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Abstract

Knowledge about quantity and position of moving and stationary vehicles is essential for traffic
management and planning. This information can be used, for instance, for security of mass
events or to support rescue crews in disaster situations. In order to get this information, large
areas have to be examined quickly and completely. Very suitable for this task are airborne
optical sensors. However, a reliable automatic method to locate vehicles in aerial images is
necessary.

In the present work a method for automatic extraction of vehicles in urban areas is presented.
The work mainly covers three key fields of car detection. The first is related to the extrac-
tion of ground areas. On the assumption that trafficable areas are often ground areas in
densely populated cities, disparity maps are calculated using the semi-global matching algo-
rithm (SGM). Subsequently, a threshold is automatically determined to separate ground from
non-ground regions (Minimum Error Thresholding). The second field concerns the introduc-
tion of a object-based method for extracting car candidates. In order to do this, the image is
smoothed using the mean curvature flow, and a region-growing algorithm is then applied. The
regions obtained are considered autonomous regions and are filtered multiple times with regard
to their geometric properties. The third field is the examination of the remaining candidate
regions by a classifier based on gradients (HOG features), which is trained by a machine learn-
ing algorithm (AdaBoost). However, the classifier is trained using only a few training samples.
The goal is to minimize the manual effort and to provide a high degree of generalization.

Thus, a strategy is presented which combines object-based and gradient-based techniques.
The strategy is tested with five urban images from the 3K+ camera system and the UltraCam
Eagle camera system, with 13 cm and 20 cm GSD, respectively. Through the use of disparity
maps, it is shown that the car detection quality in densely populated inner-city areas can be
enhanced. Objects on the top of buildings are now accurately excluded from the detection
process. Furthermore, the car detection approach presented is able to detect cars in different
datasets without adjustment of parameter settings (different sensors and different resolution).
The results of detection show that a completeness of 80% leads to a correctness of 65% to
95%.
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Kurzfassung

Das Wissen von Anzahl und Position bewegter und stehender Fahrzeuge ist wichtig für
Verkehrsmanagement und -planung. Aufgrund dieser Informationen kann zum Beispiel die
Sicherheit von Massenveranstaltungen erhöht werden oder Rettungskräfte können im Katas-
trophenfall unterstützt werden. Um diese Informationen zu bekommen, müssen große Gebiete
schnell und vollständig untersucht werden. Hierfür eignen sich besonders flugzeuggestützte,
optische Kamerasysteme. Allerdings ist zur automatischen Auswertung dieser Luftbilder ein
zuverlässiges Verfahren notwendig, um die Fahrzeuge zu lokalisieren.

In der vorliegenden Arbeit wird ein Verfahren zur automatischen Extraktion von Fahrzeu-
gen in städtischem Gebiet vorgestellt. Diese Methode kann in drei Hauptbereiche unterteilt
werden. Der erste Bereich betrifft die Extraktion von Bodenflächen. Unter der Annahme,
dass für Fahrzeuge befahrbare Flächen in dicht besiedelten Städten meistens Bodenflächen
sind, werden Disparitätsbilder mit dem Semi-global Matching Algorithmus (SGM) berechnet.
Danach wird automatisch ein Grenzwert bestimmt, um Bodenflächen von Nicht-Bodenflächen
zu trennen (Minimum Error Thresholding). Im zweiten Bereich wird ein objektbasiertes Ver-
fahren eingeführt, um Fahrzeugkandidaten zu bestimmen. Hier wird zunächst die zeitliche
Veränderung des Bildes aufgrund des Krümmungsflusses genutzt, um das Eingabebild zu
glätten. Im nächsten Schritt wird ein Regionenwachstumsverfahren angewendet. Die erhalte-
nen Regionen werden als selbständige Objekte betrachtet und nach ihren geometrischen Eigen-
schaften mehrfach gefiltert. Der dritte Bereich beschreibt das Untersuchen der verbleibenden
Fahrzeugkandidaten mit einem gradienten-basierten Klassifikator (HOG-Merkmale), welcher
mit einem maschinellen Lernverfahren (AdaBoost) trainiert ist. Dieser Klassifikator ist je-
doch nur mit wenigen Trainingsbeispielen und -iterationsschritten trainiert. Das Ziel ist die
Minimierung des manuellen Aufwands und eine möglichst hohe Generalisierung.

Somit wird eine Strategie präsentiert, die ein objekt-basiertes und ein gradienten-basiertes
Verfahren kombiniert. Diese Strategie wird mit fünf innerstädtischen Luftbildern des 3K+
Kamerasystems (13 cm Bodenpixelgröße) und des UltraCam Eagle Kamerasystems (20 cm Bo-
denpixelgröße) getestet. Aufgrund der Verwendung von Disparitätsbildern kann die Qualität
der Fahrzeugerkennung in dicht besiedelten innerstädtischen Gebieten erhöht werden. Ob-
jekte auf dem Dach von Gebäuden werden nun präzise vom Detektionsprozess ausgeschlossen.
Weiterhin ist das Verfahren fähig, ohne die Anpassung der Parameter, Fahrzeuge in unter-
schiedlichem Datenmaterial (verschiedene Sensoren mit unterschiedlicher Auflösung) zu erken-
nen. Die Ergebnisse der Detektion zeigen, dass bei einer Vollständigkeit von 80% eine Kor-
rektheit von 65% bis 95% erreicht wird.
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1 Introduction

1.1 Problem and motivation

”You’re not stuck in the jam, you are the jam”. This graffiti written on a wall next
to a busy street reminds drivers that they are part of the traffic problem, rather than
just innocent victims. Considering the fact that the amount of vehicle miles traveled has
increased by nearly 100 percent over the last two decades [U.S. Department of Trans-
portation, 2008], it is not surprising that the average hours of congestion each day have
increased as well [Taylor, 2010]. Nowadays it is common knowledge that being caught
in a traffic jam is not only annoying but also has a negative impact on the economy as
well as the environment [Schrank et al., 2011]. The 2.9 billion gallons of petrol wasted
in U.S. traffic jams in 2005 could fuel U.S. daily transportation needs for nearly a week
(6.1 days) [U.S. Department of Transportation, 2005]. In order to prevent worse future
scenarios, demanding solutions and further progress in research are required [Stantchev
& Whiteing, 2010; Winder et al., 2010; Banister et al., 2010; Stilla et al., 2005, 2009].

However, congestion is not the only important topic. Other car-related topics like logistic
and urban planing include parking space management [Huang & Wang, 2010] and parking
behavior analysis [Nurul Habib et al., 2012]. Moreover, due to the increasing population
in urban areas, resulting in additional traffic volume, especially in rapidly developing
cities like Beijing (China) [Lv et al., 2011; Xiao et al., 2011] or Delhi (India) [Pucher
et al., 2007], further problems arise such as air pollution, noise, energy use, traffic injuries
and fatalities, congestion, parking shortages, and a lack of mobility for the poor. This
poses questions to traffic planners who work on solutions which are often based on traffic
data and models [Leonhardt, 2008; Hinsbergen, 2010]. Traffic models are also valuable in
short-term situations like mass events or disasters [Pel et al., 2012].

Traffic data can be captured in various ways and positions. In order to face all aspects
of traffic, the combination of several acquisition techniques delivers complementary infor-
mation. A widely used low-priced solution is induction loops [Clark, 1983; Davidson &
Valentine, 2001]. Induction loops are cable loops which are under the surface of roads
and act as inductor. The inductance changes if a metallic object is in its range. They
gather traffic data continuously, but only at isolated spots. In contrast to induction loops,
stationary video cameras [Shillman & Schatz, 2011; Matsur, 2011; Bischof et al., 2010]
allow us to exploit geometric information and unique identification, but also just locally.
They are often installed on highly frequented streets. In addition to stationary sensors,
the floating car principle [Albrecht et al., 1995] gives information about the traffic flow.
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1 Introduction

Floating car data (FCD) are generated by utilizing the location of certain cars which
are part of the current traffic pattern. The location and the velocity of the car is often
determined by GPS and mobile phone tracking [Busch et al., 2004]. Companies that pro-
vide such services are, for instance, TomTom [TomTom, 2009] or Google [Google, 2009].
However, only road users who agree to share their current position are monitored. Hence,
this method does not allow us to collect data in regard to quantities. In addition, vehicle
types and parked cars are not considered.

Generally, remote sensing enables us to gather geo-information from a distance. A collec-
tion about research on airborne and spaceborne traffic monitoring is given in Hinz et al.
[2006]. Spaceborne sensors are especially useful for mapping very large areas. Moreover,
it is also shown that cars can be automatically extracted from satellite images [Sharma
et al., 2006; Jin & Davis, 2007; Larsen et al., 2009; Eikvil et al., 2009; Leitloff et al., 2010;
Leitloff, 2011; Salehi et al., 2012; Meng & Kerekes, 2012]. Unfortunately, they have draw-
backs due to their limited flexibility. Many satellites operate in a sun-synchron mode
which restricts them to certain periods of time and thus a low repetition rate. Addi-
tionally, they often have a low GSD (usually larger than 50 cm panchromatic). A more
flexible option are airborne sensors operating on helicopters [Nejadasl et al., 2006], UAVs
(unmanned aerial vehicle) [Breckon et al., 2008; Gleason et al., 2011] or airplanes.

