1 the intensity of incident light is recorded on the image
sensor. The 2D-image recorded by a traditional camera does
not provide any information about the object distance. To gain
information about the object distance aL a plenoptic camera
can be used.

A plenoptic camera consists of a micro lens array (MLA)
which is placed between the main lens and the sensor. Re-
garding the position of the MLA and the sensor to the main
lens image, two different configurations of a focused plenoptic
camera are described by Lunsdaine and Georgiev [6][10].

In the Keplerian configuration the MLA and the sensor are
placed behind the main lens images (s. Figure 2), whereas in
the Galilean configuration MLA and sensor are in front of the
main lens image (s. Figure 3). In the Galilean configuration
the main lens image is only a virtual image. The plenoptic
camera used in this work is with Galilean configuration.

Fig. 2. Keplerian configuration [8]

Fig. 3. Galilean configuration (based on [9])

The MLA of our camera has a hexagonal arrangement of
the micro lenses (cf. Figure 4). There are three different types
of micro lenses on the MLA, having different focal lengths.
Thus different virtual image distances (resp. object distances)
are displayed in focus on the sensor. Therefore, the effective
depth of field (DOF) of the camera is increased compared to
a focused plenoptic camera with a MLA consisting of micro
lenses with the same focal length [8].

Fig. 4. Arrangement of the MLAs. Different micro lens types are marked by
different numbers [11].

Each micro lens of the MLA produces a micro image on the
sensor (s. Figure 5). However, depending on the focal length of
the corresponding micro lens, a 3D point projected in different
micro lenses will be focused in some of the micro images,
while it is unfocused in others.

Fig. 5. Section of the micro lens images (raw image) of a Raytrix camera.
Different micro lens types are marked by different colors. [8]

The thin lens equation of the main lens of a plenoptic
camera in Galilean configuration can be written as in eq. (2)
using the parameters of the camera. The parameter bL0 is the
distance between the main lens and the MLA and b represents
the distance between the MLA and the virtual image.

1

fL
=

1

aL
+

1

bL
=

1

aL
+

1

b + bL0
(2)

The value of bL0 can be estimated with a previous calibra-
tion, using the method described by Zeller et al. [8]. In the
same calibration process also the focal length fL of the main
lens is estimated. If one can estimate the virtual image distance
b, then it is possible to calculate the depth of the object point
using eq. (2). This is described in the following section.

A. Depth Estimation

To calculate the object distance of the 3D point, the virtual
image distance b has to be determined. This is done using the
coordinate system displayed in Figure 6, which is aligned to
the MLA.

The geometrical relations of a virtual image point and the
corresponding points in two micro images which result from
the same 3D are displayed in Figure 7. The depth estimation
is based on the method described by Zeller et al. [9] by using
the disparity of a point in two micro images.

The principal points of the micro lenses (eq. (3)), the
projection of a 3D point in the micro images (eq. (4)) and in
the virtual image (eq. (5)) respectively are described with their
three-dimensional position vectors in the coordinate system of
Figure 6.

~ci =
[
cx,i cy,i 0

]T
(3)
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~xR,i =
[
xR,i yR,i B

]T
(4)

~xV =
[
xV yV v

]T
(5)

Fig. 6. Coordinate system for depth estimation

Fig. 7. Principle of the depth estimation (based on [9])

The intersection of the rays through the points in the micro
images defines the virtual image in a distance b to the MLA.
The triangles with a common vertex in the principal point of
a micro lens and with their basis on the sensor (micro image)
or in the virtual image respectively, are similar, leading to eq.
(6).

~di

B
=

~pi

b
(6)

The vectors ~di (eq. (7)) define the distance between the prin-
cipal points of a micro lens and the point in the corresponding
micro image in x- and y-coordinates. The distance between a
principal point and the virtual image in x- and y-coordinates
is described with ~pi (s. eq. (8)). The x- and y-coordinates of
both vectors are signed values and their sign is defined by the
coordinate system in Figure 6.

~di =
[
dx,i dy,i

]T
(7)

~pi =
[
px,i py,i

]T
(8)

With eq. (6) and the two-dimensional vectors, the distance
b can be calculated using the x- or the y-coordinates. In the
following calculations the x-coordinates are used.

The parallax p of the virtual image point, which defines the
distance between the principal points of the two micro lenses,
is described by eq. (9).

p = px,2 − px,1 (9)

The disparity d is described as the difference between dx,2
and dx,1 . With eq. (6) and (9) the definition for the disparity
given in eq. (10) is received.

d = dx,2 − dx,1 = (px,2 − px,1) ·
B

b
= p ·

B

b
(10)

Equation (6) can be simplified using eq. (10) resulting in
the distance b being defined as given in eq. (11).

b =
p ·B
d

(11)

The disparity d and the parallax p are determined by the
3D point, respectively the distance between the micro images
in which it is projected into. The fraction of the disparity with
respect to the parallax is called the virtual depth v as given in
eq. (12).

v =
b

B
(12)

The virtual depth is proportional to the distance b between
the MLA and the virtual image. This is needed to calculate
the object distance aL cf. eq. (2). The factor of proportionality
is the inverse of b, i.e. the distance between MLA and sensor.
This has to be estimated in a previous calibration step.

A point ~xV in the virtual image is defined as the intersection
of the rays through the projected points in the micro images.
Its position vector ~xV is given by eq. (13).

~xV = (~xR,i − ~ci) ·
b

B
+ ~ci (13)

It is straightforward to see that its x- and y-coordinates
depend on the virtual depth v as indicated in the linear
equations (14) and (15):

xV = (xR,i − cx,i) · v + cx,i (14)

yV = (yR,i − cy,i) · v + cy,i (15)

For two points which represent the same 3D point, the x-
and y-coordinates calculated with eq. (14) and (15) have to be
equal.

With this known model, the virtual image of a 3D point
can be estimated if the 3D point is detected in more than two
micro images. To calculate the object distance of the 3D point,
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the relation between the virtual depth and the object distance
is used (s. eq. (2) and (12)) and the following relation for the
object distance zc = aL holds:

zc =

(
1

fL
−

1

v ·B + bL0

)−1

(16)

So to calculate the virtual depth v and the object distance
zc, points in the micro images have to be detected (s. section
III) and matched (s. section IV).

III. POINT DETECTION IN MICRO IMAGES

To detect points in micro images, several detection methods
like SURF, SIFT and Harris Corner Detector are applied
directly to the raw image. They deliver a set of points of
interest (POI), which will be used for estimation of the
depth of the corresponding object points. As described in
the previous section, the MLA is arranged hexagonally. By
projecting the principal point of a micro lens orthogonally
onto the sensor, the principal point in the corresponding micro
image can be determined. With knowledge of the diameter
of the micro lenses (measured in pixels on the sensor), the
detected POI can be allocated to a certain micro image (s.
Figure 8). To locate a point ~xR in the micro image, the vector
as given in eq. (18) is calculated for each micro image with
principal point ~ci. Because of the arrangement of the micro
lenses in the MLA, a lens border (of 1.5 pixels) has to be
defined which separates the micro images. The lens border is
not used for point detection. The POI which do not fulfill
eq. (19) for any micro image are not used in subsequent
processing.

~dx,ci = ~ci − ~xR (17)

∣∣∣~dx,ci∣∣∣ ≤ rlens − lborder (18)

With eq. (18) and (19) the POI can be allocated to the
micro images. The allocated points are used in the following
matching as described in section IV.

Fig. 8. Principle to determine the corresponding micro image for a detected
POI

IV. POINT MATCHING

At first, only the adjacent micro images are used to find
other points that match to the POI located in the reference
micro image. The approach to match them in adjacent micro
images is exemplified in Figure 9. The vectors of the detected
points ~xR,i and the principal points ~ci of the micro images in
Figure 9 are two-dimensional. So only the x- and y-coordinates
are used.

To match a POI to another POI in an adjacent micro image,
the epipolar geometry can be used to restrict the search area.
In Figure 10 the epipolar geometry between the virtual image
and its representation in two micro images is displayed. Due to
the plane-parallel arrangement of the microlenses, the epipolar
lines will all be parallel to the line connecting the centers of
the micro lenses (eq. (20)):

~e12 = ~c2 − ~c1 (19)

Fig. 9. Matching of the detected points using epipolar geometry

Starting from the detected POI ~xR,1, a corresponding POI
would be located alongside the epipolar line. Due to manufac-
turing tolerances we allow a POI to be maximally one pixel
away from the epipolar line to be matched to the reference
POI. If several POIs are matched in the same micro image to
a reference POI, those POI which do not belong to the same
virtual image can be eliminated using already matched POIs
from other micro images together with the epipolar geometry
between those micro images (see Figure 9).

Fig. 10. Principle of the epipolar geometry with two micro images

After the matching is done in the adjacent micro images
for every detected POI, the matched POIs are linked as
indicated in Figure 11. This means that an uninterrupted chain
of adjacent micro images is needed for POIs to be linked.
However, since the micro lenses have different focal lengths
and are arranged in the MLA as indicated in Figure 4, not only
the directly adjacent micro lenses are considered for matching,
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Fig. 11. Group of matched POIs
with linkage

Fig. 12. Micro images used for
direct POI matching

but also those with the same focal length which are just behind
the directly adjacent ones (see Figure 12). This means that
correspondences are searched in a total of 18 neighbouring
micro images.

V. DEPTH ESTIMATION USING THE MATCHED POI

Each group of matched POI should represent the same
virtual image point (resp. one 3D point) in the corresponding
micro images. If the rays of the matched POI do not have a
common intersection (s. Figure 13), the matched POI have to
be optimized.

Fig. 13. Error estimation. Projecting a virtual image into the micro image

By choosing the intersection of the rays of ~xR,1 and ~xR,2, an
error occurs for ~xR,3. The error for each POI can be described
as given in eq. (20), where ~x∗

R,i is the virtual image point
back-projected into the micro image.

~∆i =
[
∆x,i ∆y,i

]T
= ~xR,i − ~x∗

R,i (20)

The errors are minimized using the least square method.
Because of the linear relation between the known values
(POI coordinates, principal points) and the unknown values
(coordinates of the virtual image point) (s. eq. (14) and (15))
the error minimization is performed using linear regression.

A. Linear Regression

For linear regression eq. (14) and (15) are transformed into
the following functions:

fx,i = xR,i − cx,i =
xV − cx,i

v
(21)

fy,i = yR,i − cy,i =
yV − cy,i

v
(22)

According to this, the normalized coordinates of the virtual
image point cf. eq. (23) are estimated using eq. (24), whereas
the residual vector is defined with eq. (25) and the Jacobi ma-
trix is given in eq. (26). For more details on linear regression
we refer to [12]. Whereas N is the number of matched POI in
one group, which can maximally be 18 (cf. Figure 12).

~a =

[
xV

v

yV

v

1

v

]T
(23)

~a∗ =

[
xV

∗

v∗
yV

∗

v∗
1

v∗

]T
=
(
JT · J

)−1 · JT · ~r (24)

~r =
[
xR,1 − cx,1 yR,1 − cy,1 . . . xR,N − cx,N yR,N − cy,N

]T
(25)

J =

[
∂fx,1

∂~a

∂fy,1

∂~a
. . .

∂fx,N

∂~a

∂fy,N

∂~a

]T
=


1 0 −cx,1
0 1 −cy,1
...

...
...

1 0 −cx,N
0 1 −cy,N


(26)

B. Improvement of the calculated virtual images

To ensure a certain accuracy of the estimated virtual depth
(resp. virtual image), the distances between the POIs in the
micro images and the virtual image of the POI back-projected
in these micro images are calculated as given in eq. (27) and
(28). If any POI in a group of matched POIs has a distance
error (s. eq. (39)) lager than one pixel, we repeat the linear
regression but without the POI with the largest distance error.
This is done until the remaining POIs do not have a distance
error larger than one pixel or until only two POIs remain. In
the last case the whole group of matched POIs is deleted.

∆xR,i = xR,i
∗ − xR,i (27)

∆yR,i = yR,i
∗ − yR,i (28)

∆R,i =

√
∆xR,i

2 + ∆yR,i
2 (29)

After this improvement step, the virtual depth v (resp. the
object distance zc) is calculated. Due to the configuration of
our plenoptic camera, only a certain range for the virtual depth
is reasonable. From this, a range for the object distance can be
determined. In Figure 14 the function zc (v) is displayed for
the camera parameters in Table 1. Only the estimated virtual
images points (resp. 3D points) inside this range are classified
as valid.
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Fig. 14. Function zc (v) with exemplary range for v and zc

Table 1: Camera parameters

fL 16.279748091856455 mm
bL0 15.449618357330239 mm
B 0.38300659522738911 mm

dlens 23.306472861260 pixels

VI. RESULTS

To evaluate the described methods, different POI detectors
(SIFT, SURF and Harris Corner Detector (HCD)) are used
from the openCV library. The estimated object distances for
the image displayed in Figure 15 are compared to the values
in the depth map generated with the method described in [13].
For the SIFT and SURF methods the default configuration of
openCV is used and only the parameter for the amount of POIs
is changed so that approximately 2000 POIs are detected. The
Harris Corner Detector provides significantly less features for
the captured scene (around 500 features).

Fig. 15. Raw image used for depth estimation

In the histograms displayed in Figure 16, Figure 17 and
Figure 18 the absolute differences between the calculated
object distance and the object distance from the depth map
of [13] are displayed for the different detectors by their
frequency. The HCD provides the best results regarding the
absolute error of the object distances with maximum absolute
errors around 50 cm.

Fig. 16. Histogram of the absolute object distance errors (SIFT detector)

Fig. 17. Histogram of the absolute object distance errors (SURF detector)

Fig. 18. Histogram of the absolute object distance errors (HCD)
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VII. CONCLUSION

In general, the described approaches for feature matching
and depth estimation provide to a certain extent acceptable
results for common detectors. Although the HCD has the
best results in comparison to SIFT and SURF, the number
of corners which can be detected in micro images is too low
to display a proper depth map.

By using only the detected POIs for matching and depth
estimation, the accuracy of the estimation is limited. In further
work, we want to improve the matching of POI by a correlation
alongside the epipolar line to detect the corresponding points
in the micro images. Furthermore, an edge detector specifically
implemented for micro images could outperform SIFT and
SURF, because in that case a set of edge points would be
matched instead of single points.

A further application of the method described in this paper
is to use it for finding matching POI in different raw images,
recorded in a video. Then, this method can be used to
implement simultaneous localization and mapping (SLAM)
directly on raw images, without computing the totally focused
image.
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Abstract—This paper presents a method to estimate the camera
poses for images of a plenoptic camera. For this, a feature
based RGB-D SLAM is used. A new method for matching the
features between two images will be presented. Finally the result
of the algorithm is compared with the trajectory from the Google
Project Tango.

Index Terms - RGB-D; SLAM; feature based; bundle ad-
justment; focused plenoptic camera

I. INTRODUCTION

With rising computing power SLAM (simultaneous local-
ization and mapping) algorithms will gain more and more
importance. In this paper a feature based RGB-D SLAM (red-
green-blue-distance SLAM) algorithm for a plenoptic camera
is presented. Plenoptic cameras are able to deliver (with a
certain accuracy) depth information from a single image,
which in turn allows the SLAM algorithm to generate a
scaled 3-D map and a scaled trajectory. In our approach the
SLAM works on RGB images and corresponding depth maps
generated with a Raytrix R5 plenoptic camera.

Several SLAM algorithms are known from literature. A.
Davison presented in [1] for example an Extended Kalman
filter (EKF) based monocular SLAM that is able to recover a
3D trajectory for a uncontrolled camera with a frame-rate of
30 Hz. A keyframe-based SLAM algorithm has been presented
by G. Klein in [2] to recover a 3D trajectory.

II. THE PLENOPTIC CAMERA

The model for a plenoptic camera described in [3] is used
in this paper. A plenoptic camera has, in contrast to a normal
pinhole camera, a micro lens array (MLA) between the main
lens and the image sensor. This leads to a point from object
space being projected, as shown in Fig. 1 not only to a single
image point but to several, which are located in different
micro images. By finding the points in the micro image which
correspond to the same object point, the so called virtual image
point can be calculated for each object. Each virtual image
point is characterized by an associated virtual depth which is
defined as the distance between the virtual image point and
the MLA in relation to the distance between the sensor and
MLA, cf. eq. (1). Please refer also to Fig. 1 for the definition
of the variables.

