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ABSTRACT:

Active learning reduces training costs for supervised classification by acquiring ground truth data only for the most useful samples.
We present a new concept for the analysis of active learning techniques. Our framework is split into an outer and an inner view to
facilitate the assignment of different influences. The main contribution of this paper is a concept of a new compound analysis in the
active learning loop. It comprises three sub-analyses: structural, oracle, prediction. They are combined to form a hypothesis of the
usefulness for each unlabeled training sample. Though the analysis is in an early stage, different extensions are highlighted. Further we
show how variations inside the framework lead to many techniques from the active learning literature. In this work we focus on remote
sensing, but the proposed method can be applied to other fields as well.

1. INTRODUCTION

The success of supervised learning not only depends on the avail-
ability of labeled training examples, but also on the usefulness
for the chosen classifier. Acquiring the labels for training sam-
ples results often in high costs in the form of resources, money
or human annotation time (Settles, 2009). Especially in remote
sensing acquiring the correct labels for the training data is ex-
pensive because it often involves ground surveys. Therefore it is
important to chose as few samples as possible concentrating on
the most informative samples first. Another frequently used form
of acquiring ground truth for remotely sensed data is the visual
inspection of aerial images by a human annotator. This method
is cheap compared to a ground survey, but can lead to redundant
training sets because pixels are often labeled by mass selection.
This results in large training set sizes which considerably slow
down the training phase of the algorithm. Therefore one should
also concentrate on the most useful samples first and choose as
few as possible.

Therefore it is desirable to chose as few samples for labeling as
possible while simultaneously retaining high representativeness
for good classification accuracy. Active learning (AL) achieves
this by providing means to calculate the usefulness of samples
and presents strategies to select samples for labeling in different
scenarios of supervised classification tasks.

This process generally repeats the following three steps until a
stopping criterion is met:

1. Evaluate usefulness of all samples

2. Select one and retrieve the true label

3. Train a supervised classifier

The core challenge is the definition of the usefulness heuristic.
It can be defined with a confidence or certainty measure (Lewis
and Catlett, 1994), by disagreement of a committee (Seung et al.,
1992) or with diversity criteria (Brinker, 2003). The true label
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for the selected sample can be queried from the so called oracle.
In most cases this is a human annotator. Examples are labeling
remotely sensed images (Tuia et al., 2011), flagging e-mails as
spam or tagging audio samples. Other forms of oracles are also
possible. In the case of (King et al., 2004) the oracle was a ”robot
scientist” which executes autonomous biological experiments.

The used classification algorithm can be any supervised learn-
ing method. Common choices are the nearest neighbor classifier
(Wuttke et al., 2012), support vector machines (Schölkopf and
Smola, 2002), or Bayes classifier (Roy and McCallum, 2001).
The results of the Active Learning Challenge (Guyon et al., 2011)
present an overview of currently used algorithms.

Active learning can further be divided in three scenarios:

• Pool-based: All (or a large pool) of the unlabeled samples
are available for selection.

• Stream-based: Samples are only available one at a time and
must be selected or dismissed directly (Cohn et al., 1994).

• Query-synthesis: The queried samples are generated de-
novo (Angluin, 1988).

The first scenario is the most common one (Settles, 2009). In re-
mote sensing the available image data represents the pool from
which the selection strategy can freely select samples to be an-
notated. As such this paper focuses on the pool-based scenario.
Chapter 3.2 describes how the other scenarios fit into the pro-
posed framework. An in depth look at active learning and differ-
ent selection strategies is given in (Settles, 2009).