Known airborne approaches deal with active sensors such as SAR and LiDAR or passive
ones such as thermal infrared (TIR), hyperspectral, and other optical sensors in the visual
domain. Traffic data acquisition with SAR [Palubinskas & Runge, 2007; Maksymiuk et al.,
2012] has the major advantage of being independent from the weather. Due to progress
in SAR sensors and data processing, leading edge data acquisition allows vehicle type
classification [Brenner et al., 2012]. Also velocities can be derived by moving target
indication [Ender et al., 2008; Cerutti-Maori et al., 2008; Baumgartner & Krieger, 2011].
While the interpretation of urban areas from SAR data is problematic due to the inherent
side looking geometry [Stilla et al., 2004]. LiDAR allows nadir view in urban areas and can
be used for car detection [Yao & Stilla, 2011] and as well for velocity estimation of vehicles
[Yao et al., 2011, 2012]. However, LiDAR is based on monochromatic light and can not
provide color information. Also typical for LiDAR is that every surface point is registered
only once, in contrast to optical image sequences where multiple information is gathered
of the same object. Image sequences do not only deliver multiple acquisition but also a
denser sampling of the surface. Generally, the focus is on optical image sequences to which
also IR cameras belong [Stilla & Michaelsen, 2002; Hinz & Stilla, 2006; Kirchhof & Stilla,
2006]. They provide a high frequent image acquisition and additionally supplemental
information concerning the activity state of the vehicles. Warm parts (engine, body,
etc.) appear as bright areas in the image which makes it possible to distinguish between
stationary and parked cars [Yao et al., 2009]. Unfortunately, IR cameras only have a small
pixel matrix and thus a low resolution. Similarly, hyperspectral sensors also provide a low
resolution but they are often used for vehicle extraction [Manolakis et al., 2003; Casasent
& Chen, 2003; Li et al., 2009]. Hyperspectral information can be used to exclude areas
of vegetation or to determine shadow areas before the extraction process [Shimoni et al.,
2011].

2



1.2 Objectives

Sensors in the visual domain such as video cameras also have the ability to acquire high
frame-rate image sequences which make it possible to observe the dynamics of traffic
(Section 2.1). All in all, they have larger pixel matrices, but only offer lower resolution
(in case of the same field of view) compared to single frame cameras. Cameras can be
distinguished between video cameras with a high frame rate (typically 24 to 30 FPS) and
single frame cameras up to a few frames per second. However, the differences between
these two categories are narrowing lately. Furthermore, professional aerial camera systems
such as the UltraCam Eagle or the Quattro DigiCAM are not able to provide a frame
rate higher than 1 Hz. This study focuses on exploiting image sequences from camera
systems that allow us to capture high resolution images with 0.5 to 3 Hz. Thus the desired
properties – high spatial resolution, large coverage, and multiple information of the same
object – are fulfilled.

1.2 Objectives

The main objective of this dissertation is the development and the detailed analysis of
a processing chain for car detection in aerial image sequences. Appropriate methods are
restricted because in contrast to video data, the image acquisition rate is only low frequent
(between 0.5 and 3 Hertz). The intention is to present a technique which detects cars in
imagery of one and two decimeters GSD. The focus is not only on moving cars but also on
parked cars. Furthermore, the position and orientation of the sensor in the aircraft is used
which can be achieved by on-board GPS receivers and IMU instruments. Supplementary
information utilized is derived from road databases.

A common problematic issue is the inaccuracy of road databases in urban areas. Often
road databases are acquired by Global Navigation Satellite Systems (GNSS) [NAVTEQ,
2010; Zhou et al., 2013]. Roads can hardly be accurately recorded in areas with high
buildings and urban canyons due to a lack of satellites from GNSS. Sometimes even road
databases are not available due to frequently moving construction sites. Generally, these
databases are mainly used for navigational tasks for which their accuracy is sufficient.
However, in the case of car extraction they are usually used to extract roads or areas
where cars are expected in order to limit the search area. Often, this application requires
a more precise solution. Therefore, 3-dimensional information is exploited in order to
support the overall car detection [Tuermer et al., 2013]. A information which can be
derived from two subsequent images or in a different way.

Currently, many approaches for car detection use standard object detection methodol-
ogy, in which detectors based on high-level features are trained with machine learning
algorithms (see Section 2.2). Drawbacks of current methods can be the manual inter-
action during the training step and the missing robustness when the properties of the
data change due to another sensor. Additionally, a top-performing detector must receive
carefully selected training data and iterative back porting of false positives (e.g., online
training [Grabner, 2008]). This back porting needs to be critically observed because a
drifting of the detector must be avoided. This means that the detector is trained using

3
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certain false negative samples, it could omit some important positive detections as con-
sequence. Consequently, a further goal is to develop a strategy with a simple parameter
setting which is robust to changing resolution ranging from one to two decimeters, and
the manual training effort should be as low as possible.

This dissertation focuses on car detection in aerial images of urban areas towards an
elaborate extraction technique in the case of mass-events and catastrophes. These two
scenarios fit the conditions where the benefits of airborne missions, like rapid availability
and coverage of large regions, are exploited particularly useful [Kurz et al., 2012].

1.3 Outline

The following chapter 2 includes a literature review concerning vehicle detection in optical
imagery and its special application for aerial optical imagery with low imaging frequency.
After the introduction to the state of the art of car extraction techniques, the suggested
car extraction strategy is shown in chapter 3. In chapter 4 the utilized airborne test data
sets are described and the way of conducting the experiments is explained. Subsequently,
the results of the experiments aiming to evaluate strategies related to car extraction are
shown in chapter 5. Then results will be discussed regarding the method’s drawbacks
and potentials in chapter 6. In the last chapter it will be concluded with problems for
car detection and ways to tackle them. Also potential developments for vehicle detection
from aerial imagery in the near future with an expected higher resolution from UAVs are
addressed.
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This chapter informs about previous research activities of vehicle detection in optical
images. The first section presents methods that are based on optical imagery, in general,
not necessarily related to remote sensing. The second section presents publications which
are directly related to the present situation and its limitations in this dissertation.

2.1 Vehicle detection in optical images/videos

In order to put vehicle detection in low frame-rate aerial imagery (Section 2.2) into a
comprehensive context, this section provides a short overview of relevant methods to de-
tect vehicles in optical imagery. The first part is related to ground-based sensors (Section
2.1.1) and the second part to airborne sensors (Section 2.1.2). This grouping is done
because cars seen from above look different compared to the typical side view.

2.1.1 Ground-based sensors

The following approaches use data from ground based sensors, many of them are based
on video data. Nevertheless, ideas that were developed in that field have been sometimes
brought to the remote sensing field as well. A further commonality of publications in the
first part is the on-board or side view of cars.

On-board sensors – side view of cars

Methods aiming to detect cars from side view are very popular and have been carried out
for several decades. A reason is that these images are widely available and the number of
applications (keyword: driving safety systems) is huge. Often, publications in this field
have introduced new ideas for object detection in general. Due to the vast number of
publications only a few path-breaking ones can be mentioned in the following paragraph.

One of the early approaches [Dubuisson & Jain, 1995], here mentioned, extracts contours
by using difference images, color segmentation and the Canny edge operator. The resulting
contour is adapted by the snakes algorithm. However, the contour of a car seen from the
side allows a better separation from other objects than the contour of a car which is seen
from above. The reason is that the shape of a car which is seen from the side is more
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unique compared to other objects than the shape of a car seen from above. Cars seen from
above have, with only a few exceptions, a rectangular shape. Regardless of the contour,
different features are used in the work of Schneiderman & Kanade [2000]. They use
quantized wavelet coefficients in combination with AdaBoost. In the same year, Haar-like
features showed their suitability for car detection, together with a support vector machine
(SVM) [Papageorgiou & Poggio, 2000].

A framework for modeling the relationship between context and object properties based
on the correlation between the statistics of low-level features is shown by Torralba [2003].
In a later study of boosted random fields (BRFs), Torralba et al. [2005] use the boosting
method to learn the graph structure and local evidence of a conditional random field
(CRF). CRFs are very useful to keep the information of the relation of certain segments.
An application for aerial images could be the detection of cars which park in a row along
the road; single cars parked elsewhere for example in a backyard are more challenging.
With a similar intention a global feature is introduced by Murphy et al. [2006]. Steerable
pyramids are used which pay attention to dominant textural features of the overall image,
and to their coarse spatial layout. The basic method consists of several standard filter
banks and the gentle AdaBoost algorithm.