Fig. 1. Optical path inside a plenoptic camera. The MLA projects a single
object to different points on the sensor. [3]

v =
b

B
(1)

Substituting eq. (1) in the Fresnel-equation for pinhole
cameras, the object distance zC can be calculated from the
virtual depth

zC =

(
1

fL
−

1

B · v − bL0

)−1

. (2)

The object distance is used to project an image coordinate
xi into camera coordinate xC with

xC = zC · (KS ·K)
−1 · xi. (3)

The matrices KS and K are defined in [3] and contain the
intrinsic camera parameters, as shown in (4).

xC = zC ·



s−1
p 0 0 cx
0 s−1

p 0 cy
0 0 B−1 0
0 0 0 1

 ·

bL 0 0 0
0 bL 0 0
0 0 b 0
0 0 1 0




−1

·xi

(4)
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The parameter bL is the distance of the virtual image to
the optical center of the main lens and is calculated using the
Fresnel equation for the main lens

bL =

(
1

fL
−

1

aL

)−1

. (5)

III. FEATURE ACQUISITION

This section describes which feature types are used and how
features are matched between images. First the raw images of
a plenoptic camera have to be converted into RGB and depth
map images. For this, the method presented in [4] is used.
After feature extraction, a matching between features in two
consecutive images is established.

A. Image acquisition

The scene is recorded with a plenoptic camera. After
recording, all raw images are converted to RGB and depth-
map images, which in our case have the size 1024 x 1024
pixels. To do this, we use the method presented in [4]. The
depth map contains for each pixel a virtual depth, which is
coded as a 16-bit grayscale value. Conversion to the virtual
depth v cf. eq. (1) is performed as suggested in [5] with

v =
1

1−
grayscale16−bit

65535

. (6)

This virtual depth is used together with the internal camera
parameters fL, B and bL0, which have been determined in a
previous calibration step, to calculate the object distance zC
with eq. (2). Finally, the camera coordinates of a point can be
calculated with eq. (3) out of the image coordinates.

Due to the small baseline between the micro images pro-
jected by the MLA, estimation of the virtual depth from
a single image of a plenoptic camera is possible within a
limited accuracy. Depth estimation can be improved using the
larger baseline between successive images of a video. For this,
corresponding points have to be matched. This is done with
a new method, which we call Slope Matching and which is
presented in the following.

B. Slope Matching

Interesting points in the images of the video sequence are
detected using the SURF feature detector [6]. After detecting
all SURF features in two consecutive images, a match for
each feature from the first image is searched in the second.
This is done by looking for nearest neighbour with the method
presented in [7] and considering the feature quality attributes
delivered by the SURF detector. The resulting matches for two
consecutive images are shown in Fig. 2.

Fig. 2. Resulting matches for two consecutive images, after next neighbor
search.

As one can see in Fig. 2 there are many wrong matches
which have to be removed. To remove the wrong matches, we
just stick the two images side by side and calculate the slope
of the line connecting the matched points (blue lines in Fig.
2) with

mi =
yi,2 − yi,1

(xi,2 + 1024)− xi,1
. (7)

After calculating the slope for each match, the median of
all slopes is computed. Each match will be marked as wrong
if it doesnt satisfy condition (8), where ε is a suitably chosen
threshold.

mmedian − ε ≤ mi ≤ mmedian + ε (8)

Since the rotation and the translation between two consecu-
tive images of a video is small, the slope for each match should
be within the limits given by ε. Inequation (8) removes all
matches with slopes that differ significantly from the median.

After this operation there still might remain wrong matches,
e.g. between a feature from the very left of the first image to
a feature of the very right in the second image, but having the
slope similar to the median. To remove these wrong matches,
the two pictures are stacked one above the other and the
previous step is repeated. Mathematically this is done by
calculating the inverse slope m

′

i of the matches

m
′

i =
xi,2 − xi,1

(yi,2 + 1024)− yi,1
. (9)

Again the median will be determined and a constraint
similar to the one presented in ineq. (8) removes all matches
with a wrong slope. The result of both slope filters is shown
in Fig. 3.

Fig. 3. Resulting matches for two consecutive images, after next neighbor
search and slope filters.
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The resulting matches will be used for pose estimation
between two consecutive images.

Fig. 4. Feature chain between three images.

The baseline can be further extended, if matches are not
restricted to consecutive images. For this we use a feature
chain as shown in Fig. 4. If a feature is matched between the
first and the second and also between the second and the third
image, the feature from the first image is linked to the feature
from the third image. The yellow x in the third image shows
an feature that could not be matched. The feature chain is
broken for this feature.

IV. POSE ESTIMATION

Pose estimation is divided into two parts: First initial
poses are estimated between two consecutive images. After
estimating enough poses, a local bundle adjustment will be
performed.

A. Transformation Matrix

To estimate the pose for two consecutive images, the
transformation matrix has to be estimated. The transformation
matrix is defined by three rotations and three translations.
These six parameters form the camera vector a as shown in
eq. (10) and need to be estimated for every new image.

a =
(
α β γ tx ty tz

)T
(10)

B. Initial pose estimation

Instead of estimating the twelve (mutually dependent) ele-
ments of the transformation matrix in homogeneous coordi-
nates between the camera coordinate systems of two images,
we estimate directly the six elements of a with an iterative
procedure.

The first pose is estimated using the results of the slope
matching shown in Fig. 3. First the features are projected from
the image coordinate system in the camera coordinate system
using eq. (4). Now they can be transformed from the camera
coordinates corresponding to the first image in the camera
coordinates corresponding to the second image. This is done
by multiplying the coordinates with the transformation matrix
T as shown in (11).

x
′

C = T · xC (11)

The transformation matrix T is the one which is determined
by the vector a to be estimated. At the beginning of the
iterative process, the matrix is initialized with the identity
matrix.

The coordinates of the features from the first image in the
camera coordinate system of the second image can be back-
projected in the image coordinate system if the second image
by using the inverse of eq. (3), as shown in (12).

x
′

i =
1

zC
· (KS ·K) · x

′

C (12)

Note that the matrix Ks is the same for both images since
the camera remains unchanged. The matrix K however needs
to be adapted, since it depends on bL, which is a function
of the virtual depth (see eq. (5)). After transforming every
feature of the first image into the second image (initially with
the identity matrix), there will remain a reprojection error for
each match, expressed as the difference between the position
vector of a feature from the first image transformed to the
second image and its match in the second image (eq. (13)).
The position vectors are three-dimensional since they describe
points in the virtual image. The third dimension in the virtual
image is the virtual depth.

rj (a) = x
′

ij − xij =


x

′

ij

y
′

ij

v
′

ij

1

−

xij
yij
vij
1

 (13)

The goal is to find the camera vector a (and thus implicitly
the transformation matrix T ) which minimizes the mean
reprojection error over all matches:

a
′
= min

a

n∑
j=1

||rj (a)|| (14)

To solve the minimization problem, the Gauss-Newton algo-
rithm is applied. To minimize the impact of outliers, Tukeys
biweight cost function is used [8]. This function suppresses
outliers by weighting them with zero, as shown in (15).

wTb =


(
1−

r2j
σ2

)2

|rj | ≤ σ

0 |rj | > σ

(15)

By weighting large outliers with zero, wrong matches will
not influence the estimation. For calculating the weight wTb,
the empirical standard deviation σ of the errors is used.

C. Bundle adjustment

To optimize the camera position for more than just two
images a local bundle adjustment [9] is performed. The bundle
adjustment is called local since is not carried out over all
images (frames) of the sequence, but only from a so called
key-frame to the next key-frame. A new key-frame is set,
if the number of matches in a feature chain (see Figure 4)
falls below a threshold. In our experiments we have set a new
key-frame when the number of matches has fallen below a
threshold. However, even if the number of matches exceeds the
threshold, every sixth frame is set as a key-frame to ensure that
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the bundle adjustment is executed with a sufficient frequency
to prevent a drift.

The m images contained between the two key-frames partic-
ipate in the local bundle adjustment with their camera vectors
ak. Consider that for a total of n world points bj matches have
been found. The world points are given by their homogeneous
coordinate vector

bj =
(
xwj

ywj
zwj

1
)T
. (16)

The residual error of the world points, projected in the
corresponding frames depends of course on the camera vectors
ak as shown in eq. (17)

rjk (ak, bj) = x
′

ijk
(ak, bj)− xijk . (17)

The image coordinates used to calculate the error are
obtained by projecting the world points in the corresponding
frames using eq. (18), which is similar to eq. (12)

x
′

ijk
(ak, bj) = Tak

·
1

zwk

· (KS ·K) · bj . (18)

The task of the bundle adjustment is to find the parameters
which minimize the mean error over the n world points and
m camera positions with

{
a

′

k, b
′

j

}
= min

ak,bj

m∑
k=1

n∑
j=1

||rjk (ak, bj)|| . (19)

To minimize the effect of outliers, we use in this step also
Tukeys biweighted function (15).

V. EVALUATION

To evaluate the presented RGB-D SLAM algorithm, two
experiment setups have been made. The first is a set of 40
images with known ground truth and the second is a set of
1974 images where the trajectory is compared with the one
estimated by the Project Tango of Google. Example images
for both experiments are shown in Fig. 5 and Fig. 6.

Fig. 5. Image 20 / 40 of the first
experiment

Fig. 6. Image 800 / 1974 of the
second experiment

A. Comparison with ground truth

The first experiment contains a small number of 40 images
which have been recorded in a known grid. First, the camera
was moved 19 cm to the right in one cm steps. After that
the camera was moved 10 cm back, again in steps of 1 cm
each. At last, the camera was moved 19 cm back to the left,
in 2 cm steps. The last step amounted again to one cm. Thus
the camera was at the end of the movement 10 cm behind
its start position. The result of the RGB-D SLAM without a
bundle adjustment is shown in Fig. 7. The blue cones mark
the position and the orientation of the camera as estimated by
our SLAM algorithm without bundle adjustment. The white
cones show the ground truth.

Fig. 7. Result for the first experiment, without bundle adjusment. Blue cones
mark the estimated trajectory, the white ones the ground truth.

As one can see in Fig. 7 there is a big drift when not using
local bundle adjustment. The trajectory for the same images
with local bundle adjustment is shown in Fig. 8.

Fig. 8. Result for the first experiment, with bundle adjusment. Blue cones
mark the estimated trajectory, the white ones the ground truth.

As one can see in Fig. 8 the estimated trajectory fits well
to the known ground truth. The drift error is compensated by
the local bundle adjustment.

B. Comparison with Google Project Tango

The second experiment was done on a longer trajectory,
using 1974 images. To evaluate the result, the experiment was
recorded in parallel with the plenoptic camera and with a tablet
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fixed to the plenoptic camera. On the tablet Google Project
Tango was running. The software of Project Tango estimates
a 3D trajectory using a accelerometer and a monocular camera
[10]. The trajectories resulting from our RGB-D SLAM and
from Project Tango are compared qualitatively. Of course the
result of Google Project Tango is not the actual ground truth,
but also subject to errors. However, it is a quite good estimate.

Fig. 9. Result for the second experiment. Red trajectory is from RGB-D
SLAM and the black one is from Google Project Tango. Scale is in mm.

Fig. 10. Result for the second experiment. Red trajectory is from RGB-D
SLAM with corrected scale and the black one is from Google Project Tango.
Scale is in mm.

The result of the second experiment is shown in Fig. 9. The
estimated trajectory matches qualitatively with the trajectory
from Google Project Tango, but as one can see there is a
scaling error in the data. For better comparison we estimated
the scale error using CloudCompare [11]. After correcting our
trajectory with the estimated scale, which amounted to 1.125,
the comparison can be performed easier. It is shown in Fig.
10.

As one can see in Fig. 10, the two trajectories fit quite
well. There is still a very small offset, observable in the top
left of the figure. To minimize also this offset a global bundle
adjustment could be performed.

VI. CONCLUSION

The presented method works quite well for typical videos
recorded with the plenoptic camera. The matching method
supplies good and enough matches for the trajectory estimation
to work stable, even for a long scene as shown in the second
experiment. Nevertheless there remain some unsolved prob-
lems like the scaling error shown in Figure 9. This error has
been corrected up to now only interactively and an automated
procedure has to be implemented. Furthermore would a global

bundle adjustment using the key-frames only help to achieve
higher stability against drift.
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Abstract—Cluster analysis is important for understanding the
structure of a particular data set. This paper compares some
known clustering algorithms. The criteria for comparison are
usability (choice of initial input parameters), simplicity, accuracy
and computational complexity. The aim is to search for an
optimal clustering algorithm by evaluating its performance on
data sets from different fields of application. Other related topics,
scaling and cluster validation are also discussed.

I. INTRODUCTION

The goal of this paper is to understand various clustering
algorithms and to provide an unbiased evaluation based on
comparison criteria. Clustering is the grouping of data into
clusters such that the data vectors in one cluster are more
similar to each other than those in another cluster. A data
set X = (x1, . . . , xn) consists of n d-dimensional vectors,
xi ∈ X ⊆ Rd.
Clustering is the unsupervised learning problem of finding
a structure in a set of unlabeled data, where the correct
clusters are not previously defined. It is used for data mining
techniques in many fields, such as, medicine [1], psychology
[2], marketing [3], biology [4], linguistics [5]. Clustering is
used to find internal structures in the data, such as, reoccurring
patterns and anomalies. Also, it is usually the pre-processing
step for many other algorithms, such as artificial intelligence
techniques. For comparison, we chose popular clustering algo-
rithms based on different working principles as given below.
a) Centroid-based (K-means, Kernel k-means, Spectral)
b) Distribution-based (EM Algorithm)
c) Connectivity-based (Hierarchical)
d) Density-based (DBSCAN, OPTICS)

II. METRICS

A. Distance

The performance of a clustering algorithm depends critically
on a good distance metric in the input space that reflects
the relationship between a given data. A metric is a function
defining the distance between each pair of elements or vectors
in a data set. For example, the Minkowski distance given by,
d : X × X → R+

0 , where R+
0 = {t ∈ R | t ≥ 0}.

d(x, y) =

(
d∑

i=1

|xi − yi|p
)1/p

is a generalized form. The widely used distances are

Manhattan-distance (p = 1), Euclidean-distance (p = 2)
and Chebyshev-distance (p = ∞). We used primarily the
Euclidean distance as it is translation and rotation invariant.

B. Scaling

Scaling or data normalization is a pre-processing step for
clustering. The range of data values for different dimensions
may vary greatly, thereby causing one or more dimensions to
strongly influence the result. Scaling ensures the proportional
contribution of each dimension.
We used Min-Max Scaling (rescaling the values of all dimen-
sions to a target range), defined as,

xli,norm =

xli − min
j∈[1,n]

(xlj)

max
j∈[1,n]

(xlj)− min
j∈[1,n]

(xlj)
, where l ∈ [1, d] ⊆ N

and Standardization (values of each dimension have zero-mean
and unit-variance), defined as,

xi,norm =
xi −mean(x)

var(x)

For comparison, we also used Multi-Dimensional Scaling
(MDS) [6] to detect relevant dimensions that represent the
similarities within data.

III. CLUSTER VALIDATION

Every clustering algorithm can find a set of clusters, whether
the structure exists in the data or not. Even the order of data or
choice of different input parameters for the same algorithm can
lead to very different clustering results. Therefore, validation
of the cluster quality becomes very important. The silhouette
criterion for evaluating the clustering quality is defined as
follows.

A. Silhouette Criterion

The Silhouette criterion [7] takes as input the final set of
clusters C obtained from a clustering algorithm. It measures
how closely the data matches to other data within its own
cluster and how loosely it matches to data in other clusters. It
returns the value S on the interval [−1,+1] where +1 indicates
that the data is appropriately clustered and vice-versa.

s(xi) =
b(xi)− a(xi)

max{a(xi), b(xi)}
and S =

1

n

n∑
i=1

s(xi)
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Here, a(xi) is the average distance of xi to other data within
the same cluster and b(xi) is the lowest average distance of
xi to any other cluster.

IV. CLUSTERING ALGORITHMS

The algorithms take as input the data set X ∈ Xn. The
output is 1 ≤ k ≤ n clusters C = {C1, . . . , Ck}, where Ci is
a mutually exclusive subset of X.

A. K-Means

We implement the k-means algorithm as proposed in [8],
which partitions the data into k clusters by iteratively minimiz-
ing the within-cluster sum of squares with k chosen manually
a priori. The algorithm alternates between two steps, firstly
assigning each data vector to the cluster with the nearest
cluster mean and secondly, re-calculating the new mean for
the updated clusters. The objective is to find the clusters such
that, argmin

C

∑k
i=1

∑
x∈Ci

‖x− µi‖2, where µi ∈ X is the

mean of vectors in Ci.
We analyzed the following two methods to select the initial
cluster centers. First, randomly choose k vectors from the
data set X as initial means. Second, k-means++ [9] algorithm
is used, where a subsequent cluster center in an iteration is
chosen with probability proportional to its squared distance
from the existing cluster centers.

B. Kernel K-Means

Kernel k-means applies k-means algorithm in kernel
space as proposed in [10]. The data points are mapped
from input space to a higher dimensional space with
φ : X → H and then k-means is performed in this
transformed space. The k-means equation changes to
argmin

C

∑k
i=1

∑
x∈Ci

‖φ(x)− µ̃i‖2, where µ̃i ∈ H is mean

of vectors in Ci in the transformed space.