The notation used in this paper describes an active learning algo-
rithm as a quintuple (C, O, U , L, H). CL : X → Ω, x 7→ y
is a supervised classifier trained with the labeled training data
L = {(xi, yi)}li=1 with xi ∈ X ⊆ Rd, the d-dimensional fea-
ture space and yi ∈ Ω = {1...c}, the set of all classes. The oracle
O : X → Ω, x 7→ y can be queried to get the label for unlabeled
data from U = {xi}l+ui=l+1 with u� l. The samples are selected
according to a ranking of the usefulness given by the hypothesis
H : X → R, x 7→ b.
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The framework presented in this paper is divided into an outer
and an inner view. The outer view encapsulates all feature ex-
traction, splitting in training and test data, and quality assessment.
From this view the active learning process is a black box. The in-
ner view describes the active learning algorithm consisting of the
three steps mentioned above. The specific choice of the classifi-
cation algorithm is given from outside of this framework and is
not in the scope of this paper. It is assumed that the classifier is
suitable for the given problem.

The division into these two views allows to distinguish clearly
between the consequences of variations made to the individual
parts. It is also easier to communicate at what times which infor-
mation is available. Without this partition it is more difficult to
allocate causes and effects.

In a more strict form, no information is shared between the two
views other than the unlabeled training data before and the trained
classifier after the iterations. Though in most cases additional
meta-information is available and can be shared from the outer to
the inner view. Such variations are described in the corresponding
chapters.

The remainder of this paper is structured as followed: Section
2. describes the outer view in more detail. Section 3. describes
the inner view. The main contribution of this paper, the com-
pound analysis, is detailed in section 4. Section 5. discusses cur-
rent problems from the active learning literature and how they can
be addressed with the proposed compound analysis.

2. OUTSIDE VIEW

Individual components of the outer view are shown in figure 1
and are detailed in this section. On this layer of abstraction active
learning is viewed as a black box. All described components of
this view would work the same with a passive learning scheme.
Costs generated by components in the outer view can not be at-
tributed to the active learning, because they are necessary even in
a passive learning scheme. Namely these are costs for feature ex-
traction and determination of classification accuracy, which needs
labeled samples that were not used for training.
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Figure 1. Outer view of the concept for active learning evaluation.
The four components are detailed in their respective sections. On
this level of abstraction active learning is viewed as a black box.
The components would work in the same way if no active process
were present. Therefore all costs associated with them are not
attributed to the active learning scheme (i.e. costs to determine
classification accuracy).

2.1 Feature Extraction

The input can be arbitrary data (e.g. images, multi- or hyperspec-
tral data, video, 3d data). Task of the feature extraction is to trans-
form the input data into d-dimensional features {x} ∈ X ⊆ Rd.
The interface to the next component is a d × m matrix which
contains all m samples as column vectors.

Possible feature extraction techniques include segmentation or
edge detection on images. An often used feature for multispectral
data is the normalized difference vegetation index (NDVI). Band
selection (Maerker et al., 2011) is often used to reduce computa-
tional effort when working with hyperspectral data.

Variations

Segmentation In the simplest case for remote sensing images,
one pixel corresponds to one sample. Due to the increasing spa-
tial resolutions in remote sensing applications, the same ground
area is mapped onto more pixels . Therefore the probability in-
creases that neighbored pixels belong to the same class, ”Smooth-
ness Assumption” in (Schindler, 2012). Segmentation can allevi-
ate this (Lee and Crawford, 2005), but has to be represented by a
corresponding feature extractor.

Inter Sample Relations It is interesting to model relations be-
tween different samples (e.g. temporal correlations in video). As
long as the feature extractor encodes this in one column vector
per sample, it can be used in this framework.

2.2 Data Splitting

This component splits the data into to disjoint sets for training
and testing. By moving this into the outer view, the actual clas-
sification algorithm can use all data its provided with. Otherwise
much care must be taken to not introduce information from the
testing samples into the training process such as their distribution
or concrete values, as this would lead to unreliable performance
measures.

Variations

Cross-Validation To further improve the reliability of the per-
formance n-fold cross-validation can be conducted. This can be
done transparently in this step of the process without changes to
parts of the inner view.

2.3 External Information

This component consists of the oracle and the classifier. This
section details why they are considered external and not part of
the framework.