The AdaBoost algorithm is used also by Negri et al. [2008]. They show a solution for
car extraction using Haar-like and HOG features which are selected and weighted by the
real AdaBoost algorithm. Further, Perrotton et al. [2009] use gentle AdaBoost and added
additional features such as histogram distance on Haar region (HDHR), edge orientation
histograms (EOH), HOG and Gabor filters. The idea is that new feature families should
only be introduced if these features already used are not sufficient for classification. The
same author [Perrotton et al., 2010] presents a work utilizing a soft cascade structure of
the classifier. Stages of the cascade correspond to the partial sum of weak classifiers. In
order to get a multi-view weak classifier, the selection of weak classifiers is carried out in
a different way as done in the original work of Viola & Jones [2001]. Again Haar wavelets
and different learning techniques (SVM, AdaBoost) are examined in the thesis of Zehnder
[2009]. Furthermore, once again Haar-like features but online boosting are used in the
work of Chang & Cho [2010]. A work which uses gentle AdaBoost tries to combine the
detection and the segmentation process [Torrent et al., 2011].

A completely different strategy is pursued by Leibe et al. [2008]. In their work the infor-
mation of features from different training samples is put together by using the center of
similar features in the feature space. Resulting vectors are stored in a codebook (similar
to the Bag-of-Words approach). The approach of Givoni et al. [2011] introduces also an
interesting idea because videos and not static images are used in the training step. Af-
terwards optical flow, HOG features, and a Bag-of-words model are used for the training.
Finally, the resulting classifier can be applied to static objects in single images as well.

Similarly, Wang & Lien [2008] take up the basic idea of the Bag-of-words method and use
sub-regions of vehicles which are projected to eigenspace and independent basis space in
order to generate a principal component analysis (PCA) weight vector and an independent
component analysis (ICA) coefficient vector. Based on the joint probability of these
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vectors a likelihood estimation is carried out. Also shape features can be used [Lim
et al., 2009] which are extracted at the location found by interest point operators. In
addition, the detection has been assisted by extracting the lane region and a measurement
of symmetry. A review of vehicle detection methods where the camera is mounted on the
vehicle up to the year 2006 can be found in Sun et al. [2006].

Stationary sensors – oblique view of cars

Data received by stationary video cameras, and thus showing an oblique view, is the basis
of the following approaches.

One suggestion is the use of optical flow and 3D contours [Haag & Nagel, 1999]. Addition-
ally, a 3D scene model, a lane model, an illumination model, and a camera model which is
easily available due to the fixed camera position are incorporated. Unfortunately, optical
flow is only applicable in the case of small changes thus high frequent video data better
suit this approach.

Furthermore, a suitability evaluation of color histograms for vehicle detection can be
found in Knauer et al. [2005]. Another work also based on color values uses a special
color transform and generates a Bayesian classifier [Tsai et al., 2005]. Edge maps and
coefficients of a wavelet transform are used to verify the detected candidates. In a similar
manner wavelets are utilized by Salem & Meffert [2007]. However, they rely on a 3D
wavelet based algorithm where time is the third dimension.

An adaptive background estimation technique plus histograms of gray values and edges
from difference images is illustrated in the work of Zhou et al. [2007]. Also aiming to
detect cars from oblique view, Roth et al. [2009] present a method relying on Haar-like
features and online Boosting. Additionally, they generate separate classifiers for different
image locations. Moreover, a work which proposes an adaptive threshold estimation for
edges after applying the Sobel filter in order to cope with problems due to changing
illumination conditions is presented by Laparmonpinyo & Chitsobhuk [2010]. In the end
a benchmark schema has been made available by Kasturi et al. [2009]. Their base line
algorithm for comparison to state of the art methods uses background subtraction plus a
blob filtering.

2.1.2 Airborne sensors

Airborne sensors have been used in the second category where the popularity of UAVs has
increased within the last few years. A great number of these approaches has been carried
out on video data (high imaging frequency). Methods that work here are not necessarily
transferable to the low frame rate case. For instance, popular methods like the optical
flow cannot be applied when the time between the changes is too great (non-video data),
because the new position of the moving pixel is too far away from its original position
and cannot be identified again.
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However, in the case of video data the use of optical flow and a statistical decision is
possible [Nejadasl, 2005; Nejadasl et al., 2006; Nejadasl, 2010]. The same authors explored
also a way for background calculation of gray value images [Nejadasl & Lindenbergh,
2011]. Pixels that exceed a certain value in the next frame are considered to belong to
the foreground objects.

The idea of difference images and GIS road masks is used by Mirchandani et al. [2002].
The images are taken by a sensor mounted on a helicopter with GPS and IMU. Similarly,
difference images are used in a further work [Cao et al., 2011a, 2012a]. Each frame is
divided in layers where background and foreground objects are described by a Shi-Tomasi
corner detector.

Difference images of the stabilized scene and a moving object model are also used to
detect cars in thermal infrared images [Kirchhof & Stilla, 2006]. To distinguish moving
cars from other objects, such as higher buildings, features like eccentricity and mass of
the resulting elliptical blobs are used. As a constraint, a reasonable velocity of the cars
is assumed to reject false positives.

Another way to determine relevant objects in the foreground is shown in the following
works. These relevant areas are called salient locations at which HOG features are cal-
culated, afterwards the matching is done by comparing them in the introduced salient
feature match distribution matrix (SMD) [Khan et al., 2010]. The comparison of the
features in the SMD is done based on their Euclidean distance. The salient locations are
manually chosen.

Similarly, Cao et al. [2012b] also aim to extract salient locations first, therefore saliency
maps are calculated as a kind of pre-processing. These maps consist of layers based on
color, Gabor and motion features. The final classification is done by Haar-like features and
AdaBoost. Another publication by Cao et al. [2011c] shows a strategy which generates
several classifiers by discrete AdaBoost for certain parts of the vehicle. The output of all
boosted classifiers is further classified using a SVM. The same authors present a way of
calculating a feature similar to HOG with lower dimensionality [Cao et al., 2011b]. At
the end the final classification is also done by a linear SVM.

Finally, Cheng et al. [2012] shows a way to identify background colors using a color
histogram. Then advanced features based on the Harris corner detector and the Canny
edge detector are calculated. Additionally, the result of a SVM which classifies color
values after a color transformation is used as a feature. Finally, all features are passed to
a dynamic Bayesian network for classification.

2.2 Airborne vehicle detection in low frame-rate optical

image sequences

The automatic detection of vehicles from airborne optical sensors in single images or image
sequences (up to 3 Hz) has been pursued by several researchers within the last few years.
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A graphical visualization of these publications can be seen in Figure 2.1. Often there are
two major components of each approach, the utilized feature and the algorithm in order
to classify the feature space. The categorization in this figure is according to the utilized
features. The decision for that kind of classification has been chosen, because the impact
concerning the detection quality is highly dependent on the descriptive elements. The
following detailed description of the techniques is separated by headings which correspond
to Figure 2.1.

Alternatively, in Figure 2.2, the publications are grouped according to the utilized clas-
sification strategy. However, the separation is sometimes more fuzzy compared to the
grouping based on features (Figure 2.1). Some approaches utilize more than one algo-
rithm which leads to ambiguities when a stereotypical grouping is aimed.

2.2.1 Single image

In this section all methods are based on the information of one image. The arrangement
is according to the branch of single images in Figure 2.1.

Gradient-based

Contour Burlina et al. [1997] combines contours obtained by the Canny edge detector
and votes obtained by the Hough transform. The generalized Hough transform of the
image is calculated using the known shape and size of the sample car. If shape and size
match to a car, a vote is created in the center of the hypothetical car. Finally, when the
resulting values of the edge map and the value from the Hough transform exceed a certain
threshold it is accepted as a car. The threshold is determined by a Bayesian strategy and a
Neyman-Pearson strategy. It also shows first signs of online learning where parameters are
re-adjusted during the detection procedure. Additionally, they add the feature of vehicle
formations where periodic object configurations such as convoys on roads or vehicles in
parking lots are used.

The Canny edge detector and the Hough transform have also been utilized in the approach
of Moon et al. [2002] where the basic idea is the creation of a car model which consists of
four edge detectors having the size and the shape of an average car. The candidate is only
accepted when all four edges give a feasible feedback. The testing data shows vehicles
in an average size of 7 by 17 pixels. Long shadows, for instance, from low illumination
angles lead to false positive detections, and very oblique camera angles are also a source
of errors.

Aiming to take advantage of the simplicity and the resulting low computational load,
an improved version appeared some years later [Kozempel & Reulke, 2009]. In contrast
to the previous approach, they created four special shaped edge filters to represent all
edges of the car model. However, due to the simple model (rectangle) many false alarms
(like vegetation pattern) have to be dealt with. An extension is shown by validating
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Figure 2.1: Overview of literature related to vehicle detection in low frame-rate aerial
images. The publications are grouped according to the utilized features. The
presented strategy is yellow.
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Figure 2.2: Overview of literature related to vehicle detection in low frame-rate aerial
images. The publications are grouped according to the utilized classifica-
tion strategy. The presented strategy is a combination of the probabilistic
trunk, where the parameters are derived from training data, and from the
non-probabilistic trunk, where the parameters are empirically determined.
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the previously received hypotheses [Kozempel, 2012]. For that task SURF features are
utilized. The final classification is pursued using a SVM based on a radial basis function
[Hausburg, 2010].