C. Spectral Clustering

Spectral clustering [11] uses eigenvectors of similarity ma-
trix (also known as kernel or Gram matrix) calculated from
the input data. A dimensionality reduction is performed by
taking the k largest eigenvectors as columns to obtain a n×k
matrix. Clustering is performed on this reduced matrix with
new input vectors Y = (y1, . . . , yn), where yi is the reduced
transformed vector of xi in the higher dimensional space H.

D. Expectation-Maximization Algorithm

EM algorithm [12], assumes that the data set can be
modeled as a combination of multivariate normal distributions.
It finds the maximum-likelihood estimate of the parameters of
an underlying distribution in a statistical model for a data set
X. Here, besides initial cluster centroids, initial co-variance
matrices and probability distribution of each cluster are also
required as input parameters.

E. Hierarchical Clustering

We use the single-linkage variant of the agglomerative
hierarchical clustering suggested independently by McQuitty
[13] and Sneath [14]. Initially each input vector is in its own
cluster. At each step, the two clusters separated by the least
distance are merged. The distance d between two clusters is
defined as d(Ci, Cj) = min

p∈Ci,q∈Cj

d(p, q).

The process goes on until the termination criterion is reached
(in our case, number of desired clusters).

F. DBSCAN

DBSCAN (Density-Based Spatial Clustering of Applica-
tions with Noise) [15] is an algorithm which forms clusters
based on the local density of data points. It requires two
input parameters, MinPts (the number of points required to
form a cluster) and ε (neighborhood size). The data points are
assigned to a cluster if the minimum number of neighbouring
points specified at the beginning are present, otherwise it is
classified as noise.

G. OPTICS

OPTICS (Ordering Points To Identify the Clustering Struc-
ture) [16] builds upon DBSCAN so that only one parameter
is needed for clustering. It addresses the major drawback of
DBSCAN clustering, which is, not being able to find clusters
with different densities. The input parameters are MinPts and
γ (maximum distance to consider for a cluster). The value of
γ influences the time complexity of the algorithm and the
cluster quality. However, in OPTICS, the output is difficult
to interpret, especially with large data count. The output is a
particular ordered list of data from the input data set according
to their smallest reachability distance, which is the distance of
a data point xi to it’s MinPts-th closest point.

V. EXPERIMENTS

A. Datasets

For evaluating performance of the clustering algorithms, we
used pre-labeled data sets available in [17] and 2-dimensional
synthetic data from [18]. The data sets, summarized in Table
I, were chosen from various fields of application, so as to find
a general plausible algorithm.

B. Comparison of Algorithms

This section details how the experiments were carried out.
Four variants of data are used, unscaled and scaled data using
the three techniques mentioned in Section II-B. The clustering
algorithms are then executed with the initial values required
by the individual algorithms. Below are the additional details
about the algorithms in our implementation.
The initial centroids in k-means algorithm are selected from
the data using k-means++ algorithm, as it distributes the
centroids in the data space, increasing the probability for better
results. For kernel k-means and spectral clustering, Gaussian
and polynomial kernels are used to form the similarity matrix.
In EM algorithm, k-means with k-means++ initialization is
applied to find the initial clusters and then EM algorithm
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TABLE I: Details of the Data Sets

Data Dimen- Num
Data set Count sions Class Description

Medicine, diagnosis of
Appendicitis 473 15 2 appendicitis [20]
Iris 150 4 3 Botany, iris plant types
Movement Video, hand movement in
Libra 360 90 15 Brazilian sign language

Agriculture, three different
Seeds 210 7 3 varieties of wheat

Medicine, analysis of
Thyroid 215 5 3 thyroid disease
User Knowle- Knowledge, student
dge Modeling 403 5 4 knowledge level [21]
Wholesale Business, clients of a
Customers 440 7 2 wholesale distributor [22]
Wine 178 13 3 Food, wine origin/type

Food, cellular localiza-
Yeast 1484 8 10 tion sites of proteins
Aggregation 788 2 7 Synthetic data
Compound 399 2 6 Synthetic data
Pathbased 300 2 3 Synthetic data
R15 600 2 15 Synthetic data

is carried out to optimize the log likelihood function. To
overcome the problem of an infinite log value resulting from a
singular covariance matrix caused by numerical computation
of matrix determinant, a random value between 0 and 0.01 is
added repeatedly to the diagonal elements in the covariance
matrix till a positive determinant value is obtained.
In OPTICS, the value of γ is set to maxxi,xj

d(xi, xj),
eliminating the need for a second input parameter and the
clusters adjust themselves according to the density of data
points in a particular region. In the output list, the data
having low reachability are aligned together, showing that they
belong to the same cluster. When the reachability distance
shows a jump, it indicates the start of another cluster. Our
implementation looks for this sudden jump by comparing the
relative difference in distances of current datum in the list to
its previous two data, thus selecting the resulting clusters.
Each algorithm is executed five times for each data set and
the average of all results (clustering accuracy) along with the
variance is taken as the final result for an algorithm on a
dataset. The optimal values for some initial parameters are
found using cross-validation, such as σ in Gaussian kernel for
kernel k-means and spectral clustering. The details about the
clustering algorithms are listed in Table II.

VI. RESULTS

In this section, the results obtained for the algorithms are
discussed. Figure 1 shows the clustering results on the Ag-
gregation data set. We can see that k-means linearly separates
the data whereas spectral is able to cluster the data perfectly.
Hierarchical clustering and OPTICS give similar result. The
two connected clusters on the right side and bottom left corner
are combined as one cluster. As mentioned in Table II, it can
be seen that a large k does not affect the result of hierarchical
clustering. Since, the cluster number is given as 7 initially,

only one (in blue) and two (in gray) data points are assigned
to the remaining two clusters, not much affecting the error
rate.

(a) K-Means (k = 7) (b) Kernel K-Means (k = 7, σ = 0.2)

(c) Spectral (k = 7, σ = 0.7) (d) EM (k = 7)

(e) Hierarchical (k = 7) (f) OPTICS (MinPts = 10)

Fig. 1: Clustering results on the Aggregation data set. Each
cluster is depicted by a different color. The input parameter
values for each algorithm are also mentioned. For Kernel k-
means and Spectral algorithms, a Gaussian kernel is used.

Figure 2 and 3 represent the output of OPTICS algorithm and
its interpretation as clusters. In Figure 2a, it can be easily
seen that there are 15 clusters. Here, it is also not difficult to
convert the list to clusters, as can be seen in Figure 2b. The
R15 data set is correctly clustered by all the algorithms. On
the other hand, Figure 3a shows that the first cluster can end
either around 50 or 140 data points. It is not a trivial task
to write a generalized algorithm that could convert the list
to clusters appropriately. Even if the list is ordered correctly,
the conversion may not be accurate. The results of DBSCAN
are worse than OPTICS and hence, are not discussed here.
The clustering results for the Compound data set are shown in
Figure 4. Here, spectral clustering does not cluster the data in
the lower left corner correctly because the clusters consist of
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TABLE II: Properties of Clustering Algorithms and their Complexity (n=data count, k=number of clusters, d=dimensions,
i=number of iterations)

Algorithm Input Parameters Constraints Positives Complexity
K-means # of clusters, initial k centroids linear separation, local min-

ima, no outlier detection, very
sensitive to initial centroids

easy to understand and implement,
fast if k is small, even with large
data

O(nkdi)

Kernel k-means # of clusters, k centroids, standard
deviation σ (gaussian), degree d
and constant c (polynomial kernel)

slow due to computation of
kernel matrix, esp. for large
data, requires tuning of kernel
parameters

k-means applied in kernel space,
minimizes clustering error in the
transformed space

O(n2 + nkdi)

Spectral # of clusters, k centroids, standard
deviation σ (gaussian), degree d
and constant c (polynomial kernel)

computationally expensive due
to computation of kernel ma-
trix and eigen values

kernel PCA to reduce dimension-
ality, effective for both low- and
high-dimensional data

O(n3)

EM # of clusters, k means, k variance,
k probability distribution

numerical problems fast given good initialization, effec-
tive for high-dimensional data

O(n2 + nkdi)

Hierarchical # of clusters sensitive to order of points fast, simple, large k does not affect
the result

O(n2)

DBSCAN neighbors MinPts, distance ε can not identify varied density
clusters

insensitive to order of points and
noise

O(n2)

OPTICS neighbors MinPts, max. distance
γ

output as ordered list and not
clusters

filter noise, can detect varied den-
sity clusters.

O(n2)
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Fig. 2: The clustering output of OPTICS for the R15
data set with MinPts = 10 is shown in (a). The
reachability distance for each data point is plotted on the
y − axis. The interpretation of the list into clusters is shown
in (b).
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Fig. 3: The clustering output of OPTICS for the Path-
based data set with MinPts = 3 is shown in (a). The
reachability distance for each data point is plotted on the
y − axis. The interpretation of the list into clusters is shown
in (b).

(a) K-Means (k = 6) (b) Kernel K-Means (k = 6, σ = 0.7)

(c) Spectral (k = 6, σ = 0.7) (d) EM (k = 6)

(e) Hierarchical (k = 6) (f) OPTICS (MinPts = 4)

Fig. 4: Clustering results on the Compound data set.
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different structures. Hierarchical clustering forms appropriate
clusters based on the distance function but not according to
the correct labels. OPTICS algorithm identifies the clusters
accurately except the ones in the upper left corner. The other
algorithms do not give satisfying results.
The results for the multi-dimensional data sets are presented
in Table III. It contains sub-parts for the clustering performed
on data with different scaling methods. Each element of the
table represents average percentage of data points that are
correctly clustered over multiple executions of the algorithms
on each data set and variance in the results. The results for
hierarchical clustering and OPTICS algorithm remain same
for each iteration, and hence, the variance is not mentioned.
For other algorithms, the results in each iteration vary with
different initial parameters, so the variance is relevant. The
combination of higher percentages and lower variances for
each data set is highlighted in the table. The average for
unscaled data is 65.1±2.4%, for MinMax scaling 67.4±1.9%,
57.0 ± 2.5% for Standardization and 63.8 ± 2.1% for Multi-
Dimensional scaling. It can be seen that for almost all data
sets, there is 6 − 7% drop in the clustering accuracy with
Standardization. On the other hand, with MinMax scaling,
the clustering result either improves or stays the same. We
can also see that the k-means, kernel k-means, hierarchical
clustering and OPTICS algorithm either have no best results
or only for one or two data sets. K-means works only good for
linearly separable data. Kernel k-means performs only slightly
better than k-means. Hierarchical clustering yields good results
for 2-dimensional data but does not handle high-dimensional
data well. It is found that silhouette criterion does not provide
the optimal cluster count. This is because it uses Euclidean
distance, which prefers linearly-separable spherical structures.
We executed silhouette on the top of EM algorithm for the
data sets and the results got worse. E.g. for the Iris data set,
silhouette returned the optimal cluster count as 2 instead of
3 and the accuracy reduced from 98% to 66.7%. Due to the
lack of an efficient algorithm to convert the output ordered
list to clusters, OPTICS often produces high error rate in
final clustering result. In general, spectral clustering gives best
results as it applies PCA to data in the transformed high-
dimensional space to extract those dimensions having the most
important information about the data set. EM algorithm, which
does not give good results for two-dimensional data and does
not converge for Movement Libra data set, gives the best
results for high-dimensional data. It optimizes the Gaussian
distribution for each dimension to find clusters with different
shapes in a data set, thereby improving the result.

VII. CONCLUSION

The results show that overall Spectral clustering and EM
algorithm give the best results for most real data sets. However,
Spectral clustering is computationally expensive due to kernel
matrix and eigenvalue calculation and is very slow for large
data sets. Therefore, it is recommended to use EM algorithm
where the initial clusters are given by k-means with k-
means++ algorithm.

MinMax Scaling is fast and also has the highest average
percentage for all datasets, making it the favorite choice among
the scaling methods.
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TABLE III: Clustering Results - Correctly classified data along with variance over multiple runs of an algorithm for a data set
(in %). The last column gives the mean percentage accuracy for an algorithm (average of the columns in a row).

Appendicitis Iris Libra Seeds Thyroid User K.M. Wholesale Wine Yeast
Scaling - None

64.6 88.7 47.6 89.1 80.7 56.4 74.9 68.8 50.6 69.0
K-means ± 0.6 ± 0 ± 2.4 ± 0 ± 5.4 ± 8.3 ± 2.2 ± 1.4 ± 2.7 ± 2.5
K. k-means 64.4 87.8 46.1 89.3 81.3 59.1 73.5 69.7 52.2 69.3
(gaussian) ± 0.8 ± 1.5 ± 3.1 ± 0.2 ± 4.8 ± 5.7 ± 6.9 ± 0.5 ± 2 ± 2.8
K. k-means 64.5 86.3 46.8 89.3 81.1 56.9 71.9 69.7 50.8 68.6
(polynomial) ± 0.7 ± 3 ± 2.1 ± 0.2 ± 5 ± 7.9 ± 8.5 ± 0.5 ± 2.6 ± 3.4
Spectral 57 89.6 48.3 88.9 75.4 59.1 67.7 66.3 51.1 67.0
(gaussian) ± 0 ± 2.4 ± 4.5 ± 1.6 ± 4.6 ± 3.2 ± 0 ± 1.7 ± 2.5 ± 2.3
Spectral 57 96.7 49.3 82.5 85.9 56 75.1 41.3 51.1 66.1
(polynomial) ± 0 ± 1.3 ± 1.8 ± 0.4 ± 1.1 ± 4.5 ± 0.6 ± 0.9 ± 1.6 ± 1.3

59 98 89.3 94.4 61 78.8 77.3 44.3 77.9
EM ± 0.6 ± 0 - ± 2.1 ± 0.5 ± 5.6 ± 2.3 ± 7.6 ± 0.5 ± 2.1
Hierarchical 57.5 68.0 12.5 37.1 70.7 32.8 67.7 43.3 32.4 46.9
OPTICS 38.9 68.7 36.9 62.4 83.7 50.4 67.7 54.5 34.8 55.3

Scaling - MinMax
71.2 88.4 46.4 88.8 88.8 57.4 67.7 94.9 53 72.9

K-means ± 0 ± 0.3 ± 1.9 ± 0.2 ± 0 ± 4.7 ± 0 ± 0 ± 2 ± 1.0
K. k-means 71.2 84.8 46.2 88.8 88.2 55.7 67.7 94.8 53.1 72.3
(gaussian) ± 0 ± 3.8 ± 4.6 ± 0.2 ± 0.7 ± 7.6 ± 0 ± 0.7 ± 2.5 ± 2.1
K. k-means 71.2 78.9 47 88.8 87.8 53.6 67.7 94.6 52.3 71.3
(polynomial) ± 0 ± 9.8 ± 3.3 ± 0.2 ± 1 ± 8.2 ± 0 ± 0.4 ± 2 ± 2.8
Spectral 69.5 87.3 49.2 91.6 94.2 57.4 71.2 96.6 53.2 74.5
(gaussian) ± 2 ± 2.7 ± 4.4 ± 2.7 ± 1.6 ± 3.6 ± 4.2 ± 1.2 ± 0.8 ± 2.6
Spectral 71.3 81.2 49.7 89.4 90.3 53 67.7 93.4 51.4 72.0
(polynomial) ± 0.9 ± 3.4 ± 3.1 ± 2.6 ± 1.3 ± 6.3 ± 0 ± 2.7 ± 1.9 ± 2.5

66.3 98 88.1 95.8 63.1 68.5 96.4 51.8 77.9
EM ± 0.2 ± 0 - ± 0 ± 0 ± 3.2 ± 0.3 ± 0.3 ± 0.2 ± 1.0
Hierarchical 57.5 66.7 12.22 34.8 72.1 32.8 67.7 39.9 32.4 46.2
OPTICS 36.4 66.7 39.4 64.3 75.8 45.9 67.1 39.9 35.7 52.3

Scaling - Standardization
57.9 75.3 45.9 51.2 78.8 40.5 67.7 61 51.1 58.8

K-means ± 0.6 ± 0 ± 2.7 ± 0.7 ± 2.1 ± 3.9 ± 0 ± 0.8 ± 0.8 ± 1.3
K. k-means 57.5 73 46.8 51.7 77.4 45.5 67.7 58.3 50.3 58.7
(gaussian) ± 1.1 ± 7.7 ± 3.4 ± 0.7 ± 3.5 ± 5.6 ± 0 ± 7 ± 2.5 ± 3.5
K. k-means 57.5 57.8 46.4 51.6 77.4 39.2 67.7 57.9 49.7 56.1
(polynomial) ± 1 ± 4.2 ± 5.8 ± 0.7 ± 3.5 ± 7.4 ± 0 ± 5.1 ± 2.3 ± 3.3
Spectral 57.3 79.3 47.3 52 73.9 47.1 67.7 57.5 51.7 59.0
(gaussian) ± 1.2 ± 2.1 ± 4.9 ± 1.8 ± 4.7 ± 5 ± 0 ± 7.1 ± 2.6 ± 3.3
Spectral 59.4 81.4 42.2 55.5 78.7 36.6 67.7 58.4 53.4 59.2
(polynomial) ± 3 ± 1.9 ± 2.8 ± 0.2 ± 1.4 ± 2.9 ± 0 ± 5.1 ± 0.4 ± 2.0