The type of oracle strongly depends on the type of data used.
Further to the different oracles described in the introduction there
can be other scenarios. For example multiple oracles working in
parallel or with great latency. To simplify the framework all these
choices are not modeled and made beforehand. In this work the
oracle is automated in the form that ground truth (the true labels)
is known in advance, but held back from the classification algo-
rithm. It is revealed automatically only for samples queried from
the oracle. This enables evaluation without human interaction
during development. This is a common approach to automate
the testing of active learning algorithms (Guyon et al., 2011). In
real-world applications the querying of the oracle creates costs.
Details on query costs are described in section 3.2.
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Many different classifiers are currently used in the literature for
active learning on remotely sensed data (Tuia et al., 2011), (Craw-
ford et al., 2013), (Persello and Bruzzone, 2014). Today the
choice of the classifier has more influence on the performance
than the choice of the AL strategy (Guyon et al., 2011). One goal
of this framework is to focus on the analysis of the other steps
of the active learning process. Therefore the supervised classifi-
cation algorithm is outside of the scope of this framework and is
considered as external for our study. Its properties are known be-
forehand and depending on those meta-information different im-
plementations of the parts of the framework are possible. Future
analysis should make the performance more independent from
the choice of the classifier.

Variations

Examples for such meta-information and their influence on the
framework:

• No meta-information: Some optimizations of the predic-
tion analysis in section 4.3 are not possible.

• Number of classes: If known, the analysis of the structure
4.1 and oracle 4.2 can be optimized.

• Type of classifier (generative vs. discriminative): If a
generative classifier is chosen, information about the model
(e.g. mean and variation of a normal distribution) can im-
prove the active learning process.

• Support of rejection class: The handling of outliers is dif-
ferent, which influences the prediction analysis 4.3.

• Availability of certainty measure: If the classifier does not
provide an inherent certainty measure, different strategies
for the prediction analysis are needed.

2.4 Quality Assessment

The assessment of classification accuracy needs the true labels
of the test samples. The costs associated with acquiring these are
not attributed to the active learning process. Therefore the quality
assessment is located in the outer view. This means all relevant
costs are coming only from the inner view.

There are different metrics for measuring the performance and
quality of classification algorithms. The first two are also used
for passive learning. Whereas the second two are only defined
for active learning because they depend on the number of used
training samples:

• Confusion matrix: Used in multiclass problems to show
inter-class misclassification.

• Receiver operating characteristic curve (ROC curve):
Used in two-class classification problems to show the de-
pendency between true positive rate and false positive rate.
Extensions for multiclass problems exist (ROC surface), but
are beyond the scope of this paper.

• Correctly classified curve: Used in two- and multiclass
problems. Plots fraction of correctly classified samples
against number of training samples used.

• Learning curve: Used in two-class problems. Plots area
under the ROC curve versus the logarithm of number of used
training samples (Guyon et al., 2011).

Apart from the above mentioned metrics, it is possible to define
scalar metrics which combine the performance of a classifier into
a single number:

• Area under ROC curve (AUC): Used for two-class prob-
lems. Based on the ROC curve. Larger is better.

• Volume under ROC surface (VUS): Used for multiclass
problems. Based on the ROC surface (Ferri et al., 2003).
Larger is better.

• Area under learning curve: Used for two-class problems.
Based on the learning curve from above. Larger is better.
Used in the Active Learning Challenge (Guyon et al., 2011).

3. INNER VIEW

The inner view represents the common active learning loop:
1) evaluate usefulness, 2) select samples, and 3) train classifier.
Figure 2 shows the interaction between the parts. Each part is
described in the following sections. The main focus of this paper
is the usefulness hypothesis and is detailed in section 4.

As described before, the main advantage of the separation in an
inner and outer view is the possibility to account for the different
influences. As shown in figure 2 the only information known
to the active learning process is the unlabeled training data and
possibly some meta-information from the classification algorithm
or oracle.