The technique of template matching is pursued by Pelapur et al. [2013]. An object is
examine by calculating the distance of its edge map to template edge maps. The distance
is calculated using the directional chamfer matching (DCM) method. Additionally, two
different ways of calculating the initial edge maps have been compared with regard to
their performance. Results showed that edge maps calculated by the multiscale Hessian-
based line segment feature extraction method are superior to edge maps calculated by the
Canny edge detector. Generally, the main focus is on determining the orientation of the
vehicles. For this purpose a radon transformation is utilized.

Explicit 3D car model A more complex model is based on a wire frame consisting
of features such as body boundary and windshield [Zhao & Nevatia, 2003]. The high
impact of shadow, which is typically located on one side of the car is mentioned, as
well as the intensity of the shadow is even suggested as an optional feature. The final
decision is based on the probability and all features are passed to a Bayesian network
with manually selected parameters. Directions of interest are determined by calculating
a histogram of Canny edges. It is assumed that the main direction has the highest peak
of the histogram. More false positive and false negative detections occur for dark cars as
they have fewer salient features. Most false positives result from rectangular shapes of
structures in buildings, tree foliage or road markings.

The 3D structure is relevant where line features are fitted to a car model [Kim & Malik,
2003]. In this case, the previous 2D line features are received by the Canny edge detector.
Afterwards, a connected-component analysis is performed to group them. It is assumed
that the rear line, front line, left and right line of the roof are always detected. The
probability density function for every line is estimated from training samples. Finally,
the complete system consisting of all line features is probabilistically evaluated and classi-
fied. The authors report difficulties due to distracting lines which are from tree shadows.
Another issue occurs when parked cars have too little space between each other.

The method of Hinz [2004] enhances the car model idea by creating a local model of
an average car describing the most prominent geometric and radiometric features. The
intensity of the shadow is also incorporated, and the position of the sun is determined
by internal and external image orientation parameters. Additionally, a global model is
added for which vehicle queues are modeled as ribbons that exhibit the typical symmetry
and spacing of vehicles. A disadvantage is the large number of necessary models which is
tackled by introducing a tree-like model hierarchy. Problems occur due to weak contrast,
specularities, occlusions and vehicle geometry which were not modeled by the explicit
top-down procedure.
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HOG One of the implicit methods [Nguyen et al., 2006; Grabner et al., 2008] makes
use of the histograms of oriented gradients (HOG), Haar-like features and local binary
patterns (LBP). These features are passed to an online Boosting algorithm to generate
a strong classifier. The focus is on the online ability of the machine learning algorithm.
An almost perfect detector can be obtained when reusing the false positives as negative
training samples for the next training round, but this is a manual task. A smart approach
trying to automate the process uses a digital surface model (DSM) to distinguish false
positives and returns them as negative samples to the training [Kluckner et al., 2007].
However, not all potential false positives can be obtained in this way (e.g., road markings,
rectangular transformer substations).

Another way of using HOG and LBP features is the Non-negative Matrix Factorization
(NMF) [Mauthner et al., 2010]. The NMF shows an alternative to lower the dimensions
of the obtained feature vector and makes a SVM applicable. A feature vector with to
many dimensions can pose problems to a SVM due to the curse of dimensionality.

The Harris interest operator is again utilized in a work by Gleason et al. [2011] aiming
at very short processing times. It focuses on candidate regions which exceed a certain
limit of the number of received Harris points. It is assumed that the background has
a monochromatic color distribution and all regions that fit to that criteria are rejected.
In the second stage features are calculated from eight sub-windows surrounding each
candidate region. If one sub-window is accepted, the whole region is accepted. HOG
features and Histogram of Gabor coefficients are applied together with a comparison of
the following classification techniques: nearest neighbor, decision trees, random trees and
support vector machines. The best results are achieved by the combination of Gabor
derived histograms and random trees classifier. Moreover, the test data is of a very high
resolution and shows only a small field of view from rural areas.

Finally, there is a system [Kembhavi et al., 2011] relying on three feature classes – HOG,
the recently introduced color probability maps (CPM) and pairs of pixels (POP). The
goal of the CPM is to represent the often homogeneously colored backgrounds of vehicles
and typical vehicle colors in the center. The POP feature models the symmetric property
of certain colored areas repeatable for many cars. All features concatenated, result in a
feature vector of approximately 70,000 elements. At the end, the regression problem is
solved by utilizing the Partial Least Squares (PLS) algorithm. False alarms are caused
by rectangular car-like objects on top of buildings and road markings.

Region-based

A region-based technique such as the development of a sophisticated blob detector is car-
ried out by [Lenhart & Hinz, 2006; Lenhart et al., 2008]. At first, vehicles with significant
color features are detected by a color channel differencing method. From the remaining
gray value images blob-like structures are extracted and the necessary threshold is dy-
namically determined depending on the road surface. The resulting elliptical blobs are
evaluated in relation to their geometric moments and orientations of the surrounding el-
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lipse. In addition, the ratio of major to minor axes of the ellipsis is used to avoid false
positives.

Similar is the idea of another blob detector invented by Choi & Yang [2009]. They
apply a mean shift segmentation in the Luv color space. Subsequently, the symmetry
of the resulting blobs is examined by a filter based on complex valued Gabor functions.
Additionally, the information of the shape is used. The shape of each blob is calculated by
measuring the distance and orientation between the center of the blob and its surrounding
edges. Often more than one blob is detected for the same car due to intensity differences
from the front and rear windshields. The problem should be avoided by clustering blobs
in a certain surroundings and with the same color values.

Likewise, there is an object-based classification technique starting with a multi-resolution
segmentation based on region-growing [Holt et al., 2009]. Pixels are merged according to
the following homogeneity parameters; scale, color-versus-shape, and compactness-versus-
smoothness. Thereby, the scale parameter controls the amount of heterogeneity of the
segmented objects. The color-versus-shape parameter defines the extent to which overall
homogeneity is defined by the spectral homogeneity. The smoothness-versus-compactness
parameter controls whether segmentation results are optimized for objects with smooth
borders or for those which have more compact shapes. All parameters have been implicitly
determined by using training samples. Additionally, a spectral difference segmentation
merges objects which are below a user-defined threshold of spectral similarity. This step
enables modeling the road surface in order to distinguish between background and fore-
ground. Besides, the RGB color values and its standard deviations, the remaining objects
are classified using shape features like main direction, density and rectangular fit. In
addition, texture features like density and mean of sub-objects are part of this technique.
False negatives occur due to the inaccurate GIS database which is used to mask out city
blocks and curbs. Cars close to the border of these areas are not detected.

Furthermore, the initial detection of shadow areas is the major aim of the approach of
Wang [2011]. Firstly, a coarse-shadow map of the input aerial color image is generated by
estimating a global threshold (Otsu method). Secondly, a connected component analysis
is applied and the local threshold is calculated for every sub-region. In a third step, every
pixel of a shadow candidate region is tested whether it belongs to the correct class or
not. The assumption is that genuine shadow pixels have lower intensity values than their
unreal neighbors, but both of their chromaticity values are similar. Additionally, it is
assumed that the majority of genuine shadow pixels are connected. Afterwards a Harris
corner response map and edge map of the RGB image are calculated at the locations of
previously determined shadow regions. These interest points are further processed with
the rotation invariant shape context feature descriptor. Finally, the resulting feature
vectors are matched against reference feature vectors and it is accepted as a car if the
matching cost is below a certain benchmark. A drawback of the approach refers to that
the position of the cars is only roughly determined. Also cars in shady areas seem to be
difficult to identify.
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2.2.2 Multiple images

In this section all methods utilize information of more than one image. The arrangement
is according to the branch of multiple images in Figure 2.1.

Difference images

The principle of difference images for a rough detection is appropriate to quickly get the
overall traffic situation on highways. Two subsequent images are used by Reinartz et al.
[2006] to calculate difference images. Two changes per moving car are returned. These
changes have to be assigned to the first and the second image. Therefore, edges are
extracted to distinguish whether the blob is due to a leaving or an arriving car. If the
location of the contour coincides with the blob from the difference image, it is assumed
that the object belongs to the current image. In the next step the obtained objects are
refined by applying erosion and dilation. For high quality traffic analysis it is a prerequisite
to have a very accurate geocode and a very good co-registration. Also two subsequent
images are used for a multivariate alteration detection (MAD) which results in a change
image in which moving vehicles on roads are highlighted [Palubinskas et al., 2008]. The
approach does not explicitly focus on the individual vehicle but on the traffic flow.

This strategy was taken up for twice the frame rate where the differences of three con-
secutive images are calculated [Xiao et al., 2010]. In parallel, a background learning and
subtraction step is applied to detect slow moving or standing vehicles. Additionally, a
co-registered road network delivers a vehicle behavior model and generates traffic pat-
tern and additional regularization constraints. The graph matching algorithm combines
the constraints with object-based vertex matching features and pairwise edge matching
features into a single process. Finally, the overall association cost is minimized between
current detections with the existing tracks.