58.7 98 86.4 89.8 41.2 67.7 59.8 70.5
EM ± 0.3 ± 1.3 - ± 1.2 ± 6.1 ± 1.1 ± 0 ± 3.7 - ± 1.5
Hierarchical 58.5 68.0 12.2 36.2 72.6 32.5 67.7 39.9 32.2 46.6
OPTICS 24.1 60.7 33.1 43.8 75.8 38.7 61.1 57.3 35.2 47.7

Scaling - MDS
65.2 91.3 43.6 87.1 85.1 57.5 67.7 68.3 49.4 68.3

K-means ± 0 ± 0 ± 1.2 ± 0 ± 0 ± 7 ± 0 ± 0.8 ± 0.8 ± 1.1
K. k-means 64.7 91.3 45.8 85.7 83.4 58 75.4 69.2 50.9 69.4
(gaussian) ± 0.5 ± 0 ± 4.2 ± 1.4 ± 1.8 ± 6.5 ± 5 ± 1 ± 2.5 ± 2.5
K. k-means 64.6 91.3 45.4 86.3 83.6 56.4 74.7 70 51 69.2
(polynomial) ± 0.6 ± 0 ± 3.8 ± 0.9 ± 1.6 ± 8.1 ± 5.8 ± 0.2 ± 1.4 ± 2.5
Spectral 57 91 43.6 85.8 72.3 60.4 67.4 51.9 66.2
(gaussian) ± 0 ± 0.3 ± 7 ± 2.3 ± 5.9 ± 2.2 - ± 0 ± 1.6 ± 2.1
Spectral 57 92 48.6 84.3 69.8 51.7 67.7 41.4 50 62.2
(polynomial) ± 0 ± 2.7 ± 3.4 ± 3.3 ± 0 ± 8.4 ± 0 ± 1.3 ± 4.6 ± 3.0

63.8 90 85.2 95.4 61.6 67.7 71.2 49.5 72.8
EM ± 0.2 ± 0 - ± 1 ± 1 ± 4.9 ± 0 ± 0.7 ± 3.7 ± 1.5
Hierarchical 57.5 67.3 18.3 36.7 70.7 33.3 67.7 43.3 31.7 47.4
OPTICS 39.5 66.7 38.1 63.3 83.7 46.2 67.7 56.7 34.8 55.2
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Abstract—Creating cages that enclose a 3D-model of some
sort is part of many preprocessing pipelines in computational
geometry. Creating a cage of preferably lower resolution than
the original model is of special interest when performing an
operation on the original model might be to costly. The desired
operation can be applied to the cage first and then transferred to
the enclosed model. With this paper the authors present a short
survey of recent and well known methods for cage computation.
The authors would like to give the reader an insight in common
methods and their differences.

I. INTRODUCTION

Due to the ever increasing amount of highly detailed 3D
models algorithms that can handle large scale models and
perform operations in acceptable time are a necessity. Since
these models often consist of meshes with many thousand
vertices, algorithms need to be highly optimized. Aside the
possibility of optimizing each algorithm for speed it is also
possible to simplify the problem itself. Many applications
today use lower resolution versions of the respective models
for evaluation and then apply the result to the high resolution
model. These low resolution approximations that enclose the
original model are called cages or envelopes. Fig. 1 shows an
example model of an elephant and its cage.

Fig. 1: Model of an elephant on the left and the model enclosed
in a cage on the right [1].

There exist many different applications for cages and en-
velopes. The most prominent application is model deforma-
tion. When deforming a model, the deformation functional
has to be applied to the whole model domain. In this case

computational complexity depends on surface complexity as
e.g. number of vertices or faces in a mesh. Applying the defor-
mation to a simpler cage that encloses the original model and
projecting the deformation onto the fine mesh, after applied
to the cage, reduces the computational cost significantly. In
[2] Lipman et al. propose the usage of Green Coordinates for
cage-based space deformation. Debunne et al. [3] use multires-
olution tetrahedral meshes to guarantee a certain framerate for
the deformation of visco-elastic deformable objects. A fine
mesh with physical properties is embedded in a tetrahedral
grid to simplify deformation computation by the finite element
method in [4].

Another important application that is directly related to
deformation is contact and collision detection. A very com-
mon bounding structure for collision detection are spheres.
James and Pai [5] use a Bounded Deformation Tree to per-
form collision detection on large amounts of objects using
spheres. Dingliana and O’Sullivan [6] propose a multiresolu-
tion scheme detecting collisions based on level of detail when
using spherical cages.

Other applications of cages and envelopes include e.g.
projections of complex functions onto bounded models [7]
or fast realistic rendering of objects based on high resolution
texture but low resolution meshes [8].

In each area where cages are applied there exist task-specific
requirements. Aside these task-specific properties there exist
properties that are generally beneficial when applying cages.
Cages should
• not self-intersect,
• not intersect the original model,
• be homeomorphic to the model enclosed,
• follow the model as close as possible while being a

simplified version of the model.
This survey paper of methods for caging and enveloping

will give the reader a quick overview of the topic and recent
methods. The structure of this paper is as follows. In section
two, short summaries of related methods are presented. Section
three will compare the different methods while we conclude
in section four.

II. RELATED METHODS

This section will give short summaries of caging methods
from the areas of ”Simplification and Flow”, ”Voxelization and
Multigrid-Methods” and ”Offset Surfaces”.
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A. Simplification and Flow

An approach for nesting multiresolution meshes is proposed
by Sacht et al. [9]. The proposed algorithm does not present
new results on surface simplification since the approach is
independent of the used simplification. As input a number
of polyhedra with varying resolution and a fitness function
are needed. The polyhedra can be overlapping but need to
be watertight. Taking a mesh of high resolution M̂0 and k
decimated meshes M̂1, . . . , M̂k the method will output a se-
quence M1, . . . ,Mk of nested meshes, where Mi−1 is strictly
contained in Mi. M1, . . . ,Mk will be created minimizing a
user-defined energy function E. Nesting is ensured by only
operating on two meshes at a time starting with the finest and
second finest mesh. In each step a finer mesh F is embedded
inside a mesh C that was derived from an input mesh Ĉ.
The method consists of two main steps: In the first step the
vertices of the finer mesh F are moved along a flow inwards
to minimize the total signed distance to Ĉ and in a second
step this mesh F̄ will then be re-inflated back to F pushing Ĉ
out of the way to become C. See Fig. 2 for a 2D example of
the process. Flowing F̄ inside Ĉ is done by minimization of

Fig. 2: Main steps of the algorithm by Sacht et al. [9]

the unsigned distance function d(p) integrated over all points
p of the deforming surface

Φ(F ) =

∫
F

s(p)d(p) dA (1)

where s(p) is the sign modulation. Minimization is performed
by gradient descent with fictitious time t:

∂ f̄

∂t
= −∇fΦ(F̄ ).

Vertex positions f̄ in F̄ (t) will flow inside the coarse mesh
by taking small steps in the opposite gradient direction. Since
it is not always guaranteed that there will be no intersections,
the possibility of first expanding the coarse mesh is proposed.
The coarse mesh will then flow outwards creating some
distance between the finer mesh and itself. Contact forces are
introduced to prevent self-intersections. The problem of self-
intersection is a common problem in mesh expansion. This is
why inward flow or shrinkage of the fine mesh is preferred.

In a next step F̄ needs to be re-inflated to recover the
original position F . While re-inflating, Ĉ needs to be pushed
outwards so that there are no collisions of F̄ and Ĉ. The

previous steps of flowing F inwards can now be reversed to
gradually inflate back to F . Since each step back to F is a
positional change in some time step ∆t this can be expressed
in terms of velocity. Defining the re-inflation in terms of
velocity makes the use of physical simulations for contact
detection possible. The method [10] can be used out of the
box since it takes mesh vertices as well as desired velocities
and outputs adjusted velocities. By assigning infinite mass to
F̄ one can make sure that the fine mesh will return to its
original position F . If [10] fails the slower but more robust
method [11] can be used.

Much like Sacht et al. [9], Sander et al. [8] use the concept
of simplifying the original model and flowing this simplifica-
tion away from the original to compute cages. Sander et al.
render models as coarse cages to reduce rendering complexity.
Their approach is based on the concept of progressive nested
hulls. They start by first defining the interior volume of the
model. The decision if a point p lies inside the volume V(M)
of some model M is based on the winding number. If one
takes a ray from p to infinity and tracks its intersections with
M one can decide if p lies inside M . For an intersection of
the ray with an inner side of a face the winding number is
increased by one while for intersections with an outer side it
is decreased by one. Points with positive winding number will
lie inside the model.

The progressive hull algorithm is strongly based on the
original progressive mesh by Hoppe [12]. In the context of
simplifying a model to create a cage the original mesh Mi+1

has to be fully enclosed by Mi so that Mi ⊆ Mi+1. This
relation can be ensured by introducing inequality constraints
for the position of the unified vertex in an edge collapse.
This unified vertex V is constrained to lie outside the model
volume V(Mi+1) after an edge collapse (refer to Fig. 3 for
the setup). The position of V after the collapse can be found

Fig. 3: Edge collapse [8].

by using linear programming to solve the resulting inequality
constraints and minimizing the resulting volume enclosed by
Mi+1 and Mi. This ensures that the cage will enclose the
model tightly. Additionally cost metrics can be applied when
collapsing edges to ensure mesh quality.

B. Voxelization and Multigrid-Methods

Xian et al. [13] use an improved Oriented Bounding Box
(OBB) tree [14] to create coarse cages. OBB structures are
often applied to the problem of collision detection. Xian et
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al. start by computing an initial OBB O for the model at
hand. O is then subdivided by voxelization. In a classification
step the voxels are classified as inner voxels, outer voxels and
feature voxels. Voxels that contain part of the model mesh
are feature voxels while inner voxels lie within the model and
outer voxels lie outside of the model. A point set P is created
that contains the mesh vertices as well as the barycenters of
inner voxels. Based on P the initial OBB can be recomputed
by Principal Component Analysis to get a tighter fit on the
model. To further divide the OBB information about the object
shape is considered. The division takes place in regions of
largest change in shape (see figure 4). Xian et al. define the

Fig. 4: Initial OBB on the right, OBB simply split in half in
the middle and OBB split at locations of largest shape change
on the right [13].

change in shape as cross section area function differences.
The cross section area is defined as the area enclosed by the
intersection of the model and a splitting plane parallel to the
OBB faces composed of the smaller two OBB dimensions.
The function of cross section area change is built by moving
the splitting plane through the model. The location of largest
change in shape is then defined as the biggest jump in the
cross section area change function. A split of the initial
OBB at this location results in further sub-OBBs for which
the procedure is repeated until certain termination conditions
are satisfied. The so created OBBs represent a first coarse
cage of the model. This cage is refined by registration and
merging of adjacent OBBs. Two adjacent OBBs are registered
by first projecting the corner points A and B of the two
adjacent faces onto an intermediate plane between them. A
2D-OBB is computed that encloses the resulting projection
points A′ and B′ on the intermediate plane. Projection points
A′ and B′ are then registered onto the corner points of the
2D-OBB. As a final step the two adjacent OBB are linked
considering the registration of A′ and B′ in the intermediate
plane. A triangulation can be created by simply splitting quads
at diagonals. The resulting triangular mesh is then re-meshed
testing for intersections of the coarse cage and the model in
every step.

In [1] Xian et al. propose cage computation by first voxeliz-
ing the model to enclose. Like in [13] voxels are categorized
as outer, inner and feature voxels. The resolution of the voxel
grid will later on define the number of vertices of the coarse
cage. The faces of the feature voxels that coincide with faces of
outer voxels build a first rough approximate coarse cage. This
initial cage might not be 2-manifold. At non-2-manifold edges

voxels are attached while at non-2-manifold vertices a vertex-
split operation is employed. For triangulation the surface quads
are split at their diagonal. For further smoothing of the cage
Xian et al. use an adapted mean curvature flow method [15].
Movement of vertices in the smoothing process is based on
the curvature vector Hn where H is the curvature and n the
normal at a vertex. This vector points outwards on convex
vertices while pointing inwards on concave vertices. Based on
the information of outer and inner voxels Xian et al. computer
an additional vector ∇d that always points away from the
mesh. If the angle θ between −Hn and ∇d lies between 0
and π

2 the vertex is moved along ∇d. If θ lies between π
2 and

π it is moved along the normal n. Additionally, the distance
of each moved vertex to the model is tested at each step. If the
vertex falls inside the model it is moved in the direction of∇d.
To create homeomorphic cages, the resolutions of the initial
voxelization is iteratively increased until homeomorphism is
given.

In [4] a very simple grid based approach is used for de-
formation simulation. The mesh is embedded in a hexahedral
grid. A first, very coarse grid is further decomposed by an
octree structure. The octree depth is defined by the user. Each
of the so created voxels will inherit the mechanical proper-
ties of the enclosed polygons. This fine voxelization is then
transformed back to a coarse approximation. By connecting
eight voxels on each level one receives the next lager voxel of
the octree. Deformation properties of the fine voxelization can
be applied to each coarser level by recursive calculation. By
using this approach deformation properties like e.g. stiffness
of different materials can be merged on a coarser level.

C. Offset Surfaces

Ben-Chen et al. [7] create a bounding cages for the purpose
of deformation transfer. In a first step they create a set of
points along the surface. This can be any kind of surface as
long as it is possible to assign normals to the created surface
points. Next the points will be enveloped by using the Poisson
reconstruction algorithm of Kazhdan et al. [16]. The resulting
mesh or envelope E is simplified. This is done by using
progressive mesh [12]. The surface is simplified until a user
defined threshold is reached. Then for each remaining vertex
a new offset position is computed by flowing each vertex of E
along its normal direction outwards with predefined step size
s. Ben-Chen et al. compute the vertex normal as the area-
weighted average of normals of the vertices adjacent faces.
This process is then repeated until the desired number of faces
is reached. Ben-Chen et al. also state that the same step size
s at all points can lead to self-intersections in regions that are
close to each other like legs of a human model. For this case
multiple user defined step sizes at different locations should
be applied.

In [17] Shen et al. present an algorithm to create envelopes
of polygonal soups based on approximation by moving least-
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squares. For a normal least squares fit one would havebT (p1)
...

bT (pN )

 c =

φ1...
φN

 ,
with points pi, i ∈ [1, . . . , N ], basis functions b(x), the values
φi at points pi and the unknown coefficients c. The authors
introduce a weight function w(x) into the normal equation
of the standard least-squares formulation. w(x) is a distance
function by which one can regulate approximation behavior
up to interpolation. The least-square fit then becomesw(x,p1)

. . .
w(x,pN )


bT (p1)

...
bT (pN )

 c =

w(x,p1)
. . .

w(x,pN )


φ1...
φN

 ,
with w(x, pi) = w(||x− pi||). Since the moving-least squares
method is a point based method one needs to adapt the
concept for polygons. Taking points along the polygons and
performing a point-based approximation (especially very tight
approximations) leads to bumps and dimples along the surface.
This even is the case when using quadrature points. To handle
these problems Shen et al. propose using the least-squares
method not to blend points of each polygon but to blend
functions associated to the polygons. The standard normal
equation can be built based on these functions and becomesw(x,p1)

. . .
w(x,pN )

 c =

w(x,p1)
. . .

w(x,pN )


S1(x)

...
SN (x)

 ,
where Si(x) is the polygonal function. Figure 5 shows some
point-based and function-based approximations. For a more
detailed explanation please consider reading [17].

Fig. 5: The left column shows an exemplar approximation with
polygonal constraints while the examples in the middle and
on the right show results of point constraint examples with
different densities of scattered points [17].

III. METHOD COMPARISON

This section compares the different methods explained in
the previous chapter. The methods will be evaluated based on
the properties influencing quality defined in section one.

A problem of high priority when computing cages is the
prevention of intersections between the model and the cage.
While all caging methods aim to prevent these model-cage-
intersections, ensuring absence of intersections (AOI) results
in significant increases of computational costs. For Sacht et al.
[9] AOI comes built in by the methods for physical simulation
[10] and [11]. For these methods to work Sacht et al. need to
ensure that the finer mesh does not intersect the coarser mesh
after the inward flowing process. The methods [1] and [13]
need to make sure that the cage does not intersect the model at
different steps in the caging process. In [13] AOI is obtained
by accepting a smaller cage resolution while in [1] vertices
are pulled out of the model in the smoothing process which
leads to other problems like larger cage-model-distance and
possible self-intersection. For grid-based methods it is very
easy to ensure AOI since they are based on the bounding box
containing the model. Using the outer surface of a bounding
grid or voxelization makes getting AOI simple but lacks a
close resemblance of the model. The methods of [7] and [17]
for offset surfaces do not include proper handling of model-
cage-intersections. Deciding on intersections of the model and
the cage is left to the user. For [17] it is clear that the focus of
the presented work did not lie on creating cages that strictly
enclose a model which is not the case in [7] where the cage
generation method simply seems sufficient for the task at hand.
In [8] ensuring AOI is a vital part of the method since it is
introduced as a constraint into linear programming.