Many definitions of usefulness are based on the current model of
the classifier: margin sampling (Schohn and Cohn, 2000), uncer-
tainty sampling (Lewis and Catlett, 1994), query by committee
(Seung et al., 1992). This leads to a problem at the first itera-
tion(s) of the learning loop as there are no or not enough samples
labeled yet. This is also known as ”cold start” problem (Zhang et
al., 2014). Often this is solved by selecting a few random samples
and labeling them. Other solutions are semi-supervised (Zhang et
al., 2014) and unsupervised techniques (Cebron, 2008).

3.1 Analysis

The central idea of the compound analysis is a usability measure
for unlabeled samples. If it is combined with a maximum se-
lection strategy it is similar to the maximization of the expected
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Figure 2. The inner view represents the common active learn-
ing loop: evaluate, select & query, and train. The different parts
are labeled according to the quintuple (C, O, U , L, H) in the
notation as presented in the introduction.
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information gain, (Seung et al., 1992) or minimizing the expected
error (Roy and McCallum, 2001).

The usability heuristic is defined as a function H : X → R
which returns a usability b for each sample x. This function is a
combination of different sub functions, hence the term compound
analysis. It is described in detail in section 4.

3.2 Selection and Query

This work uses a compound analysis to determine the usefulness
of each sample. As a result selecting the best sample becomes
a simple maximum decision. Therefore the selection strategy
chooses the k best samples and queries the oracle for their true
labels. The choice of k = 1 re-evaluates the usefulness for each
new labeled sample and can therefore use the most information.
As this requires the re-training of the classifier for each selected
sample, it is often computational too expensive. This can be al-
leviated by using classification algorithms which support incre-
mental training (e.g. nearest neighbor). The solution in most
active learning literature is to choose k > 1, see (Guyon et al.,
2011). (Chakraborty et al., 2014) integrate the choice of an ideal
k into their heuristic of the usefulness. For a choice of k > 1 it is
possible that the selected samples contain redundant information.
Diversity based heuristics alleviate this (Brinker, 2003).

Variations

Variable Querying Costs So far we assumed that each queried
sample produces the same costs for the oracle. Therefore it can
be beneficial to include a cost term in the selection strategy:
c1 + n ∗ c2. This approach allows to model different scenarios,
some examples are given below:

• c1 ≈ 0, c2 ≈ 0: No need for active learning. Many samples
can be cheaply queried at once.

• c1 � c2: Acquiring a satellite image with additional infor-
mation from which the true labels can be calculated cheaply.

• c1 � c2: Satellite image available, but has to be labeled
manually.

(Demir et al., 2014) implements variable query costs for ground
surveys by using ancillary data like road networks and digital el-
evation models.

Query Types Two very different query types can be identified:
1) Sample given, label wanted 2) Label given, sample wanted.
The first type is most often used in the active learning literature.
It represents the learner selecting a sample and querying the ora-
cle for the corresponding label. The second type is most useful if
the classes have a very uneven distribution, that can not be repro-
duced from the data alone or if some classes are not yet discov-
ered. In this case the learner would identify an underrepresented
class and query the oracle for a sample of this specific class. A
remote sensing example would be the task for the human anno-
tator to label more pixels of the vegetation class. This type of
query results in much greater costs for the oracle because it has
to search multiple samples before it can return one that fits the
query. Therefore these two types should be modeled separately.

Stream-based AL If the unlabeled samples arrive one at a time
and can not be saved, an immediate decision has to be made to
query the sample or not. Real world examples for this are part-of-
speech tagging (Dagan and Engelson, 1995) and sensor schedul-
ing (Krishnamurthy, 2002). This scenario is called stream-based
active learning (Settles, 2009). A naive method to incorporate this
into the framework is to implement a threshold t based on the util-
ity of the current sample and query the oracle only if H(x) > t.

Incorrect Oracle So far we assumed that the labels received
from the oracle are always correct. If this assumption is dropped,
one has to estimate the confidence of the oracle at the same time
as trying to learn from the given noisy labels. This problem is
known as the multi-armed bandit problem (Beygelzimer et al.,
2011), but is beyond the scope of this work.