Moreover, difference images of three subsequent images are used to extract the temporal
change [Tuermer et al., 2011a,b]. Due to non-perfect co-registration many static regions
have been extracted as well. A classifier based on HOG features and AdaBoost is used to
examine the remaining objects.

Background model

In addition, the motion component is utilized in the approach of Reilly et al. [2010].
Firstly, the images are registered using Harris corner points and the SIFT descriptor,
afterwards, outliers are removed by the RANSAC algorithm. Then a background model
is calculated using simple median filtering for every 10 images. In a next step, the back-
ground is subtracted from the search image. Finally, remaining artifacts are removed
by calculating the gradients of the background image and subtracted from the difference
image as well. In general, all approaches placing reliance upon temporal change are quite
accurate, but these methods only detect moving cars.
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Stereo images

Based on the previous method, Pacher et al. [2008] add a calculated range image. Em-
phasis is on the determination of the ground area. Zebra crossings are utilized to get
the height of the ground level. The same car extraction methodology is used to improve
ortho-images and digital elevation models [Leberl et al., 2007, 2008].

2.3 Lessons learned and rationalization

Starting with the recapitulation of the ideas mentioned in the above presented car ex-
traction approaches leads us to the following conclusions regarding the possible transfer
to low frame-rate aerial imagery with a resolution of one or two decimeter.

Firstly, the employment of previous knowledge like the position of roads is a key factor
to attain the best possible detection result. Information of road databases is often used
to limit the search space and restricts the extraction method only to areas belonging to
roads [Holt et al., 2009; Kozempel & Reulke, 2009]. This has two major advantages: less
calculation time and fewer false positives. Despite that fact, common road databases have
a drawback concerning the accuracy of the positions of the roads and their borders. As the
databases are mainly used for navigational applications, they are sufficiently accurate for
the navigation task. But in the vehicle detection case we have to add a significant tolerance
to the borders of the road to ensure that the whole road is examined. A better solution
is to use road databases only for an ample extraction of the road. Additionally, the road
segments can be extracted from the original image and not from the geo-referenced one
in order to save calculation time.

A more reasonable step to deal with the dilemma of inaccurate road databases is the
usage of DSMs (e.g., Kluckner [2011]). The ground level of densely populated city areas
often belongs to roads or at least trafficable areas. Exceptions are bridges, flyovers,
depressions or tunnel entrances/exits. However, these special areas can be determined
by the utilized road databases or generally geographic information systems. Since cities
are rapidly changing and the possession of global models is limited, it is suggested to
calculate these DSMs directly before the vehicle detection procedure. Furthermore, to
eliminate the calculation time which is necessary due to the geo-referencing step of the
DSM generation process, disparity images are sufficient to distinguish ground from non-
ground areas [Tuermer et al., 2012].

Normally, two overlapping subsequent images provide enough information for the disparity
calculation. In the following chapter two different techniques are presented. One uses the
position of the sensor which is obtained by GPS plus INS and the second one matches
these two images using interest points only. Another advantage of disparity maps is that
vehicle detection is not strictly limited to regions close to the center of the road, but also
parking spaces which are slightly further away can be included. The presented strategy is
initialized by a missing combination of methods in previous works. Many approaches have
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just been applied to single images as can be seen in Fig. 2.1. Thus, for this dissertation
information from multiple images is utilized for disparity image calculation in order to
exploit the 3-dimensional information for car detection. In addition, an automatic method
is presented to separate ground from non-ground areas.

Moreover, the branch of single images in Figure 2.1 is further split in region-based and
gradient-based methods. The region-based methods, on the one hand, often result in
certain objects which than have to be classified by additional properties (e.g., geome-
try). The benefit is that usually the whole image is treated globally allowing existing
interconnections between areas to be considered, such as green areas or driving surfaces.
However, the utilized features are often rather simple. On the other hand, many of the
latest gradient-based approaches, which are in the sub-branch of HOG features, rely on
the sliding window technique – a technique which only operates locally (window size).
Additionally, they use other complex high-level features but still the examined area is
only local – the area of the window.

In this work, the combination of a region-based approach together with a high-level
feature-based approach appears to be most straight forward and efficient. Both meth-
ods complement each other. In the case of the region-based step, a clustering of color
values is done. Subsequently, objects with certain geometries and shapes are selected.
The high-level feature-based step is based on gray-value images, from which gradient
magnitude and orientation are extracted in order to calculate HOG features. This fea-
ture is trained with an AdaBoost algorithm. In contrast to previous works, region-based
and gradient-based features combined with disparity maps is suggested. Therefore, the
novel region-based technique and a technique to automatically determine ground level are
introduced.

In conclusion, this study offers the following major contributions:

◦ rapidly calculated disparity maps and the extraction of trafficable areas

◦ an effective region-based technique to select car candidates

◦ a combination of region-based and high-level features providing a high generalization
in combination with low manual effort

The following research hypotheses are pursued. The combination of the region-based
and the high-level feature-based methods is assumed to reduce the training effort. This
may be possible because most of the non-relevant areas are excluded by the region-based
method and the ground-area-determining method before the creation of the classifier.
Generally, the parameter setting of the region-based technique should be less complex,
and exhausting manual training steps like online training and back-porting of training
samples should be avoidable.
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3 Process Strategy

This chapter describes the methodological details of the suggested car extraction strategy.
The order of the sections is according to their position in the processing chain. A short
graphical overview is presented in Figure 3.1. It can be seen that the process starts with
two subsequent overlapping images. Overlapping means they cover mainly the same area.
Moreover, the single processing steps are indicated by rectangular forms. In addition to
the label of each processing step the number of the corresponding section is included in
the graphic as well.

3.1 Extraction of coarse road segments

The information of road databases or general GIS databases is frequently used to limit
the search area in aerial images (e.g., Stilla & Michaelsen [2002]) or to control the search
effort (e.g., Stilla [1995]). It has been shown that data from large vector maps (1:5000)
or cadastral maps can be used in a very efficient way.

Example car detection approaches which try to extract areas belonging to roads are from
Holt et al. [2009] and Kozempel & Reulke [2009]. However, common road databases
distributed by commercial companies like Navteq [NAVTEQ, 1985], Tele Atlas [Tele At-
las, 1984] or nonprofit communities like OpenStreetMap [OpenStreetMap, 2004] have a
drawback concerning their accuracy of the center-line and border positions of roads [Aga-
mennoni et al., 2010]. On the one hand, road databases are mainly used for navigational
applications for which they are sufficiently accurate. On the other hand, road databases
are not suitable to determine the whole road accurately, for instance, without roofs from
neighboring houses in urban areas or grass strips in rural areas. A slightly better perfor-
mance can be sometimes achieved by road databases from governmental institutions like
the Authoritative Topographic-Cartographic Information System (ATKIS) [AdV, 1996]
provided by the Federal Agency for Cartography and Geodesy (BKG). However, some
tests also showed a poorer reliability of ATKIS (deviations of up to 3.3m) compared to
NAVTEQ (average deviation 1.7m, maximum 6.1m) [Kozempel, 2012].

A second issue that comes up when talking about accuracy of road data bases is that
original images after direct georeferencing (e.g., ortho-image) also do not have a highly
accurate geocode. This is due to limited accuracy of GPS/IMU inside the plane and
calibration errors. When summing up both errors (geocode of ortho-image and database)
the desired center-line of the road can be several meters away from its real position.
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3 Process Strategy

Figure 3.1: Workflow of presented car extraction strategy. The databases of the roads
and the global DEM are available in advance. Moreover, the training dataset
is also available before the images are received.
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3.1 Extraction of coarse road segments

X

Y
Z

x´

y´

f(X,Y,Z)

Figure 3.2: Projection of road segment from road database to the original image. The
coordinate system X,Y,Z is from the road database and the DEM, while the
coordinate system x’, y’ is from the image. The function f(X,Y,Z) is described
in Equations 3.1 and 3.2.

However, this argument is only valid for the real-time case because the accuracy of the
geocode can be enhanced if enough time for a post-processing is available.

Conclusively, using current road databases is not a sufficient solution to accurately limit
the search area. In addition, the limitation using road databases could also have draw-
backs. Considering the fact that when only roads are extracted, cars in parking spaces in
the surrounding area, cannot be detected either.

Hence, the idea pursued in this dissertation is to extract road segments plus a generous
buffer zone. Also in the case of extreme inaccuracies all roads and the vehicles on them
should be preserved in the remaining areas. In contrast of using the whole image, the
benefit is still the reduction of the calculation time for further processing steps and the
risk reduction of false positives in areas with car-like objects. However, it is not necessary
to use ortho-images with geocode. This step would lead to further time consumption, and
depending on the resampling algorithm, also to a worse image quality. The proposition
is to project the road segments in the original image as shown in Figure 3.2.