There exists a multitude of problems arising from cage self-
intersections (SI) like unintended deformations in applications
of contact detection and deformation. Preventing SI in the
process of cage computations is very difficult. Since Sacht
et al. [9] use a collision detection methods from physical
simulation the re-inflation of the fine mesh leads to SI-free
meshes. For the case where they first inflate the coarse mesh
they include contact forces to prevent SI. In [1] the first
approximate coarse cage (the triangulated voxelization) leads
to a SI-free bounding cage. In the smoothing step the cage
is forced to reside strictly outside of the enclosed model.
Since in this step the cage is not checked for SIs this might
lead to non-SI-free bounding cages. In [13] as well as in [1]
there is no explicit SI-test or condition included in the cage
computation process. Since both methods depend on user-
defined thresholds for the resolution of the cages SIs might be
resolved by larger resolution. This of course leads to higher
cage resolution which might not be desired. When using a grid
or voxelization SIs are excluded by the grid-structure itself.
For methods like [4] or [1] (without the smoothing step) the
problem would not be SI but merging of the bounding cage
in regions where the finer model is separated like between the
legs of a humanoid model. This merging can lead to problems
in deformation or collision detection. The same is true for
methods computing offset surfaces like [17] or [7]. Here the
cage merges in areas that are very close rather than creating
self-intersections. Every method that is able to create non-SI-
cages like [9] and [8] needs to introduce a specific step in the
computation process to handle SIs. To the authors knowledge
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there currently exists no method that implicitly creates non-
SI-cages.

Creating cages that are homeomorphic to the enclosed
model is an important feature in cage computation. Nearly all
of the mentioned methods are able to keep homeomorphism.
Since none of the presented methods explicitly ensure home-
omorphism it is intrinsic to the methods themselves. The only
presented method that is unable to create homeomorphic cages
is [4] since it keeps empty voxels in the grid-structure and han-
dles them later in the propagation of deformation information
through the grid. For all other methods homeomorphism is a
question of cage resolution. With smaller cage resolution holes
may be filled and by that topological information about the
enclosed model will be lost. Figure 6 shows an example from
[7] where the homeomorphism is lost. Homeomorphism can

Fig. 6: Top: Initial triangular mesh; middle: Offset surface;
bottom: Simplified offset surface. [8].

only be guaranteed by iteratively decreasing cage resolution
toward the desired threshold and checking for homeomorphism
at each step of the iteration.

Staying as close as possible to the original model while
resembling the models shape is important to many applications
like projection of functionals from cage to model. Sacht et
al. [9] propose using an energy term that penalizes total
volume between cage and model. This way a very tightly
fitting cage can be computed. For methods that depend on
voxelization or a grid the tightness of the fit can be controlled
by selecting a proper resolution. In contrast to [9] the tightness
of the fit and the resolution of the bounding cage are directly

correlated which is an undesirable property. A comparable
method would be [8] where the tightness of the fit and cage
resolution are coupled in terms of that the tightness will vary
between different levels of resolution. In [17] the tightness of
the resulting offset surface can be controlled by a user defined
parameter. In case that the offset surface is then triangulated
like in [7] this control is lost.

IV. CONCLUSION

Which method to use strongly depends on the task at hand.
While voxel- and grid-based methods produce bounding cages
that more loosely enclose a model they may be sufficient
for some collision detection or deformation tasks. The main
advantage of these methods is their small computational com-
plexity. Methods to create offset surfaces like [7] and [17]
are able to produce very tight cages but to the cost of higher
computational complexity resulting from the surface approx-
imation itself. Using them as a preliminary stage to receive
a triangulated cage only seems feasible if the computational
cost is of no concern. Methods that use mesh simplification
and flow like [9] and [8] are able to produce tight cages but
also at the price of high computational cost. For [9] costly step
in the process is the collision detection while for [8] linear
programming seems to be the bottleneck.

Since for many cases cage computation is part of the pre-
processing pipeline the impact of computational cost might be
neglected.
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Abstract—Object classification in images is a challenging task
in computer vision and machine learning due to the heterogeneity
of images. This paper explores hand-engineered features and
popular classification algorithms along with more modern ap-
proaches such as convolutional neural networks for detecting
and recognizing letters and digits in satellite images. For this
purpose, a new image dataset is created, containing alphabets
and numbers from the aerial view of earth.

I. INTRODUCTION

The planet Earth is full of interesting patterns many of
which are similar to each other in some or the other way. The
satellites revolving around the planet come across thousands of
unique patterns every day, of which we have scant knowledge.
However, if we had to scan the whole planet in order to find
these interesting patterns, doing so manually would be both
exhaustively time consuming and tedious. In recent years, sig-
nificant improvement in processing speed and storage capacity
along with advancements in machine learning have enabled
machines to reach or even outperform humans in special
pattern recognition tasks on images, such as face or optical
character recognition [1]. This paper explores the opportunity
of working in the field of machine learning with the project,
“Aerial Bold: A Planetary Search for Letterforms” [2], funded
through Kickstarter1. The aim of this project is to find alphabet
and number shapes that are present in earth’s satellite imagery.
The aerial view of the earth gives life to the patterns formed
by buildings, lakes, streets, trees, parking spaces, rivers, and
many such topologies. The idea is to scan these satellite images
and find the structures that are shaped as letters and digits
in order to create a new font based on these alphabets, the
first typeface of the earth. The contributions of this paper
include evaluation of image feature extraction methods and
classification algorithms. Also, the creation of a processing
pipeline for character recognition in satellite images based on
the available techniques, formation of meaningful conclusions
from the results and identification of the possible areas where
further research could be carried out for improving the results.

II. AERIAL BOLD DATASET

To generate the labeled training data, the crowd sourcing
application called “The Letter Finder App”2 was developed
by the project founders, Benedikt Groß and Joseph Lee.
The application enabled all people across the globe to find
the letters/digits in the satellite imagery, put a rectangular

1https://www.kickstarter.com/
2http://letterhunt.aerial-bold.com/

Fig. 1: Example images in Aerial Bold dataset

bounding box around them, assign a label and save them.
These images could have different sizes. In order to have
consistency, 256 × 256 pixel images are generated by the
application, each containing letterforms saved by the people
as center part of the image. Some examples of the training
data images are shown in Figure 1. The distribution of the
letterforms found using the application is shown in Figure 2.

Fig. 2: Distribution of the letterforms found using Letter
Finder App. Some letters are in abundance and some not.
Letters like L, C, 0 occur at a relatively high frequency in
sport stadiums, buildings, while in comparison occurrences of
buildings forming the letters R, N, G are infrequent.

The satellite view of a random area on earth is manually
scanned. When a letter is found, the latitude, longitude, label
of that letter and other relevant information is saved in a
database. Later, the image of each letter or digit found through
the application is retrieved and rotated at all angles from -20
to 20 degrees in steps of 5◦ to achieve rotation invariance
during classification. The range of rotation angle is chosen to
keep a letter non-ambiguous. For example, letter ‘C’ turns into
letter ‘U’ when rotated 90◦ anti-clockwise or letter ‘n’ when
rotated clockwise. The data is then randomly divided into 90%
training and 10% test data. The training images for letters
which look similar are given the same label. For example, c/C
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and x/X are given the labels ‘C’ and ‘X’ respectively. Some let-
ters are represented by only 30 instances whereas some other
classes contain up to 800 instances. Since, unbalanced data
is often a cause for performance deterioration in classification
algorithms [3], the images of those letters/digits having less
data are supersampled to balance the data. Synthetic data is
also added to the training data to additionally enhance the
training accuracy of the classifier. Synthetic data is created by
taking standard fonts that are available for public use. They are
also rotated from -20 to 20 degrees. The final training dataset
consists of 48 classes, namely, 0-9,a,b,d,e,g,h,i,j,l,n,r,t,A-Z and
the entire dataset comprises of about 140000 images.

III. FEATURE EXTRACTION AND CLASSIFICATION

The interpretation of a feature is generally application-
dependent. According to Castleman [4], a feature can also
be defined as, “a function of one or more measurements,
computed so that it quantifies some significant characteristic
of the object”. At first, meaningful features need to be ex-
tracted from the labeled satellite images. These features should
contain necessary information which allows us to identify
the alphabets/numbers with sufficient accuracy. Any irrelevant
detail that could interfere in the detection task is not desirable.
The dataset obtained after the feature extraction is defined as
X = (x1, . . . , xn), which consists of n vectors, with each
xi ∈ Rd. Each data point is represented as a d-dimensional
vector of features and the number of dimensions is based on
the parameters used for extracting the feature vector. The class
labels are defined as Y = (y1, . . . , ym), with m classes.
Thereafter, supervised classification is carried out. In the
training phase, a unique description of each class is learned
from the extracted features to be able to later classify new
data in the testing phase. We compare Convolutional Neural
Networks (CNN) [5], [6], [7] to the classification variant of
K-Means [8] with k-means++ [9] initialization and Support
Vector Machines (SVM) [10] using Histogram of Oriented
Gradients (HOG) [11] and Overfeat [12] features. CNN is used
as a feature extractor as well as a classifier. The classification
algorithm takes labeled data X as input which is divided
further into training data U and and validation data V . The
classifier is trained with training data and tested on validation
data to find the set of parameters that gives the best result.
Once the best set of parameters for a classifier are found, the
trained classifier object is saved and utilized later to classify
the new test data, W .
The following parameters were optimized in the given range
for various classifiers:

• K-Means
– Number of clusters, k - 10 to 25

• SVM
– Kernel type, kernel - linear, rbf and polynomial

kernels
– Regularization parameter for error, C - 0.01 to 10
– Kernel coefficient for rbf and polynomial kernels, γ

- 0.01 to 1

– Coefficient for polynomial kernel, r
– Degree of polynomial kernel, deg - 2 to 6

• CNN

– Number of convolution layers, nCL - 3 to 8
– Number of filters in a convolution layer, nF - 16 to

128
– Filter size for a convolution layer, sizeF - 2×2 to

11×11
– Size of pooling layer, sizeP - 2×2
– Number of hidden layers, nHL - 1 to 3
– Number of units in hidden layer, nHU - 500 to 1000
– Learning rate, η - 0.01 initially, updated to 0.001 if

the training error reduces to 15%.
– Batch size, sizeB - 100 and 200
– Number of epochs, epochs - 1500, 2000 and 3000
– Image size, sizeI - 96×96 and 256×256

K-means is a straightforward and fast algorithm to classify
the images. It aims at forming k clusters by minimizing the
within-cluster sum of squares. The cluster centroids can then
be used to classify a test image by assigning the class of the
closest centroid to the test vector. Since the same letter can
have different forms, such as letter ‘A’ can be written in many
different fonts, the number of clusters is generally chosen to
be higher than 1.

SVMs aim to find a hyperplane that splits the training
data as clearly as possible, while maximizing the distance
between clearly split data. The parameter C specifies the
trade-off between training data misclassification and the
simplicity of decision surface. A lower C value gives a
smooth decision surface, while a higher value tries to
classify all training samples correctly which can result in
overfitting. The parameter γ has a much stronger impact on
the classification results. It defines the distance which a single
training sample can reach. The larger the value of γ, the
closer other samples must be to be affected. Hence, it results
in over-fitting. A very small value means that the distance is
greater, resulting in underfitting.

In this work, the CNN architecture is adapted from LeNet
[13], which is designed for the recognition of handwritten
and machine-printed characters. Multiple convolution layers
are defined with a built-in max-pooling layer. The output of
one convolution layer is the input of the next convolution
layer. One or more hidden layers are defined after the
convolution layers. Output of the last hidden layer is then fed
into the softmax layer for computing the class-membership
probabilities.

Pre-Attempts: In the beginning, we applied image
preprocessing techniques such as Gaussian blur on the
input images to extract better features from the image.
However, due to vast differences in the nature of satellite
images, a common set of image parameters could not be
found. Also, it was attempted to build one multiclass CNN
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classifier to train all the letters together. But the training data
for all the letters together exceeded the GPU memory limit.
Thus, this approach had to be discarded.

Final approach: There are a lot of parameters to be
optimized over a large range of values, CNN requires a lot of
computational resources and time for training. Hence, due to
resource limitations, instead of building one multiclass CNN
classifier model to train all the letterforms together, each class
is trained separately giving rise to 48 binary CNN classifiers.
Each letter is trained individually against negative samples as
a binary classifier. The training data for one classifier consists
of 12% positive data for a letter, and 88% negative data
formed by taking data samples for all other letters. During the
training of a single CNN model, the negative log likelihood
function is minimized at each epoch to optimize the filter
values at each convolution layer in that model. Since, there
are 48 classes, this process results in 48 learned models, one
for each letter. An unlabeled satellite image could contain
multiple letterforms. Hence, during the testing phase, each
image is classified by all the 48 models individually to obtain
the possible target classes.

This paper aims to classify images accurately with the
requirement of minimizing the number of false positives. This
is because the amount of satellite imagery to be classified is
abundantly high and the results should contain the maximum
amount of correct letters. Thus, to measure the quality of
parameter combinations, fpr (false positives rate), ras (roc
auc score) [14] and fs (f1 score) [15] are used.

fpr =
number of false positives

total negative data samples

ras = area under roc curve

fs = 2 · precision · recall
precision+ recall

To define a loss function, each of these scores are given a
weight value. Hence, the loss function is defined as,

loss = 1−
(
1 · (1− fpr) + 2 · ras+ 1 · fs

4

)
where loss ∈ [0.1].

The measurements ras and fs have their maximum value at 1
and fpr at 0. It is intended that a loss value of 0 is the best
score, hence, the subtraction from 1 in the above equation.
The following pipeline is carried out for convolution
neural network until the maximum number of trials are
executed. First, the input images are separated per class.
Hyperparameters are defined based on the search space
formed by combination of variable parameter ranges. Then
using one set of hyperparameter, a CNN model is created
and feature vector set X is extracted. The features could also
be as simple as the input images flattened into a vector set.
Now, classification is performed on validation set V ⊂ X
and loss value is obtained. Based on loss value, next set of

hyperparameters is chosen and the process of creating and
testing the new model is repeated. After the best parameter
set for the problem is found for one letter, the same parameter
combination is used to train the classifier for remaining 47
classes. The trained classifier object is loaded and the classes
for unlabeled test data from the satellite imagery are predicted.

Challenges: As mentioned in section II, the data containing
letters and digits for the Aerial Bold dataset has been collected
by people all over the globe. However, many of them were not
suitable for a machine learning task. Also, the data for some
letters such as i, j, etc. is not easily available in the satellite
images and if found, not very clear. Therefore, each image
had to be checked and labeled again manually. Secondly,
even after applying the data augmentation techniques, the
dataset is rather small (on an average about 2000 images
for each letter) in comparison to the number of classes and
complexity of the problem. Another major challenge was the
computing power available for the task. In the beginning, a
system with 16GB RAM was available which took about 10
to 48 hours to compute a single SVM model for the entire
training data. Later a system with 64 GB RAM and four
4GB graphic cards was used. The code is organized such
that each GPU executes a different set of hyperparameters
for the convolutional neural network in parallel. The CNN
classifier executes 10 times faster on a GPU than a CPU.
However the graphic card memory was not sufficient to
train large networks, especially with larger filter sizes. Even
a 5 convolution layer network with filter size 11 and 512
neurons could not be evaluated due to the memory error. In
the existing works, for a complex problem, larger networks
having more than 7 convolution layers are found to produce
better results which could not be evaluated due to hardware
limitations.

IV. RESULTS

Table I shows an overview of the performance of various
feature extraction and classification method combinations.

TABLE I: Minimum classification error (%) on Aerial Bold
dataset

K-Means SVM CNN
HOG Overfeat HOG Overfeat

66.8 79.3 49.8 64.5 14.3

The HOG features give the best result with 128×128 image
size, 6×6 cell size, 2×2 block size and 12 orientations along
with 15 clusters for the k-means algorithm. SVM provides
the highest accuracy using a polynomial kernel with γ = 0.02
for a 96×96 image. However, CNN, that has been known
to significantly improve the classification performance on
various image datasets, including MNIST [13], CIFAR10
[16] and ImageNet [17], provides the lowest error among the
three classifiers on the Aerial Bold dataset.

Figure 3 represents nine different rotations of a satellite
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image containing letter A and their respective outputs from
the convolution layer. The first row contains the original
images, whose gray scale variant is fed to the network
initially. Row two depicts one of the output images of the
first convolution layer, row three shows output of the second
convolution layer and so on. The model used to generate
these images has five convolution layers.The filter sizes for
the convolution layers are 3, 4, 4, 8, 4 and the number of
kernels for each layer are 20, 52, 42, 43, 44 respectively. It
has a single hidden layer with 907 hidden units.

Fig. 3: Original images and the output of each convolution
layer for the respective images in the previous row.