Semi-Supervised Learning Replacing the oracle O with the
classifier C results in classical semi-supervised learning. The
main advantage is that no human interaction is needed. Semi-
supervised learning can be seen as the opposite strategy to uncer-
tainty sampling. In a semi-supervised setting the learner focuses
on the samples of which the classifier is most confident. Whereas
an uncertainty sampling strategy focuses on the samples of which
the classifier is most uncertain.

3.3 Training

The supervised classification algorithm gets supplied with the
samples and their corresponding labels and is trained in the same
way as in a passive learning setting. Afterwards all samples (la-
beled and yet unlabeled) are classified and made available for the
compound analysis of the next iteration. If the classifier provides
a confidence or certainty measure about each classification this
information can be used, too.

4. COMPOUND ANALYSIS

The compound analysis represents a hypothesis of the usefulness
for each unlabeled sample at the current state of the learning pro-
cess. It is defined as follows:

H(x) = h(fS(x), fO(x), fC(x)), (1)

where

x : Unlabeled sample ∈ X
fS : Usability from structural information
fO : Usability from oracle information
fC : Usability from classifier information

The exact definition of h to combine the sub functions is subject
of ongoing research. With this approach different active learning
scenarios can be modeled.

One of the earliest AL strategies are membership queries (An-
gluin, 1988). They are part of the query synthesis scenario. Their
main feature is that the learning algorithm creates the queried
samples de-novo. That means they are not necessarily from the
set of unlabeled samples, but instead are synthesized. To im-
plement query synthesis in the proposed framework the queried
sample is defined by

x∗ = arg max
x∈X

H(x) (2)

In most cases this maximum can not be calculated in a closed
form, because of the definition of the usability function h and
its sub functions. Though different numerical optimization tech-
niques like grid search or gradient descent are possible.

Variations

Spatial Information With suitable feature extraction even real-
world spatial information can be incorporated into the usefulness
measure. (Crawford et al., 2013) describe three ways: 1) min-
imize ”travel distance”, 2) minimize collocation, 3) incorporate
segmentation problem. These methods could be incorporated by
adding a fourth sub function into the compound function h.
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4.1 Structure Analysis

This analysis extracts information from the structure of the un-
labeled data via the definition of the function fS . This kind of
analysis is used in the active learning literature, but not as widely
as one would suspect. (Guyon et al., 2011) report that only 57%
of the participants of the Active Learning Challenge used infor-
mation from the unlabeled data. If the compound function h is
defined in a away that ignores fO and fC and only uses only fS ,
the result is an unsupervised learning process.

Examples for the implementation of fS are:

• Clustering algorithms: (Patra and Bruzzone, 2011) are us-
ing a cluster-assumption based approach and use a simple
histogram-thresholding algorithm to evaluate the usefulness
of the unlabeled samples.

• Dimensionality changes: Sudden changes in data dimen-
sionality often imply a change in the underlying class. This
is often exploited in manifold learning.

• Density changes: This is related to the cluster-assumption.
Regions where the data density changes are often interesting
for labeling and therefore should have a high usability.

• Exploration vs. exploitation: In early iterations explo-
ration should dominate the usefulness, whereas in later iter-
ations exploitation of already discovered structures should
be increased (Cebron, 2008).

Even if some of the above usability measures do not result in a
clear answer (e.g. no clearly distinguishable clusters, no appar-
ent dimensionality changes) this information can be helpful. In
this case the weighting of fS in the compound function h should
be reduced, so that the influence of other information sources is
increased.

Variations

Reduced Sample Availability In some cases it is not possible
to get the true labels for all samples. An example in remote sens-
ing is a restricted area where a ground survey is impossible or no
current aerial images are available. A solution therefor would be
to query the nearest possible neighbor instead of the unavailable
sample.

Unknown Class Count If the number of classes is unknown it
is difficult to estimate the state of the exploration of the feature
space or to use unsupervised methods like k-means clustering.
One possible solution is to use hierarchical clustering to estimate
the number of clusters in the given data. It starts with one cluster
and subdivides it depending on the ratio of intra-cluster to inter-
cluster similarities.