A position in the image (x′, y′) can be calculated with the collinearity equation:
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3 Process Strategy

x′ = x′

0 − c

[

r11(X −X0) + r12(Y − Y0) + r13(Z − Z0)

r31(X −X0) + r32(Y − Y0) + r33(Z − Z0)

]

(3.1)

y′ = y′0 − c

[

r21(X −X0) + r22(Y − Y0) + r23(Z − Z0)

r31(X −X0) + r32(Y − Y0) + r33(Z − Z0)

]

(3.2)

where the interior orientation consists of the coordinates of the principal point x′

0, y
′

0 and
the calibrated focal length c. The exterior orientation is included by the coordinates of
the projection center X0, Y0, Z0 (obtained from GPS) and the rotation of the camera rij
(obtained from IMU and boresight misalignment [Kurz et al., 2007; Lee & Yilmaz, 2011;
Kurz et al., 2012]). X, Y are the coordinates which are received from the road database
while Z is obtained from a global DEM.

Due to the fact that a high accuracy is not necessary at this step (the enhanced extraction
of trafficable areas is explained in Section 3.2), a coarse DEM for example of the SRTM
mission can be used [USGS, 2000]. The absolute height error (90% error) of the SRTM
measured in Europe and Asia is 6.2m and in North America 9.0m [Rodriguez et al., 2006].
Other sources report an error of 4.07±0.47m in Catskill Mountains (New York, USA),
which is significantly better than indicated in the specification (16m) [Gorokhovich &
Voustianiouk, 2006]. These previously mentioned values refer to the DEM obtained from
C-band interferometric radar data but there is also a DEM based on the X-band. These
two DEMs can be combined to further enhance the accuracy. The standard deviation
of the differences of the combined DEM and an absolute elevation reference in southern
Germany is 3.4m [Hoffmann & Walter, 2006].

3.2 Selection of ground regions

The intention is to calculate a disparity image and to exclude areas above ground level
where cars are found very unlikely. Bridges, flyovers, tunnel entrances and exits are special
cases and have to be treated differently. To speed up the calculation we use the coarse
road segments which we cut out using the road database and calculate the disparity image
only for these two consecutive segments. Finally, the ground area of the disparity images
is automatically determined.

3.2.1 Calculation of disparity image

In the following paragraphs a method for calculating the disparity image is presented.
This is split up into obtaining the orientation of the two cameras and the calculation of
the epipolar images, and matching of corresponding pixels from image 1 to image 2 with
the semi-global matching algorithm.
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3.2 Selection of ground regions

Orientation of the stereo images

The procedure of calculating the orientation of the images starts with calculating inter-
est points in both images. Popular ones are, for instance, Harris [Harris & Stephens,
1988] or Foerstner points [Förstner & Gülch, 1987]. The latter are utilized here due to
their better performance concerning distinctness, invariance, stability, uniqueness, and
interpretability [Rodehorst & Koschan, 2006]. Although, the evaluation of interest point
operators depends on the scene and the implementation. Other possible interest points
which have advantages – for example rotation invariance – are the SIFT [Lowe, 2004], the
SURF [Bay et al., 2008] or the BRISK [Leutenegger et al., 2011] operator. Also a com-
bination of SIFT and Foerstner points is possible and has been alternatively evaluated.
This results in a technique which combines the robustness of the SIFT and the location
accuracy of the Foerstner operator [Heinrichs, 2011].

The geometry of the stereo setup is figured out by a matching of the previously generated
interest points. More precisely explained, gray values of a certain area around the interest
points are matched using normalized cross-correlation. The optimal setting of matching
points is obtained by filtering with the RANSAC algorithm [Fischler & Bolles, 1981]. Goal
is to iteratively find the setting where a maximum of interest points is conform with the
epipolar constraint (minimum distance of corresponding points from the epipolar line).
In addition, lens distortions are considered by using a non-linear camera model with
parameters of the interior orientation.

Two different ways are shown to finally obtain the orientation of the cameras – relative
or exterior orientation. The exterior orientation is the combination of relative and abso-
lute orientation. The first way does not utilize additional information, while the second
exploits the navigation data of the aircraft. Navigation data are the position obtained
from the GPS and the rotation of the IMU sensor.

Relative orientation without navigation data After the previous steps a set of corre-
sponding points is available. These points are used to estimate the fundamental matrix F
with a non-linear iterative algorithm based on the Maximum Likelihood Estimation. The
algorithm is described in Hartley & Zisserman [2010] (Algorithm 11.3, The Gold Standard
algorithm for estimating F from image correspondences). The matrix F consists of a ma-
trix of translation and a projective transformation corresponding to the corrections of the
first camera. After determining the F matrix, the two stereo images are resampled consid-
ering the epipolar constraint. After the transformation, corresponding epipolar lines are
co-linear. The resampling is done with a bi-linear interpolation algorithm. The epipolar
images allow us to search for the match of a point in image 1 along the corresponding
epipolar line in image 2 [Kraus, 2007]. The benefit of the epipolar geometry is that it
reduces the scope to a one-dimensional correlation problem.

Exterior orientation with navigation data The second way is used when navigation
data are available. In order to utilize the additional information, a bundle adjustment
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3 Process Strategy

is applied [Triggs et al., 2000]. This procedure is assumed to be more accurate because
then the position and the rotation of the cameras from GPS and IMU can be introduced
to the bundle adjustment as additional observations. The bundle adjustment is done to
estimate the exterior orientation, which is then used to calculate the epipolar images.

Semi-global matching

The disparity images are then calculated based on the epipolar images utilizing the semi-
global matching (SGM) algorithm [Hirschmueller, 2008]. The basic steps of the stereo
vision method have the following properties [d’Angelo & Reinartz, 2011]:

Matching cost computation The Census transform [Zabih & Woodfill, 1994] is used to
compute the similarity value of two matched pixels. It is based on small windows and is
considered very robust in the case of discontinuities [Hirschmueller & Scharstein, 2009].
For a further computation of the matching costs the Hamming distance [Hamming, 1950]
is used.

Aggregation of cost and disparity computation Due to the global algorithm an energy
function is optimized. The energy E(D) is defined as [Hirschmueller, 2008]:

E(D) =
∑

p

(C(p,Dp) +
∑

q∈Np

P1 · T · [|Dp −Dq| = 1]

+
∑

q∈Np

P2 · T · [|Dp −Dq| > 1])
(3.3)

where D is the disparity map, the pixel matching costs for each pixel at location p in the
first image and its corresponding pixel in the second image (given by the disparity image
Dp) is defined by function C. The next two terms add penalties (P1, P2) in the case of
small (e.g., 1 pixel) or larger disparity changes in neighborhood Np. To this end, T is set
to 1, if the argument is true or to 0, if not.

Refinement of disparities Sub-pixel accuracy can be obtained by fitting a local parabola
to the aggregated costs close to the minimum. Additionally, to remove outliers, pixels of
image 1 are matched to pixels of image 2 and vice versa. The disparity is rejected if there
is no consistency.

3.2.2 Determination of ground areas from disparity image

The ground area of the disparity image is automatically determined using a technique
from the field of minimum error thresholding [Kittler & Illingworth, 1986]. The intention
is to iteratively find the best separation between two classes (ground and non-ground).

24



3.3 Segmentation and extraction of candidate regions

The method was developed under the assumption that the part of the image which is cut
out, with the pre-knowledge coming from road databases, has two main classes in densely
populated urban areas. These classes are roofs of high buildings and roads/pedestrian
paths.

The algorithm works globally on the selected road segment and can be mathematically
expressed as follows.

Topt =argmin{1 + 2[R1(T ) log σ1(T ) +R2(T ) log σ2(T )]

− 2[R1(T ) logR1(T ) +R2(T ) logR2(T )]}
(3.4)

where T is the examined threshold and σ1(T ), σ2(T ) are foreground and background
standard deviations. The parameter Ri is calculated with Equation 3.5.

Ri(T ) =
b
∑

g=a

h(g) (3.5)

with a = {0|i = 1}∨{T |i = 2}, b = {T −1|i = 1}∨{n|i = 2}, n is the number of intensity
values, and h(g) is a histogram of the elevation values. The algorithm walks through
every possible threshold and evaluates it with the criterion function Topt. A comparison
of this method to others can be found in Sezgin & Sankur [2004].

3.3 Segmentation and extraction of candidate regions

In aerial images of one or two decimeter resolution cars mostly appear, simply described,
as rectangular-like objects having a similar shape with a certain tolerance depending on
the genre of the specific car. Exceptions are, for instance, partly occluded vehicles by
trees or other objects with overhang. Also the perspective projection (central projection)
of aerial images leads sometimes to occlusions. Objects higher than cars, like buildings,
’fold back’ and obstruct the view.

The approximate average size of a car is 4.5m length [Kienzle, 2001] and 2m width
in the real world. Based on that knowledge the car size in the image can be easily
calculated corresponding to the image’s GSD. After a successful segmentation it is possible
to examine the segments obtained according to their size and shape. The segmentation
result will be more sophisticated when color information (RGB channels) is used instead
of gray values only.