As can be seen in figure 3, the first three layers remove
irrelevant information and background noise, and also
improve the image contrast. The learned filters are able to
distinguish letter A independent of its rotation angle. This is
important to recognize the letterforms in different orientations.

Figure 4 depicts the classification accuracy on the validation
data with respect to the number of convolution layers for
different set of hyperparameters. The graph shows that the
result improves with the increase in number of convolution
layers. This can be seen by the mean classification accuracy for
each layer indicated by the red-colored circle. Unfortunately
it was not possible to evaluate a sufficient number of large
filters with six and more convolution layers, as they demand
high machine memory. Hence, the figure shows a drop in the
accuracy from 5 to 6 convolution layers.

The classification accuracy on validation data during
training phase is shown in figure 5. The filter size at
convolution layer 3 is extracted and the results for small filter
size are represented in the figure 5a. Figure 5b represents the
results for filter size larger than 9x9. Both graphs show a
positive correlation between the correctly identified A’s and
non-A’s. However, the large filter size shows a much clearer
correlation, that is, they tend to perform better than the small
ones.
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Fig. 4: Results on test data depending upon number of con-
volution layers. The red circle depicts the mean accuracy for
each layer.

Each row of figure 6 shows an input image, one of the
many filters (learned by the final network after training) that
is applied to it at a particular layer and the output image of
that layer respectively, for first three convolution layer. We
can see that at higher convolution layers, the background
noise dissolves and the letterform becomes more apparent.

Although the model is only trained for letter ‘A’, if the
same model or set of parameters is applied for other letters, it
is able to separate the letterform from the background noise.
This is shown in figure 7 for a letter ‘X’ sample. where
the input, output and applied filter (learned by final network
trained on letter ‘A’) for first three convolution layers are
depicted. Therefore, the same model is used for identification
of other letterforms.

The other widely used filters for gradient detection such as
Sobel and Canny operators do not work well on the Aerial
Bold dataset. However, the convolutional neural networks
have been able to learn filters that produce a preprocessed
image. As we can see in the above figures, the filters are
complex and would be close to impossible to be produced by
a human expert, especially that it can be used for different
letterforms in a generalized way. This represents that CNN is
capable in solving complex image recognition tasks.

Figure 8 presents some of the letterforms classified by
the CNN models in the new unlabeled data. Although the
classifier does not specify the position or rotation of the
letterform in the image, it can find translational and rotation
invariant letters and digits. Examples of the images which
could not be identified by the CNN due to excessive noise or
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Fig. 5: Classification results on validation and test data for
letter A for different filter sizes at convolution layer 3

Input Filter 1 Conv 1 Filter 2 Conv 2 Filter 3 Conv 3

Fig. 6: Input, output and filter for the first three convolution
layers

their similarity with other letterforms are shown in the fourth
row of the figure.

Input Filter 1 Conv 1 Filter 2 Conv 2 Filter 3 Conv 3

Fig. 7: Input, output and filter for the first three convolution
layers for letter X

T 0 A K

X G U L

I J D H

A C b V

Fig. 8: New unlabeled images from the satellite imagery
classified with the trained CNN models for each letterform
along with their correct labels below each image. The first
three rows show the correctly classified letterforms and in the
fourth row we display the instances which were incorrectly
classified.

Despite the challenges stated in section III and the high
problem complexity, convolutional neural network classifies
the letterforms with high accuracy.

V. CONCLUSION

Several feature extraction methods and classifiers have been
investigated for letter and digit recognition within landscapes
and buildings in satellite images. The hand-engineered
features do not perform well on the Aerial Bold dataset.
Convolutional neural networks showed promising results
outperforming other classifiers.

In this paper, training of CNN was carried out using
stochastic gradient descent optimization. The current research
on artificial neural networks indicate that the optimization
algorithms with second order approximation perform better.
Methods such as AdaDelta [18] would be applied in future to
introduce dynamic learning rate for training phase. To avoid
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co-adaptation of features, dropout learning [19], [20] will be
introduced.
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Abstract— An overview of current research regarding the sen-
sorless control of digital (on/off) single coil electromagnetic
actuators (EMAs) is given. This includes the discussion of a
possible control strategy as well as the design of suitable non-
linear observers to obtain the position and velocity information
of the moving plunger which is necessary for feedback. Self-
sensing in this context means that solely the available energizing
signals, i.e., coil current and driving voltage are used to estimate
the position and velocity trajectories. Experimental results for
the considered control approach as well as for the estimation
approach will be shown.

I. INTRODUCTION

Electromagnetic actuators (EMAs) are widely used in indus-
trial, automotive, and other mechatronic applications. Fast
switching or digital (on/off) solenoid actuators can be found
for instance in internal combustion engines as gas exchange
valves [1], as fuel injection valves [2], as actuation valves for
hydraulic systems [3], or as antilock braking system valves
[4]. Physical sensors are normally undesired, mostly due to
economic and fabrication aspects, but also due to reliability
issues. On the contrary, information of the actual position of
the plunger is highly useful due to a variety of reasons, as for
instance, to control the motion trajectory of the plunger or
for monitoring tasks. Especially, softlanding control is highly
desired where a movement of the plunger with zero impact
velocity is enforced to reduce noise emission and waste
of material. As investigated by several authors [2], [5]–[8],
feedforward control strategies turned out to be well suited
for such problems of motion planning. Single feedforward
control, in general, is not robust against parameter variations
or disturbances. Consequently, feedback of the position and
velocity is needed for stabilization of the desired plunger
motions. In this regard, model based algorithms are useful
to reconstruct the state information from the driving signals,
i.e., coil current and driving voltage. Different versions of
self-sensing approaches for solenoid valves can be found in
the literature. Beside the methods which are based on the
estimation of position-dependent parameters [9]–[12], that
are particularly suitable for positioning actuators, observer-
based methods [13]–[15] are promising for the trajectory
estimation of fast switching EMAs.
This paper is structured as follows. In Section II, the dynamic
model of EMAs is constituted. Then, in Section III, a flatness
based control approach is discussed. Subsequently, the design
of nonlinear observers for this task is thoroughly discussed
in Section IV. In Section V, the need for softlanding control

methods is further motivated, and the control approach as
well as the estimation approach will be illuminated by
practical experiments for a commercial digital EMA. The
paper concludes with an outlook for future work in Section
VI.

II. DYNAMIC MODEL OF A DIGITAL SOLENOID VALVE

The voltage drop V over the coil of an EMA can be described
by

V = RCu i+
∂Ψ(i, z)

∂i

di

dt
+
∂Ψ(i, z)

∂z

dz

dt
, (1)

with driving current i, copper resistance RCu, and the flux
linkage Ψ(·), with nonlinear dependence on current and
position z of the iron portion in the magnetic field. The
second term on the right hand side of (1) accounts for the
induction due to a change in the current i, and the third
term is the back-electromotive force (back-EMF) that is
proportional to the velocity v of the plunger moving in the
magnetic field. This model must be enhanced in order to
include eddy current effects which have significant impact
on the valve dynamics. It can be shown (see [16]) that in the
presence of eddy currents, it holds for the magnetomotive
force

θ(t) =

∮
l

H dl +RedΨ̇, (2)

where H is the magnetic field strength with path l of
magnetic field lines, and Red is called the eddy current
resistance. Taking into account (1), the equivalent circuit
results as shown in Fig. 1. To achieve better numerical
stability, an additional constant inductance Led is used in
series to Red. This is, moreover, physically justified since a
voltage step at the coil cannot lead to a discontinuous change
in the current. The resulting system of differential equations
reads:

died
dt

= −Red

Led
ied −

RCu

Led
i+

Vdrive
Led

(3a)

di

dt
= −Red

Led
ied − α(iL, z)(RCu i− Vdrive) + β(iL, z) v

(3b)

where iL = i − ied, α(iL, z) := 1/Ψi(iL, z) + 1/Led,
β(iL, z) := −Ψz(iL, z)/Ψi(iL, z), and Ψi(iL, z) and
Ψz(iL, z) are the partial derivatives of Ψ(iL, z).
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Fig. 1. Lumped electromagnetic equivalent circuit of the solenoid.

A. Mechanical Subsystem

The mechanical subsystem can be obtained by Newton’s
second law of motion. It follows

ż = v, z(0) = z0 (4a)
mv̇ = Fm(i, z)− d v − c z − Fs, v(0) = v0 = 0, (4b)

where

Fm(i, z) = −
∫ i

i0

Ψz(ι, z)dι (5)

is the magnetic force acting against the spring force with
suspension rate c. The spring preload is taken into account
by the constant Fs. Furthermore, viscous friction is modeled
by the term dv.

III. CONTROL APPROACH

The objective of a softlanding control strategy for switching
solenoid actuators is the realization of transitions of sta-
tionary setpoints. The desired trajectory between the two
extremals of the air gap is planned in such a way that a
smooth stop with zero velocity can be achieved. A proper
trajectory control strategy for nonlinear systems is based on
flatness based control [17], [18].

A. Feedforward Control

The planning of a desired trajectory for the transition of
stationary set-points in a finite time interval can be performed
in a convenient way if the system is differentially flat. The
flatness property is defined below [18], [19]:
Definition 1: A nonlinear system S(ωi, ω̇i, ω̈i, . . . , ω

(σ)
i ) =

0, with system variables ωi, i = 1, . . . , s, is said to
be (differentially) flat if there exists a function y =

φ(ωi, ω̇i, ω̈i, . . . , ω
(α)
i ) such that the derivatives of y are

differentially independent, i.e., R(y, ẏ, . . . , y(β)) 6= 0, and
ω = ψ(y, ẏ, . . . , y(γ)). The variable y is called the flat or
basic output.
Roughly speaking, if the system is differentially flat the
input t → u(t), t ∈ [0, T ] that steers the system along
a desired trajectory y can be calculated by y and its time
derivatives up to the order n of the system, if the system is
of finite dimension. Flatness-based feedforward control for
electromechanical systems has been extensively studied in

the last decades. From [20] it is known that the system of an
EMA is differentially flat, and the variable z is a flat output
for the system. Considering the state representation of the
mechanical system (4a) the necessary current that steers the
position along a desired path can be easily obtained by

id = F−1
m (zd)[mz̈d + cµżd + cs zd + Fs], (6)

where the subscript d indicates the desired trajectories.
Furthermore, if the current is controlled by a fast current
controller such that the dynamics of the electromagnetic
subsystem can be neglected, the variable i can be regarded
as the systems input. The control law requires an inversion
of the magnetic force, which can also be performed numer-
ically if its characteristic is given in the form of look-up
tables. Taking into account magnetic diffusion effects due to
eddy currents which have a significant impact on the force
dynamics, the control law can be enhanced by considering
the spatial distribution of the magnetic field in the iron core
of the solenoid [2], [7], [8].
The feedforward control law depends on the system model,
consequently, it is not robust against parameter variations or
disturbances. Therefore, feedback is necessary to stabilize the
position along the desired trajectory. Due to cost and fabrica-
tion reasons, solenoid valves are normally not equipped with
position sensors. Accordingly, it is suggested to estimate the
needed quantities by an observer approach.

IV. OBSERVER DESIGN FOR THE SOLENOID ACTUATOR

Let the state vector be defined as x = (z, v, i), the input
u = V̄drive, i.e., the filtered value of the driving voltage,
and the output y = x3. For the sake of simplicity, eddy
currents are neglected in the observer design, however, the
incorporation is feasible [21]. A possible state representation
for (3) and (4) reads

ẋ = f(x, u), x(0) = x0 (7a)

y = cT x. (7b)

A. Simple Nonlinear Observer Method and Motivation

A straightforward procedure for the design of a nonlinear
observer is the method of extended linearization [22]–[24].
However, beside the observability property also the structure
of the dynamic model has to be taken into account to satisfy
the conditions for a stable error dynamics. The procedure
will be briefly reviewed. Therefore, system (7) is expressed
by Taylor series expansion around the trajectory x = x̂. With
the error defined as e := x− x̂ it yields

f(x, u) = f(x̂, u) +
∂

∂x
f(x, u)

∣∣∣∣
x̂

e +R(e, u) (8)

ẋ = f(x̂, u) + A(x̂, u)e + R(e, u),

where R(e, u) represents terms of higher order, and A(x̂, u),
is the Jacobian of f(x, u). The observer is stated by

˙̂x = f(x̂, u) + L(x̂, u)(y − cT x̂). (9)

The term R(e, u) might be neglected for sufficiently small
initial errors e(0) = x(0)− x̂(0) [24]. Writing the derivative
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w.r.t. time of the error ė = ẋ− ˙̂x, the linear error dynamics
can be obtained as

ė = Ao(x̂, u) e, (10)

where

Ao(x̂, u) :=
(
A(x̂, u)−L(x̂, u) cT

)
. (11)

It is clear that if Ao(x̂, u) can be made constant by suitable
choice of L(x̂, u), then the error dynamics (10) is time
invariant, and can be made exponentially stable if Ao ≡
const is Hurwitz. Since here cT = (0, 0, 1), the error matrix
has the form

Ao(·) =

 0 1 −L1(·)
a21(·) a22 a23(·)− L2(·)
a31(·) a22(·) a21(·)− L3(·)

 , (12)

where aij(·) are the entries of the Jacobian which are all
time-dependent except of a22. Obviously, the condition that
Ao(·) being constant can not be fulfilled irrespective of the
choice of the observer injections L(·). Nevertheless, desired
convergence properties of the observer can be examined in
simulations [22]–[24], however, stability can not be guaran-
teed.1

B. Tracking Observer

In the realm of tracking control, in general, it is beneficial
to design the observer together with the knowledge of the
desired state trajectories. To this end, the foregoing approach
can be rendered to the design of a tracking observer as
proposed in [26]. Instead of linearizing the system along
the estimated state x̂, it is linearized along the desired
state vector xd. Neglecting terms of higher order, the error
dynamics yields the form

ė = (A(xd, ud)−L(t)) e, (13)

where L(t) is a time-varying observer gain. Since
A(xd, ud), depends on known time-varying functions, the
observer problem can be solved using the generalized Ack-
ermann’s formula for time-variable systems. With this proce-
dure, the time-varying gain L(t) can be determined such that
in invariant coordinates the transformed matrix in observer
normal form is Hurwitz. It reads [27]–[29]

L(t) =
(
p0 + p1N + p2N 2 + · · ·+ pn−1Nn−1

)
v(t),

(14)

where p0 . . . pn−1 are the coefficients of the characteristic
polynomial ρ(s) = sn + pn−1s

n−1 + · · · + p1s + p0 of the
associated error system in observer normal form that governs
the error dynamics. The linear differential operator is defined
as Nv = −v̇ + Av. The vector v(t) can be obtained from
the system of linear equations

Q(t)v(t) = en, (15)

where en is the n-th unit vector, and Q(t) is the observability
matrix. Consequently, v(t) is the last column of the inverse

1Note that, even if the real parts of all eigenvalues are negative and
constant, stability can not be guaranteed [25], page 158.

observability matrix. Obviously, at points where the system
is not observable, v(t) is not defined due to a singularity of
Q−1(t). For a linear time-variant system

Q(t) =
(
c(t) Lc(t) L2c(t) . . . Ln−1c(t)

)T
, (16)

where Lc(t) = ċ(t)+c(t)A(t). This method has been tested
for the EMA-system described by the state representation (3)
and (4) for smooth polynomial reference trajectories t→ xd,
t→ ẋd, t ∈ [0, T ]. However, the inverse of the observability
matrix Q(t) which enters directly in the calculation of the
observer gains comes along with singular points due to
zero crossings of Q(t) at a few time points. Although the
observability condition is lost merely at a few time instances,
this might lead to numerical problems. Such singularities
depend on the selected reference trajectories and also on the
system parameters. The following approach shows satisfying
performance in simulation and experiments.

C. Nonlinear Sliding Mode Observer

The design of a nonlinear sliding mode observer (SMO) as
proposed by [30] is convenient for the problem considered
here. The SMO is given as

˙̂x = f(x̂, u) + s(ey), x̂(0) = x̂0 (17a)

y = cT x̂, (17b)

where ey = x3−x̂3, and s(ey) is the vector of discontinuous
observer injections

si(ey) = hi sign(ey) + ki ey, i = 1 . . . 3, (18)

where

sign(ey) =

{
1, ey > 0,
−1, ey < 0

, (19)

with the observer gains hi and ki, such that the error
dynamics is stable. The detailed structure of the SMO is
established by

˙̂x1 = x̂2 + s1(ey) (20a)

˙̂x2 =
1

m
Fm(x̂1, y)− c

m
x̂2 −

d

m
x̂2 + s2(ey)

˙̂x3 =α(x̂1, y)(u−RCux̂3) + β(x̂1, y) x̂2

+ s3(ey), x̂(0) = x̂0. (20b)

The stability of the observer has to be examined in the sliding
regime ėy = ey = 0 by considering the underlying equivalent
error dynamics [30], [31]. A proof of stability is skipped here
for the sake of brevity, but can be found in [21].