4.2 Oracle Analysis

The sub function fO captures the agreement between the hypoth-
esis before and after the oracle queries. If there is great disagree-
ment the training of the classifier might be unnecessary. Instead
the hypothesis should be updated and new samples queried. Some
questions that should be answered are:

• Are the given labels as expected?

• Is the amount of labeled samples sufficient for the training
of the classification algorithm?

• Is each class well enough represented, does one class domi-
nate the rest or is one class underrepresented?

• Are all classes encountered or are some missing?

• Are there specific classes which get mixed a lot (e.g. analyze
the confusion matrix)?

So far these questions seem to be unanswered in the field of active
learning and mathematical definitions pose a challenging prob-
lem.

One method to answer these questions is to cluster the unlabeled
samples and query each cluster center. If some clusters belong
to the same class, try to combine them. Or suggest to the user to
split the given class into sub classes based on the found clusters.
Though this interaction is interesting, for now it is beyond the
scope of this work.

Another method is to query multiple samples from one cluster
and check if they are from the same class. If this is not the case,
the cluster should be divided further. Alternatively it can be sug-
gested to the user to combine the two classes. Otherwise one
gains the information that the cluster assumption does not hold
for this data set and the influence of the corresponding usability
measures should be decreased in the compound function h.

Variations

Feasible Training Some classifiers need a minimum amount of
labeled training data to make their training feasible. For others it
is mandatory to have samples from all the classes. For example in
a two class scenario algorithms which do not support a rejection
class need samples from both classes. Novelty detection algo-
rithms on the other hand are able to train even with samples from
only one class.

Noisy Oracle In remote sensing the task of the oracle is of-
ten carried out by a human operator who annotates aerial images
with the help of additional materials. Because the human is not
error-free, modeling the confidence of the oracle can improve the
classification performance. (Tuia and Munoz-Mari, 2013) show
that the user’s confidence needs to be learned in order for AL to
be efficient. This can be adapted in the framework by changing
the sub function fO of the compound function h.

Feature Selection If the labels given by the oracle do not cor-
respond to the expected (by the hypothesis) or even predicted (by
the classifier) labels, one solution would be the automatic gener-
ation of new features. Though this topic exceeds the scope of this
paper.

4.3 Prediction Analysis

Many classification algorithms provide a confidence score for
their results. This score can be used to calculate the usability of
samples. Uncertainty sampling is the primal example for this. If
the sub function fS and fO are weighted with 0 and fC is the only
measure for the usability function h, this framework becomes an
uncertainty sampling strategy.

Some example definitions of the usability sub function fC are
given below. They are suited for use with different classification
algorithms.
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• K-nearest neighbor: Disagreement among the k nearest
neighbors with vote entropy. Larger disagreement means
larger usability:

fNN
C (x) =

∑
y∈Ω

vote(x, y)

k
log

vote(x, y)

k
, (3)

where vote(x, y) =
k∑
i=1

1{Ni(x)=y} is the number of neigh-

bors ”voting” for label y. Ni(x) is the label of the i-th near-
est neighbor of x.

• Two-class SVM: A widely used measure is margin sam-
pling (Mitra et al., 2004). The usability is based on the dis-
tance from the SVM hyperplane. The closer x is to the hy-
perplane, the more useful is it: fSVN

C (x) = −|s(x)|, where
s is the SVM decision function:

s(x) =
∑

i∈{1...SV }

αiyiK(x, xi) + b (4)

where SV is the number of support vectors and K(x, xi)
is a kernel function, which defines the similarity between
the sample x and the support vector xi. αi > 0 and yi ∈
{+1,−1} are the coefficient and label of the i-th support
vector.

• Multiclass SVM: If the two most probable classes are close
in their posterior classification probability (”on a tie”), the
usability of the sample is high (similar to the reasoning for
query by committee). Following (Tuia et al., 2011) we de-
fine our usability measure using their ”breaking ties” (BT)
heuristic:

fBT
C (x) = −(p(y = ω1|x)− p(y = ω2|x)), (5)

where ω1, ω2 ∈ Ω are the first and second most probable
classes for sample x and p(y = ω|x) is the estimated pos-
terior probability of the SVM classification that sample x
belongs to class ω. See (Platt, 2000) for details on SVM
posterior probability estimation.