Usually, two-tone or multi-tone colored vehicles can be observed quite rarely. The very
vast majority of all cars are painted in a single color. And within the group of single-tone
colored vehicles more than two-thirds have no color as such; these cars are black, white or
gray. The tendency becomes clear when looking at the colors of newly registered vehicles
in the year 2012 [DuPont, 2012] (see Figure 6.1). Statistics of vehicle colors in the case
of Germany only are provided by Kraftfahrt-Bundesamt [2011, 2012].
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3 Process Strategy

Segmenting single-tone colored objects should be easy. However, in practice the problem
is that although a car is painted in a single color it appears in the image as an object
having slightly different tone variations due to varying illumination. This fact makes
the segmentation process more challenging. Additionally, objects like the windshields or
the lights are often in another color anyway. A solution that eases segmentation is an
additional smoothing step which leads to more homogeneous colored objects. Also the
influence of general noise is reduced. The smoothing can be carried out more effectively
when the pixel size of the desired objects is known. Because as consequence the choice of
an optimal sigma for Equation 3.6 or Equation 3.7 is easier.

The segmentation step is generally a grouping of pixels with similar RGB intensities. In
order to get objects based on the same color, a region growing algorithm is applied. In a
further step these obtained regions are filtered according to their properties. The goal is
to identify certain objects by their typical shapes and forms; also involving the number
of pixels.

Smoothing of images has the major consequence that it removes high frequencies. These
high frequencies are responsible for the visibility of small details. Small details in aerial
images with a resolution in the lower decimeter range are, for instance, street lamps,
traffic lights or pedestrians. But also parts of larger objects, like in the case of a car, head
lights or sliding roofs belong to this group. After removing these high frequencies the
segmentation returns fewer objects which can be better classified. For instance, objects
with a significantly different aspect ratio such as a car or car queues can be rejected.

The proposed method is also very powerful when it comes to rejection of road markings.
These objects often pose difficulties to other algorithms because they show strong gradi-
ents at their borders. Additionally, the distance of parallel located road markings is often
only slightly wider than the width of a typical car.

An overview of all the single sequential steps is shown in Figure 3.3.

3.3.1 Smoothing and mean curvature flow

Gaussian filter

At the beginning of the segmentation step it is necessary to smooth the image and remove
very high frequencies. Therefore, firstly a Gaussian blurring is applied to reduce eventual
present noise which could have a disturbing effect in the subsequent process. The discrete
Gauss function G is defined as:

Gσ(x, y) = e−
x2+y2

2σ2 (3.6)

where x, y are the two image dimensions and σ is the standard deviation. In practice, σ
is chosen according to object size in the image. With respect to the GSD of the image,
the filter size is chosen.
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3.3 Segmentation and extraction of candidate regions

Figure 3.3: Workflow of car candidate selection.

Mean curvature flow

The second smoothing step is more crucial and has greater impact. Generally, cars appear
differently in aerial imagery. Some show fine structures and others appear as dark blobs.
The smoothing is an attempt to generalize them in such a way so that the regions can
be better classified after the region growing procedure. In the best case, the result is
that cars remain just as a single-colored patch. Additionally, often road markings can be
removed from the further search process (see Chapter 5.1.2).

Three parameters have to be set for the application of this function [MVTec, 2012]. The
parameter σ (sigma) of the Gaussian convolution kernel (see isotropic smoothing in Section
3.3.1); also necessary are time step θ and number of iterations i. The parameter σ is used
for an Gaussian smoothing as done in the previous step and is not necessary anymore.
The two other parameters are explained in the following lines which explain the problem
of mean curvature flow.

Generally, our image is expressed by function u(t, x, y) at time tstart = 0 which is u(0, x, y).
The aim is now to determine the temporal change due to the curvature flow which is given
by Equation 3.7 [Chen et al., 1991].

du

dt
= div

( ∇u

|∇u|

)

|∇u| (3.7)

It can be seen as an initial value problem. Here ∇u is the spatial gradient of u, and
∇u/ |∇u| is the unit normal to the level surface of u. Hence, div(∇u/ |∇u|) is its mean
curvature.

Finally, the numerical technique named finite element method (FEM) is used in order
to calculate u(t, x, y) at a certain time t = tend. That means all partial derivatives are
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3 Process Strategy

approximated by a difference quotient. The central difference quotient is used for the
derivatives of x and y. The forward quotient is used for the derivation of time t because
u(−θ, x, y) is not known.

The derivative of the spatial coordinates can be evaluated at certain locations only due
to the fact that an image is a discrete function. These certain locations are given by an
increment in pixels. The same principle is valid for the derivative of time which is also
calculated at discrete time steps only. This increment is given by the parameter θ. It is
only calculated at a finite number of time steps which are given by the parameter i.

The solution u(t = tend, x, y) = u(i · θ, x, y) is iteratively calculated: Using the given
initial value u(0,x,y) enables us to calculate u(θ, x, y). Moreover, the determination of
u(2 · θ, x, y) can be done with u(θ, x, y) until u(i · θ, x, y) is reached.

The partial derivative of u to t at the location i · θ is expressed by Equation 3.8.

ut =
u((i+ 1) · θ, x, y)− u(i · θ, x, y)

θ
(3.8)

This results in Equation 3.9 according to Aubert & Kornprobst [2006]:

u((i+ 1) · θ, x, y) =
u(i · θ, x, y) + θ ·

√

u2
x + u2

y · (uxxu
2
y + uyyu

2
x − 2uxuyuxy)

(u2
x + u2

y)
3/2

(3.9)

where ux, uy, uxy are the derivatives which are approximated by the difference quotient
like in Equation 3.10.

ux =
u(i · θ, x+∆x, y)− u(i · θ, x−∆x, y)

2∆x
(3.10)

with ∆x being the increment in x direction. The other directions are approximated in
the same way.

Benefit of this method is a smoothing along and not perpendicular to the edges of the
image. It can be also described as contours that move in the direction of the gradient.
A further description of this topic can be found in Crandall & Lions [1996] and [Clarenz
et al., 2003].

3.3.2 Region growing and selection of vehicle candidate regions

The following algorithms are applied to the processed image from the previous Section
3.3.1.
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3.3 Segmentation and extraction of candidate regions

Color region growing

Firstly, an unsupervised clustering is done and the image is segmented in several regions.
If two neighboring pixels have a distance lower than a certain threshold they will be
agglomerated. The following schema for calculating the distance is used:

U =

√

√

√

√

√

1

3

∑









Ra

Ga

Ba



−





Rb

Gb

Bb









2

(3.11)

where U is the Euclidean distance and R, G, B are the red, green, blue channels of
neighbouring pixels a and b.

Select area I

The obtained regions are filtered with regard to their geometric properties. Regions
consisting of fewer pixels than a certain limit are selected. The limit is set to the maximum
size of a car aimed to detected – plus a tolerance. At this point there is no minimum
limit to reject regions which are only sparsely populated. Because, one and the same color
often looks different due to different illuminations, and thus this effect might lead to more
than one region per car.

Select anisometry

A second filter step selects regions concerning their anisometric properties. The aniso-
metry An is derived from the division of the major axis Ra and the minor axis Rb of the
region (Equation 3.12).

An =
Ra

Rb
(3.12)

The ratio delivered by the anisometry measurement is useful to distinguish between re-
gions having the same number of pixels but a different shape. Regions that are too thin
or too long, and would not match to a vehicle can be rejected. In practice these regions
are often triggered by boarders of roofs or road markings. The principle schema can be
seen in Figure 3.4.

Select compactness

As last filter step for the preliminary car candidates, the compactness of the regions is
examined. The compactness C of a region is calculated by the following mathematical
expression (Equation 3.13).
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Figure 3.4: Visual description of the anisometry measurement. Region (a) would be ac-
cepted due to its fitting ratio of Ra and Rb, while the region (b) does not
match that criteria and is rejected.

C =
L2

4Aπ
(3.13)

where L is the length of the contour of the region. The distance between pixels parallel
to the coordinate axis is counted as 1 while the diagonal distance contributes with

√
2 to

the overall sum. The parameter A is the area of the region which is simply the sum of all
pixels.

A benefit of the compactness measurement is that there is a sensitivity to roughness and
gaps incorporated. This is also useful to reject regions which are not typical for a car.

Regions to binary image

The remaining regions are now transformed to a binary image but this is not the final
mask yet. The step is necessary to apply the second region growing.

Binary region growing

The second region growing step is only applied in order to form one single region from
several directly neighboring regions. Single regions without neighbors still remain single
regions and are not agglomerated. The applied method is just a binary region growing
algorithm and the formula is equal to Equation 3.11 but only for one channel.

Select area II

After the second region growing, the agglomerated regions are examined according to their
size once again. Regions below a certain number of pixels are rejected. This procedure
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3.4 Description of vehicles by gradients

allows us to get rid of very small artifacts which come originally from vegetation or from
roof ridges.

Intersection

Unfortunately, due to the second region growing and the ”Selected area II” step regions
are generated that have already been excluded previously. Therefore, an intersection of
the current status with the previous status (after ”Select compactness”) is applied. This
assures that the result is not worse than it was at an earlier step in the processing chain.

3.4 Description of vehicles by gradients

The description of a car can be done using gradients. Many cars have more or less typical
edges which lead to gradients and can be used for a general description. The following
section shows which edges are useful for classification of cars and how they are processed
to get a high level feature like HOG. There are different categories of vehicles, which have
different edges with slightly different curvatures in the image.