V. EXPERIMENTAL RESULTS

Experimental validations were performed with a commercial
fast-switching hydraulic valve under dry conditions. Typical
switching times are between 1 ms and 5 ms dependent on the
driving current. The estimation results are validated by a high
resolution optical position sensor. In Fig. 2 and Fig. 3 the
difference of a soft-landed trajectory by feedforward control,
and a trajectory with hard impact (blue curves) is illustrated.
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Fig. 2. Softlanding trajectory by feed forward control, and hard switching
trajectory by constant driving current input.

0 2 4 6 8

x 10
-3

-0.4

-0.3

-0.2

-0.1

0

0.1

time in s

po
si

tio
n 

in
 m

 

 

FF controlled

Fig. 3. Softlanding velocity by feed forward control, and velocity from
hard switching by constant driving current input.
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Fig. 4. Feedforward control signals. The voltage input is the filtered PWM-
voltage.
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Fig. 5. Steered trajectory from consecutive switching operations.
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Fig. 6. Velocity from consecutive switching operations.

The feedforward control signals that steer the plunger along
the desired path are shown in Fig. 4.
It is worth the mention that the control works repeatedly,
however, small disturbances or model inaccuracies can lead
to errors regarding the desired trajectory. This is demon-
strated by Fig. 5 and Fig. 6, where the position and velocity
from 10 consecutive feedforward controlled switching opera-
tions is shown. Note that solely dry operation is investigated.
In the case of varying forces associated with changing fluid
pressure levels, feedback would be absolutely necessary.
The observer position estimate is rather close to the actual
position, as shown in Fig. 7. In Fig. 8 the estimate of velocity
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Fig. 7. One open-loop switching operation with estimated position.
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Fig. 8. One open-loop switching operation with estimated velocity.
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Fig. 9. One open-loop switching operation with estimated current.

versus the actual and desired trajectory, and in Fig. 9 the
measured and estimated energizing current is shown. The
observer can in principle correct the deviations from the
normal operation. However, one has to be careful with the
dimension of the feedback gains since the observer estimates
are slightly slower than the plant quantities, as it can be seen
by the Figs. 7 and Fig. 8.

VI. CONCLUSION

The problem of sensorless softlanding control has been inves-
tigated, where a possible feedforward control scheme as well
as suitable nonlinear observer approaches were discussed.
Preliminary experimental results have been presented for
the proposed sensorless control strategy. In future work,
further tests regarding the performance and robustness of
the observer within the feedback control scheme will be
conducted. To this end, the effect of varying fluid pressure

levels has to be investigated.
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[23] O. Föllinger, Nichtlineare Regelungen II. Oldenbourg, 1993.
[24] M. Zeitz, Nichtlineare Beobachter für chemische Reaktoren, ser.

Fortschrittberichte der VDI-Reihe 8; Nr. 27. VDI-Verlag, Düsseldorf,
1977.

[25] H. K. Khalil, Nonlinear Systems, 3rd ed. Prentice Hall, 2002.
[26] M. Fliess and J. Rudolph, “Local ”tracking observers” for flat sys-

tems,” in Proc. Symposium on Control, Optimization and Supervision
Computational Engineering in Systems Applications, 1996, p. 213217.
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Abstract—In this paper two approaches for diagnostics and
prognostics in linear electromagnetic actuators (LEA) are out-
lined. The introductory and problem formulation sections show
the need for advanced diagnostic/prognostic methods compared
to existing ones. Modelling and identifiability aspects are covered
resulting in a mathematical model that is capable of accurately
simulating the dynamic behaviour of a LEA and even depict
deterioration phenomena. Data-driven approaches are presented
as an interesting alternative if no model can be derived. It is
shown how their output, e.g. with respect to wearout indicators,
correlate. They are even suitable for fault detection and classifica-
tion. Possible application scenarios are discussed and an outlook
on future work is given.

I. INTRODUCTION

With machinery becoming more complex and with a fur-
ther increasing degree of automation, traditional maintenance
strategies are no longer feasible, as industry and end con-
sumers demand higher levels of security, reliability and cost-
effectiveness from their assets or products. I.e. maintenance
approaches like breakdown maintenance or preventive mainte-
nance are rendered obsolete. This is on the one hand due to the
accompanied high machine down time, man hour intensiveness
as well as reduced machine availability and on the other hand
due to incalculable costs.
To elude these drawbacks, a paradigm shift towards strate-
gies that allow planning and scheduling of maintenance
tasks has set in. As umbrella term predictive maintenance
(PM) is widely used. PM can be separated in several ap-
proaches: Prognostics and Health Management (PHM, [1]), In-
tegrated Systems Health Management (ISHM, [2]), Abnormal
Event Management (AEM, [3]), Condition Based Maintenance
(CBM, [4]) and Reliability Centered Maintenance (RCM, [5]).
PHM, AEM and ISHM are per definition designated to very
complex systems (like air- and spacecraft or whole chemi-
cal plants/processes) and include (besides the pure diagno-
sis/prognosis) also supply management, logistics and other
business issues. Main aspects of RCM are influence assessment
of maintenance actions on the system reliability and analysis of
failure modes. CBM is often used as umbrella term for PHM,
ISHM and AEM, although it focuses solely on pure diagnostic
and prognostic tasks. Nevertheless all approaches have in
common, that they take the actual asset state into account and
base their maintenance decisions on it. As reliable diagnostic
and prognostic tasks require an in-depth knowledge of the
actual system state, research has focused on determining the
health state of low-level components like bearings or electronic

components. Therefore one does not only monitor the output
signals of system components, but as well gathers additional
information from e.g. vibration sensors.

II. PROBLEM FORMULATION

A lot of work has been going on regarding diagnostics
and prognostics of electrical machines and especially rotating
machinery [6], [7], but for LEAs only some rudimentary
approaches exist. They can mainly be found in patent literature
and describe simple limit and threshold checking. But as
application fields of LEAs constantly grow and they are used
in safety relevant and critical applications (elevators, safety
switches, etc.) there is a need for more sophisticated diagnostic
and prognostic procedures that can detect various faults and
estimate the remaining useful life (RUL) of the actuator.
Figure 1 shows a schematic drawing of a LEA. It is used to
transform electric energy via magnetic energy into mechanical
energy. A constant voltage applied to the coil results in an
electromagnetic force (current and magnetic flux build up)
moving the plunger from its initial position to its end position
(once reached, the coil current increases to its final value).

z

y

spring

plunger

bushing

housing

coil

s

Fig. 1. Schematic drawing of a LEA. The assembly mainly consists of:
housing, bushings, coil, plunger and spring.

When the voltage is switched off, current and hence mag-
netic flux reduce and the spring retracts the plunger to its initial
position (spring force exceeds magnetic force). The direction
of motion is in z-direction. One operating cycle is completed
when the actuator has moved from its initial position to its end
position and back to its initial position and current decayed to
a stationary value.
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Besides the aforementioned simple diagnostic procedures, one
approach presented in [8] allows an in-depth examination of
the actuator health state by measuring its magnetic characteris-
tics. Major drawback of this method is, that the actuator itself
is used as sensor and can’t perform its intended task during a
measurement. This is where our approach sets in and equips an
allegedly simple actuator with diagnostic and prognostic ca-
pabilities without the use of additional sensors or interruption
of normal operation. To accomplish this task, two approaches
can be used: (a) model-based, where a mathematical model is
derived from physical background [9], (b) data-driven, where
the input and output data is used to extract information [10],
[11]. Both approaches rely on extracted indicators that picture
the current health state of the actuator under observation.
These indicators are called features and can either be identified
model parameters or abstract parameters calculated from e.g.
time-frequency representations of the time-series signal [12].

A. Model-based Approach

For modelling a LEA, three coupled sub-systems are neces-
sary to describe its dynamic behaviour: electrical, magnetic
and mechanical. Usually the electrical and magnetic sub-
models are merged leaving two sub-systems (mechanical and
electro-magnetic) that interact through a coupling term Ψz ż.
The model we use in our research can be seen in fig. 2 and
equations (1)-(5). Model parameters are Θ = [f1 Ls hz K]. Ls

describes flux leakage, hz is used to calculate the eddy current
resistance, K scales the influence of the back electromotive
force (coupling term Ψz ż and f1 is a friction parameter. RCu

is the copper resistance and calculated from stationary end
values of current and voltage.

U0 = iRCu + Lsi̇ + Ldi̇L + Ψz ż (1)

Ui = iwRw = Ldi̇L + Ψz ż = U0 − iRCu − Lsi̇ (2)
iw = i− iL (3)

i̇ =
1

Ls
(U0 − iRCu − iwRw) (4)

i̇L =
1

Ld
(U0 − iRCu − Lsi̇−Ψz ż) (5)

The differential inductance Ld and Ψz are characteristic maps
derived from static Ψ(i) measurements of the specific actuator
(plunger is fixed at different positions and Ψ(i) measurements
are performed). The mechanical sub-model is described in
detail in [13] (please note that in [13] Ψ is used as state
whereas here i and iL are used). In contrast to classical friction
models like LuGre [14] or Stribeck, the approach presented in
[13] uses a position dependent adaptive friction characteristic
(see fig. 3). This is due to the long stroke movement some
actuators have (friction changes over stroke) and due to the
fact that actuators with long stroke have often modified char-
acteristics (force over stroke changes). For diagnostic purposes
it is crucial to ensure that all model parameters are identifiable
and have low deviations [15]. Many model-based diagnostic
approaches neglect the identifiability aspect, but in our case
identifiability is can be shown, equipping us with a reliable

U0

i
RCu Ls

iL

Ld

∂Ψ
∂z ż

Rw

iw

Ui

Fig. 2. Equivalent circuit of the electromagnetic system with main induc-
tance, leakage inductance, eddy current resistance, coil resistance and back
electromotive force.

model. The free parameters are: Ls - leakage inductance, fx -
friction parameter, hz - eddy current resistance parameter and
K - scaling parameter for the coupling term.
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Fig. 3. Working principle of the adaptive position-dependent friction estima-
tion.

B. Data-based Approach

Data-bases approaches are mainly used when no mathemati-
cal model can be derived or when the model becomes too com-
plex. The realm of those approaches is to extract wear and fault
indicators (features) solely based on measured input/output
signals (no detailed system knowledge is necessary). In our
case we can rely on coil current ic and coil voltage Uc. To test
the applicability of the approach, run-to-failure and emulated
fault data was collected on test benches.

a) Run-to-Failure Data: As deterioration happens over
time, accelerated test scenarios are used to generate wearout
data within reasonable time. A test bench capable of driving
ten LEAs in parallel is used to measure coil current and supply
voltage of the operating actuators. The actuators are switched
with a frequency of 1Hz, i.e. one complete cycle per second.
Figure 4 shows current profiles of one actuator at different
ageing stages. It is directly visible that information about wear
and tear phenomena can be extracted from coil current. I.e.
features have to be found that allow a discrimination between
a new and a worn out actuator. These features can be identified
by extracting information from healthy and deteriorated states.
The current health-state is assessed by calculating distance
metrics in feature space to either of the known states (new or
deteriorated). Drawback of this approach is, that run-to-failure
data must be readily available. A second method of generating

BW-CAR Symposium on Information and Communication Systems (SInCom) 2016

56



>

>

>

Fig. 4. Coil current at different ageing stages. The end of motion shifts
gradually to the right (longer switching time) and is indicated with an arrow.
The current ripple indicates acceleration and deceleration of the plunger during
its movement.

wearout features is by learning the healthy state and using it
as reference for residual calculation.

b) Emulated Fault Data and Classification: For emulat-
ing faults, a test bench is used, that allows manipulating stroke
movement, supply voltage and initial position. Time and time-
frequency-domain methods are used to generate features from
measured coil current and voltage. After transformation and
rating of the features, an optimised feature set is obtained
representing different fault classes. By training a classifier,
unseen data can be classified and hence faults detected.
Detailed results and methods can be found in [16].

III. RESULTS

The following chapter gives an overview of ongoing re-
search. First the focus lies on model-based and then on data-
based approaches.

A. Model Identification

The model parameter set was identified using measurement
data ic, Uc and verified with measured plunger position z.
Figure 5 shows results of the identifiability analysis. Looking
at the confusion matrix one can see that friction parameter f1
and eddy current resistance parameter hz show high negative
correlation (strong interdependence) whereas the rest of the
parameters show low to medium correlation. The parameter
deviations are well below 15%. High deviations indicate poor
identifiability of the respective parameters. Fig. 6 shows a
simulated current profile which is in good accordance with
the measured data. Uc is the input signal used to excite the
actuator as well as the system model.

B. Data-driven Wear Estimation

Figure 7 shows different distance metrics calculated for ten
LEAs over approximately 4.5 million switching cycles. In both
graphs one can see how the distance to the reference states
changes over time in feature space. Actuators that deteriorated
much faster than the others are marked in red. These actuators

Fig. 5. Parameter correlations of the model given in eq. (1)-(X).

Fig. 6. Simulated current ic using identified parameters.

show as well a different starting point compared to the rest,
i.e. their initial distance to the healthy state is bigger at the
beginning of the run-to-failure test. In fig. 8 switching times
and the calculated reconstruction error for three actuators are
shown. The progression of both features over time shows good
accordance.

IV. DISCUSSION

The identifiability analysis indicates that a model was found
that can be used for diagnostics and prognostics on LEAs.
But as for each actuator type a specific Ψ(i) measurement
has to be derived to capture the very own characteristics, the
whole process of identification depends on the quality of the
original Ψ(i) measurement data. Furthermore, the number of
friction parameters used in the mechanical model depend on
the actuator under consideration. By sorting out the described
problems, an automated model parametrisation and adaptation
is possible leading to a self contained approach that only
needs Ψ(i) measurements as input. When no model can be
derived, e.g. when no Ψ(i) data is available, or the model
is not identifiable (or does not reproduce measurement data
well), data-based approaches are a good alternative to assess
the health state. Although they do not provide physical features
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Fig. 7. Distance metrics in feature space. N are the complete switching cycles
that were performed during the test. The upper graph shows the distance
calculated with respect to the healthy/new state and its progression over
lifetime. The lower graph shows the distance to a wearout threshold (defined
in feature space as well).

Fig. 8. Switching times and reconstruction error over lifetime. N are the com-
plete switching cycles that were performed during the test. Missing switching
times indicate that due to noise or bad signal quality no determination of the
switching time was possible for the particular measurement.

(like friction or inductance), it is possible to extract fault and
wearout related features that allow classification or monitoring
of deterioration.

V. CONCLUSION AND FUTURE WORK

A concept for linear electromagnetic actuator diagnostics
and prognostics was outlined in this paper. Based on an
identifiable mathematical model and data-driven approaches,
fault detection and deterioration estimation is possible. A
possible application scenario could be to spec LEAs in critical
tasks with the ability of self diagnosis and remaining useful
life prediction. Data-driven approaches are suitable for large
assets where many identically constructed LEAs are in opera-
tion. Data acquisition and diagnostics/prognostics is performed
centrally learning from the collected data. A combination of

model and data-driven approaches might even improve the
capabilities and enhance diagnostic depth.
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Secure Zero Configuration of IoT Devices - A Survey

Kevin Wallis and Christoph Reich

Abstract— It is forcasted that with the Internet of Things
(IoT) the number of devices is increasing enormously. Up to
34 billion devices will be connected to the Internet by 2020.
All of them have to be configured. For example adding a new
device, replacing an old one, renew the expired certificates,
patch the device software, etc. Zero Configuration (ZeroConf)
is the approach to tackle the immense administrative effort.
The configuration consums time, resources and is error-prone,
which often leads to security and compliance violations. An-
other important aspect is securing the communication between
these devices otherwise a malicious attack could change the
configuration of a device and harm the whole system. Many of
the actual ZeroConfig systems do not take the accompanying
security risks into account, so a SecZeroConf approach is
required.

This paper gives a survey about Zero Configuration (Ze-
roConf) and Secure Zero Configuration (SecZeroConf) and
discusses the state of the art and potential missing features.

I. INTRODUCTION

An application domain that integrates different technolog-
ical and social fields is called Internet of Things (IoT)[1].
Up to 34 billion devices will be connected to the Internet
by 2020.[2] So, a trouble-free communication and interac-
tion between those devices is necessary. One possibility to
achive this is Zero Configuration. ”The goal of the Zero
Configuration Networking (ZEROCONF) Working Group is
to enable networking in the absence of configuration and
administration. Zero configuration networking is required
for environments where administration is impractical or
impossible, such as in the home or small office, embedded
systems ’plugged together’ as in an automobile, or to allow
impromptu networks as between the devices of strangers on
a train.”[3] In a nutshell, it is the process of automatically
configuring a device without additional user intervention.
Often the term is only used in combination with the Net-
work layer than it is called Zero Configuration Networking.
Examples for ZeroConf frameworks are Apple’s Bonjour[4],
Avahi[5] and Mono.Zeroconf[6]. Xiaolong et al. [7] show
security risks of Apple’s Bonjour and Farhan et al. [8]
investigated implementation, performance and security of
Avahi and Mono.ZeroConf. The term SecZeroConf describes
a process where in addition to automatically configuring
devices also security is taken into account. Some necessary
security objectives for ZeroConf are described in III.