• Maximum-likelihood: The easiest way to integrate a max-
imum likelihood classifier into an AL process is uncertainty
sampling (Wuttke et al., 2014). The transformation into a
usability score follows the above definitions. Higher uncer-
tainty leads to higher usability.

(Cebron, 2008) shows that using an exploration and exploitation
phase is beneficial for active learning. The reasoning is that first
the feature space should be ”explored” as much as possible to dis-
cover all classes. Later the ”exploitation” of the class borders de-
creases the generalization error. To incorporate his approach into
this framework the function fK can be defined using his ”Active
Learning Vector Quantization”.

Another source of information during this part of the framework
is the analysis of the generalization error of the trained classi-
fier. This can be done by observing the prediction for the samples
the classifier was trained with. If the predicted labels for train-
ing samples are different than the ground truth, the classifier has
consistency errors or is generalizing too much.

Variations

Query by Committee Instead of using only one classifier as
described above, one could form a committee of either multiple

classifiers or different versions of the same classifier. The usabil-
ity in this case is proportional to the disagreement of the commit-
tee and can be defined using (Settles, 2009) vote entropy:

fQbC
C (x) =

∑
y∈C

voteC(x, y)

|C| log
voteC(x, y)

|C| , (6)

where voteC(x, y) =
∑
θ∈C 1hθ(x)=y is the number of ”votes”

that label y receives for sample x among the hypothesis in C and
|C| is the committee size.

Less Information If no meta-information like confidence mea-
sures are available, the classification algorithm does not support
a rejection class or the total number of classes is unknown, an ap-
propriate definition of the sub function fC is difficult. In this case
it should be weighted less in the compound function h to accom-
modate this uncertainty. By doing this the rest of the framework
can stay the same and changes in the results can be attributed to
the relevant part.

5. DISCUSSION

(Cawley, 2011) reports that even simple random sampling ap-
proaches can be competitive with the top submissions of the Ac-
tive Learning Challenge. Active learning has problems especially
in small datasets and is outperformed by random sampling. They
conjecture that poor selections at early stages in the training ad-
versely affect the quality of subsequent selections. This hypothe-
sis can be tested by implementing the function fS in such a way
that it deliberately gives high ratings to samples from unrelated
feature space regions. This should result in in even worse perfor-
mance. If on the other hand fS incorporates diversity criteria the
performance should increase. They further state that an effective
active learning strategy must reach a near optimal trade-off be-
tween exploration and exploitation. A possible implementation
can use the ”weighted locking” scheme presented in (Wuttke et
al., 2014).

(Persello and Bruzzone, 2014) found that diversity criteria can
generally speed up the convergence of the iterative AL algorithm.
This raises a very interesting question for further research: What
influence have diversity criteria on the variance of AL results?
Because early iterations extrapolate from very few samples AL is
prone to selection bias. In fact, the very nature of the active selec-
tion strategy is to be biased. This should lead to a high sensitivity
about the choice of the initial training samples.

They also found that AL was able to cope with ill-posed classi-
fication problems, which should be studied further. An example
for an ill-posed problem are samples that are outliers. It is inter-
esting to study how they effect diversity criteria. How susceptible
are AL techniques to errors in the ground truth? Can this be com-
pared with the noisy oracle scenario and are the same counter
measures useful?

One problem from the remote sensing domain are mixed pixels.
Though this should be eased with increasing spatial resolution it
still poses a problem. One method to alleviate this in the case
of hyperspectral data is unmixing to find the source materials the
mixed pixel is composed of (Gross et al., 2012). Afterwards the
pixel can be modeled with a multi label approach. How to incor-
porate this into the framework is an open question for now.

These and other questions show that still much research is needed
on the field of AL. In our future work we plan on answering these
questions with the help of the proposed compound analysis.
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