II. PROBLEM DESCRIPTION

A variety of applications exists, where ZeroConf in com-
bination with security make sense. In the following two
examples for different scopes are given: II-A - Industrie 4.0
and II-B - Smart Home.

A. INDUSTRY 4.0

A machine has vision sensors which are responsible for
measuring the quality and counting the amount of produced
products. The measurements from the vision sensors are
sent to a server. Each of those vision sensors has an own
configuration this configuration depends on the position.
For example the input material has a different shape in
comparison with the output material and there are two
sensors, one for the input and one for the ouput each of
these sensors needs another configuration for measuring the
quality. When one of those vision sensors is broken it is nec-
essary to replace it with a new one. This new sensor should
automatically know the position and also depending on this
position automatically configure. Different approaches for
the automatic configuration are shown in VII. The measured
amounts should only be available for the management so that
no competitor can take market specific benefits of them.

B. SMART HOME

A smart home with light sensors and presence sensors
in each room is given. The measured values from the light
sensors in combination with the presence measurements are
used for automatically controlling the lights. When a light
sensor is replaced, the new sensor should automatically know
where it is placed. Also a default configuration is needed.
This configuration is responsible for defining the measuring
times. For example during nighttime the number of measur-
ings should be less as during daytime. The presence sensor
configuration should only be defined once and automatically
configured on any suitable sensor.

III. SECURITY OBJECTIVES

The security objectives differ depending on the scenario.
In this paper we use the five defined security objectives for
Smart Grid and Smart Home Security from Komninos et
al. [9] and apply them on our two different problem scenarios
from II.

• Confidentiality: the assurance that data will be dis-
closed only to authorized individuals or systems.

• Authenticity: the validation that communicating parties
are who they claim they are, and that messages suppos-
edly sent by them are indeed sent by them.

• Integrity: the assurance that the accuracy and con-
sistency of data will be maintained. No unauthorized
modifications, destruction or losses of data will go
undetected.

• Availability: the assurance that any network resource
(data/bandwidth/equipment) will always be available for
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any authorized entity. Such resources are also protected
against any incident that threatens their availability.

• Authorization: the assurance that the access rights of
every entity in the system are defined for the purposes
of access control.

The two security objectives authenticity and authorization
are strongly related because a not authenticated user does
also not have any authorization.

A. INDUSTRY 4.0

Confidentiality is important for the given scenario be-
cause no competitor should get any information about the
produced product amount. It should not be possible for
competitors to introduce fake amount measurings into the
system, so authenticity of measurements is also needed. The
third security objective - integrity - ensures that a received
measured amount is not manipulated. Availability of the
sensors is also necessary otherwise the management cannot
take any further steps depending on the current production.
No external organisation should have access to the system,
so authorization is important. It is also used for securing
the access only to the management and no other employee.
Michael et al. [10] gives a more detailed insight into industry
4.0 security objectives.

B. SMART HOME

Using a smart home contains a lot of risks, which are
not always obvious at the first sight. For example when
burglars have access to the smart measurements they are
able to figure out when no one is at home. To disable
this possibility confidentiality and authenticity are needed.
Also integrity should be considered because otherwise
the burglars could actively manage the smart home. The
other two security objectives: authorization and availability
are not as important as they are for example III-A. A
detailed investigation of smart home objectives are done by
Komninos et al. [9]

The conclusion from the security objectives of the given
problem scenarios shows that the importance of the specific
security objectives depends on the scenario itself. After all
the three corresponding objectives of both examples are
authenticity, integrity and confidentiality.

IV. ZERO CONFIGURATION

Aidan Williams defined the four requirements[11] for
ZeroConf:

• IP interface configuration
• Translation between host name and IP address
• IP multicast address allocation
• Service discovery

Each of these requirements will be described in the fol-
lowing.

A. IP INTERFACE CONFIGURATION

The general IP interface configuration can be done in two
different ways. If a Dynamic Host Configuration Protocol
(DHCP) server is present, the server provides an IP address
for the device and no further IP interface configuration is
needed. The second approch is a manual assignment, which
is usually done by an administrator. Using a DHCP server or
a manual configuration needs a central authority for polic-
ing the IP address allocation. ZeroConf uses a distributed
approach, where each device is responsible for choosing
and verifiyng its own address. The IPv4 address range for
ZeroConf is between 169.254.0.0 to 169.254.255.255 and
described in the RFC 3927 as link-local address range.
For generating ZeroConf addresses the Address Resolution
Protocol (ARP, IETF RFC 826) is used. First of all you
have to chose a link-local address, this is done by random.
If the particular address is already in use, an new random
address has to be generated and verified. The verification is
done by ARP requests. In general ARP requests are used
for discovering the MAC address of a machine to a given
IP address. For ZeroConf the request uses the generated IP
address and checks that none responses to the request, these
requests are called ARP probes. ”RFC 3927 recommends
that the host send three probe packets spaced one to two
seconds apart [...].”[12, p. 24] If an ARP probe receives a
response, a new IP address has to be generated and verified
again. After successfully verifiying an IP address, the address
has to be announced to the other hosts on the network by
sending two ARP announcement-requests.

B. HOST NAME AND IP ADDRESS TRANSLATION

For a locally unique name a Domain Name System (DNS)
is necessary. Setting up and running a DNS server needs
an administrator, which is impractical and not the aim of
ZeroConf, so another approach Multicast DNS (mDNS,
RFC6762), was developed. The reasons for the translation
between host name and IP address are the change of a given
address over time and the not human-friendly form of IP
especially IPv6 with 32 hexadecimal characters.[12, p. 32]
When a client uses mDNS and wants to do a query, the query
is not send to a centralized authority, instead a IP Multicast is
done. Each device on the local network listens to the multi-
cast. A device answers the query when the query is addressed
to it. The responsible software for listening and answering
the queries is called mdnsd on Unix, mDNSResponder on
OS X (macOS) and mDNSResponder.exe on Windows. For
sending a mDNS query the IP address 224.0.0.251[13] is
reserved. The procedure for verifiying and announcing the
host name uses the same approach as the IP interface
configuration. After choosing a hostname a probing to check
for uniqueness is needed. This is done by creating an address
record of type A - the different record types are documented
in the RFC 1035. The created record is send to the multicast
address three times, with a 250ms waiting time between
each query and a query type of T ANY. So all records,
which match the given record are returned to this query.
If some device already uses the selected hostname, a new
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name will be selected and the verification starts again. After
successfully verifying the hostname an announcing must be
performed. The verified hostname is send via multicast to
each device in the network and the mDNS responders send
a mDNS response with all of there mDNS records. Because
every device of the network listens to this messages, they
are able to update their record caches.

C. IP MULTICAST ADDRESS ALLOCATION

For the multicast address allocation the ZeroConf Mul-
ticast Address Allocation Protocol[14] (ZMAAP) could be
used. This protocol was defined by the IETF but never
published. ZMAAP uses an Address In Use (AIU) message
in combination with a Mini- Multicast Address Allocation
Server (mini-MAAS) to coordinate multicast address al-
locations. An application sends a request for a specified
amount of multicast addresses. The local mini-MAAS creates
multicast address proposals for the request and send them to
other mini-MAAS. If after a specified time an AIU message
from another mini-MAAS is received new multicast address
proposals will be created otherwise a successful allocation
is assumed.

D. SERVICE DISCOVERY

If the IP address or the hostname of a service is known, a
user is able to execute it. On a network where many services
are provided users do not know the explicit name of the
service but they know the kind of the service for example a
printing service. So it should be possible to get or browse
all available services in the network. If ZeroConf is used, a
DNS Service Discovery (DNS-SD) is supported. The DNS-
SD builds on the defined DNS protocol family, especially on
the service discovery (SRV) record type, which is specified
in RFC 2782 - ”A DNS RR for specifying the location of
services (DNS SRV)”. In table I some reasons for using the
existing DNS technology for service discovery described by
Stuart Cheshire et al. [12] are shown.

TABLE I
OVERVIEW OF PROVIDED PROPERTIES BY DNS

Needed property Existing
central aggregation server DNS server
service registration
protocol

DNS dynamic update

query protocol DNS
security mechanism DNSSEC
multicast mode for ad-hoc
networks

ZeroConf already requires a
multicast-based protocol

For a name resolution a client sends a DNS request for
the SRV record of the name. The result is the SRV record
with the target port and host. A more detailed explanation is
given by Cheshire - Discovering Named Instances of Abstract
Services using DNS[15].

V. ZEROCONF TECHNOLOGIES

In the following the three ZeroConf frameworks Apple’s
Bonjour, Avahi and Mono.Zeroconf are short described.

• Apple’s Bonjour: was formerly called Rendezvous and
is the ZeroConf framework implementation from Apple.
The framework is available on two operating systems:
macOS and Microsoft Windows. It used for discovering
services like printing, file sharing and collaborative
document editing. Bonjour can only be used in a single
broadcast domain and does not support advertising
services to the public Internet.

• Avahi: is originally implemented for Linux systems but
could be used on other systems as well because it is
implemented in C. The framework passes all Bonjour
conformance tests.

• Mono.ZeroConf: is a cross platform for Mono and
.NET, which provides a unified API for the most
common ZeroConf operations. So it is possible to
abstract the differences between different providers like
mDNSResponder and Avahi.

Original ZeroConf was not implemented to be secure but
the given examples in II and III are showing the importance
of investigating possible security enhancements for Zero-
Conf. The identified security weaknesses by Siddiqui et al.
[8] are used as base for vulnerabilities overview shown in
table II.

TABLE II
OVERVIEW OF VULNERABILITIES IN ZEROCONF NETWORKS

Vulnerability Description
Configuration of addresses The automatic ip address assign-

ment makes ARP poisining (also
called ARP spoofing) possible.
A unauthorized user can imper-
sonate a service and get all the
messages for the origin service.

Hostname to IP address transla-
tion

The automatic translation be-
tween hostname and address can
be attacked by DNS poisoning.
This means the existing hostname
- IP address table gets altered and
the hostname resolving returns a
malicious service address.

Allocation of multicast addresses If a malicious host always re-
sponses to multicast address re-
quest the mini-MAAS starts to
reuse already assigned addresses,
this is called address hijacking.

Service discovery The service discovery is based on
DNS and allows DNS poisoning.
This leads to the same result as
in the case of the DNS poisoning
from the hostname to IP address
translation, the attacker can inject
malicous service addresses.

Denial of service (DoS) attacks could be produced from
each of the listed vulnerabilities. For example an attacker
responses to every ARP request, which are used for testing
the availability of an IP address - so each IP address is
marked as used. Another possible DoS attack is sending
recursively DNS requests.[16]
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VI. STATE OF THE ART - SECURITY

ARP and DNS protocols are already investigated in con-
nection with security. In the following some of the latest
investigation results and some state of the art security tech-
nologies like IPSec are explained.

A. ARP - SECURITY

The latest paper from Cox et al. [17] describes a
Network Flow Guard for ARP (NFGA), a Sofware Defined
Networking (SDN) module. The Network Flow Guard
augments an SDN controller with the ability to detect and
prevent ARP replies from unauthorized hosts. This is done
by monitoring the DHCP messages (offers, requests and
acknowledgements) and constructing a dynamic table with
an entry consisting of MAC:IP:port:fixed:state associations
for each device in the network. By using this entries ARP
spoofs can be blocked after NFG detects the first spoofed
packet. For using this security technology a OpenFlow[18]
switch is required.

A second approach for securing ARP is arpsec[19].
arpsec uses a Trusted Platform Module (TPM)[20]. The
TPM supports cryptographic functions, unique identity,
random number generation and secure storage. In a nutshell,
it covers inegrity protection, isolation and confidentiality.
The arpsec approach does not alter the existing ARP,
instead it formalizes the ARP system binding using logic
and uses a logic prover for verifying an ARP reply against
defined logic rules in combination with the previously stored
binding history. If the logic layer fails the implemented
TPM attestation protocol will be used. This protocol is used
to determine the trustworthiness af a network device.

Oh et al. [21] describes a security improvement by
installing an anti-ARP spoofing agent (ASA). This agent
blocks potentially insecure communications and intercepts
unauthenticated exchanging of ARP packets. In system,
where ASA is used only the ASA agent has the authority
to update the ARP cache table. The big advantages of this
approach are: no secure server is required and the existing
protocol implementation does not need to be modified.

B. DNS - SECURITY

Based on the first published RFC (2065)[22] on securing
DNS in 1997 several additional investigations were done.
The basic concept behind them is the usage of digital
signatures by public-key cryptography. Every DNS server
is gets a key-pair (private and public). If a DNS server
sends a message the message will be signed with the
private key and can be verified with the public from the
sender. In general one or more authenticated DNS root
public keys are known within the network. The public
root keys are used for creating certificates otherwise the
public key of each DNS server has to be stored on the
receiver of signed messages. A best practice approach for
using DNSSec in combination with the Berkeley Internet
Name Domain (BIND) was described by Jalalzai et al.

[16] BIND is open source software that implements the
Domain Name System (DNS) protocols for the Internet. It is
a reference implementation of those protocols, but it is also
production-grade software, suitable for use in high-volume
and high-reliability applications.[23]

Another approach for DNSSec is proposed by Ateniese
et al. [24] The approach uses primarly symmetric instead of
asymmetric cryptography.

Zhu et al. [25] suggests a Connection-Oriented DNS to
Improve Privacy and Security. Normally DNS requests are
send via UDP, which means connectionless. The connection-
oriented approach suggests instead using TCP in combination
with the transport layer security (TLS) - this is called T-
DNS. Using TLS provides privacy between a user and a DNS
server. The stateful protocol has a performance disadvantage
in comparison with UDP of about 22%.

C. OTHER SECURITY APPROACHES

In the year 2000, when ZeroConf requirements were
investigated also the security of ZeroConf was taken
into account.[26] One of the most promising security
technologies was the Internet Protocol Security (IPSec, RFC
4301)[27]. IPSec adds an additional layer between the IP
and the TCP layer. The attached layer is responsible for
authenticity, integrity and confidentiallity. A virtual private
network (VPN) could be established by using IPSec in
tunnel mode.

Trusted Neighborhood Discovery (TND)[28] is a decen-
tralized security approach for critical infrastructures, which
uses a TPM for each device in the system. In general
every device has a neighbourhood with other devices. These
neighbours are constantly monitoring each other and when
some malicous/suspicious behaviour is detected a message
to a monitoring server will be send. The monitoring server
can raise alerts and inform a administrator, correlate reports
and inudce reactions for example removing the malicious
neighbour from the system.

VII. SECURE ZERO CONFIGURATION

For a SecZeroConf approach two key points should be
considered. The first point is a device identifier, which should
be unique and tamper-proof, so that authenticity is secured.
This is also part of the ZeroConf requirements. Note that in
general, devices running zeroconf protocols must trust the
other devices in the group because any device may claim to
be using an address or name, or advertising a service.[p.
16][11] For the second point keys (private and public) are
considered, they are used for encryption, decryption and also
for signing. Using the explained keys would lead to confi-
dentiallity and integrity. So the three corresponding security
objectives: authenticity, confidentiallity and integrity from III
could be supported. Taking these three security objectives
into account leads in combination with the state of the art -
security from VI to the usage of a TPM in combination with
signing. Every device in the system gets a TPM. The TPM
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has a unique identification id, a public key pubd, a private
key prid, the public key pubprod from the producer and a
signed identification ids- this is the identification encrypted
by the private key priprod from the producer. If a device
tries to connect to the network via ZeroConf the pubprod
will be compared. Should the keys differ the device is not
able to connect, a reason could be another producer or a
malicious device. If the keys are equal the ids is decrypted by
using pubprod and verified against the id. Is the verification
successful authentification is secured. For communication
integrity and confidentiallity between two devices d1 and d2
the keys pubd1, prid1 and pubd2, prid2 are used. The pubd
can be shared between the devices. For sending a message
md1 from d1 to d2 the md1 is encrypted with pubd2 then send
to d2 and there decrypted with prid2. The explained approach
prevents the identified problem from Williams: ”The usual
approach taken to secure radio and powerline networks is to
rely on some form of Layer-2 encryption. Unfortunately, this
approach would prevent new devices from using zeroconf
protocols at all until they are configured with some kind
of key which allows them to access the network medium.
Zeroconf protocols in the home are attractive because they
don’t require the users to be network engineers in order
to plug devices in and have them work properly.”[26, p. 3]
because no additional user intervention is needed.

VIII. CONCLUSION AND OUTLOOK

ZeroConf is not necessary unsecure. Like the given ap-
proach in VII by using a TPM the three security objectives
authenticity, integrity and confidentiallity could be achieved.
After all further investigation are needed: taking other secu-
rity objectives into account, a signing authority (more than
one producer should be able to sign devices), the usage
of existing protocols in combination with the SecZeroConf-
TMP approach and a prototyp implementation.
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