3.4.1 Calculation of gradients

Edges that can be expected from a car in aerial imagery are shown in Figure 3.5. In
reality, often not all edges are present at once. However, the key attribute of a car seen
from above is the surrounding contour with its rectangle-like shape and rounded corners.
If this contour is not present it is very likely not to be a car. The only exception could
be a partly occluded car (e.g., by trees).

Other edges appear at the windshield and the rear window. Whereas the windshield is
often larger and more frequently present in the view from above, many car types like vans
or station wagons have a very steep rear window which can be hardly seen from above.
Another problem is the color of cars. While bright cars offer a good contrast between
the color and the typical dark windows, dark cars do not. In that case the windshield
does not provide any useful edges. Further edges can be triggered by road markings
which may occur at random positions around the car. Although there are standards for
road markings, it is very difficult to find a good general model. Some road markings are
interrupted, others are continuous and even some areas are transversely lined to indicate
a certain traffic rule. The magnitude of edges from road markings is usually very high
due to the good contrast which is given by the white color of road markings in contrast
to the gray road surface. Also the impact of shadow has to be considered. Shadow can be
problematic due to edges which arise by reason of boundary lines of the shadow (especially
of the umbra). Firstly, shadow only appears under illumination; secondly, the shadow size
depends on the position of the sun (time of day, time of the year, orientation). Moreover,
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Figure 3.5: Typical edges that can be expected from a car in aerial imagery. (A) The
surrounding contour is the key characteristic which can be observed for every
car. Exceptions are only partly occluded ones. (B) The front windshield
is also often visible except for some dark cars. (C) Gradients of the rear
window occur more rarely due to different car types. Some car types have
almost perpendicular rear windows and cannot be seen from above. (D) Road
markings can occur at every location around the car. (E) On a sunny day
also a boundary line of the shadow has to be expected. (F) Some cars provide
edges due to their usually bright headlights.

the location is related to the orientation of the car to the sun. Furthermore, if a car is
already in the shadow of a house for instance, its own shadow is no longer visible. Finally,
edges that are often neglected refer to the front lights. Especially, modern cars have large
headlights which can be sometimes seen from above. If these edges exist they have usually
a high magnitude due to the good contrast of the inherently white headlights.

Gradient magnitudes and gradient orientations in gray level images can be obtained by
various operators. Popular ones are the Prewitt [Prewitt, 1970], the Sobel [Sobel, 1970]
and the Scharr [Scharr, 2000] operator where the two last two additionally include am-
plifying factors. Problems in case of these filters could be the anisotropy; in other words
a stronger response from horizontal and vertical edges than from diagonal ones results.
The Scharr operator shows a significantly improved rotational invariance compared to the
Sobel operator [Kroon, 2009].

Another possible solution is the introduction of an additional filter to detect diagonal
edges known as a compass filter. This is done with the implementation of the following
operators. The Robinson [Robinson, 1977], the Kirsch [Kirsch, 1971] or the Frei-Chen
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3.4 Description of vehicles by gradients

[Frei & Chen, 1977] operator are isotropic.

Furthermore, some operators are more sensitive to noise and others have a better gener-
alization ability which is also related to the filter size. Typical sizes are 3 by 3 or 5 by 5.
Sometimes it is also reasonable to apply a smoothing filter (e.g., Gauss filter) in advance.

However, the suggestion of Dalal & Triggs [2005] in the case of face detection is that a
simple filter like the Prewitt performs best. This statement is also valid concerning vehicle
description in aerial images, as own tests showed, and thus can be confirmed. The other
operators cannot really compete except for the Sobel operator. The Sobel operator’s
attribute is putting emphasis on stronger edges which leads to a better generalization
ability. However, it is in general not recommended because the weighting leads to the loss
of the smaller gradients. The previously mentioned generalization ability leads sometimes
to fewer false negatives but it can also lead to more false positives. If a car is extremely
generalized only the surrounding contour will remain, which is more or less similar to a
simple rectangle.

The gradients in x and y direction are obtained by two convolutions of the gray value
image. Finally, the best performing operator is the Prewitt filter which can be mathe-
matically expressed as shown in Equations 3.14 and 3.15.

Gx =





−1 0 +1
−1 0 +1
−1 0 +1



 ∗ I (3.14)

Gy =





+1 +1 +1
0 0 0
−1 −1 −1



 ∗ I (3.15)

where Gx are the high spatial frequencies in horizontal direction and Gy in vertical direc-
tion. The gray value image is I. The gradient magnitude is given by Equation 3.16 and
the angle of orientation of the edge is given by Equation 3.17.

|G| =
√

G2
x +G2

y (3.16)

θ = arctan
Gy

Gx

(3.17)

The border treatment, which is necessary for the gradient calculation, has not such a great
impact. It can be done by setting all border values to zero, replicate or mirror them. The
final decision was to replicate the boarders.

An example of resulting gradients from cars in aerial imagery calculated by the Prewitt
operator is shown in Figure 3.6.

Also the Prewitt filter response for an intermittently rotated object is show in Figure 3.7.
It can be seen that the slightly remaining anisotropy of the filter, which is inherent for
gradient filters, has a minor impact only.

33



3 Process Strategy

10 20 30 40

10

20

30

40

(a) (b) (c)

Figure 3.6: Example of Sobel operator application. (a) Original RGB image showing an
average car. (b) Same car after RGB to gray value conversation. (c) An
example of the application of Equation 3.14 and Equation 3.15. The blue
arrows show the orientation and magnitude of the gradients.
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Figure 3.7: Same car in different orientations. The gradient filter, which was used for
demonstration purposes, is the Prewitt filter. It can be seen how the gradients
change due to the rotation and that the slightly remaining anisotropy of the
filter has a minor impact only. The size of the image is 44 by 44 pixels and
thus the unit of the coordinate axes is pixel.

34



3.4 Description of vehicles by gradients

3.4.2 Calculation of histogram features

The HOG feature was inspired by the previous work of Lowe [1999] who invented the
SIFT key point method. Part of the SIFT method is the SIFT descriptor. The idea to
use the SIFT descriptor as descriptive feature for object recognition was introduced by
Dalal & Triggs [2005]. The main principle of this feature is binning the magnitude of
the gradients to a histogram according to their orientation. Thus, the exact position of
the gradient gets lost but the position of the area from which the feature is calculated
remains. The histogram provides a certain generalization and the number of elements in
the feature vector is reduced. A detailed description of the HOG feature can be found in
Dalal [2006].

Nowadays, there have been a number of descriptor variants presented where the roots are
still in the SIFT descriptor. One of the latest further developments is the CHOG descriptor
where the C stands for the word compressed [Chandrasekhar et al., 2009, 2012]. It uses
a Huffman coding to compress the information of the gradients and lowers the feature
vector dimension. It is recommended to use this feature when the data of the feature has
to be transmitted via low bandwidth. For an evaluation of other popular local features
up to the year 2005 please refer to Mikolajczyk & Schmid [2005].

The original HOG feature calculation starts with a grid of overlapping blocks. Each block
contains a grid of cells. The weighted votes for gradient orientation are accumulated
in each cell. The blocks are used to normalize the contrast. According to the block
form there are R-HOG and C-HOG features which stands for rectangular and circular,
respectively.

In our approach we also utilize the SIFT descriptor with rectangular cells. But in contrast
to the original HOG feature we have overlapping cells of different sizes. These cells are
shifted over the whole patch as described in Figure 3.8. The usage of different cell sizes
leads to more features and can increase the detection quality. The optimal cell sizes
depend on the GSD of the desired object. In general, it is not necessary to be restricted
to only a few sizes because the detection quality won’t be affected by too many features;
especially in the combination with a machine learning algorithm like Boosting (Section
3.5). The only limitation of the increasing number of features is that these have to be
computationally handled. That means the estimated training time will increase and the
hardware configuration (e.g., memory) should be appropriate. The runtime of the final
classifier is not affected.

The following cell sizes in pixels are used {4×4, 6×6, 8×8, 10×10, 16×16}. Finally, when
the features of all the cells are calculated each training sample provides 6280 features for
a training sample sized 44×44 pixels (44×44 is a suitable size for a car in aerial imagery
with 13 cm GSD). Smaller cells are not reasonable because 2×2 pixels do not have enough
significant information. The upper limit simply depends on the object’s resolution. The
impact of the different cell sizes is shown in Section 4.3.1. Furthermore, the utilized
sample classifier is shown which consists mainly of 4×4 sized features (Figure 4.7).

Each histogram is normalized. Generally, a global contrast normalization can improve
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4 x 4
6 x 6
8 x 8

10 x 10
12 x 12

gradients

HoG feature

Figure 3.8: Schematically explanation of the utilized histogram feature. The process starts
with the calculation of gradient magnitude and gradient orientation based on
a patch from a gray value image. Finally, these gradients are transformed to
the histogram. The selection of the correct bin is according to the orientation.
The related magnitude of the gradient is added to the height value of the bin.
The final feature is the resulting histogram.

the performance as well [Dalal & Triggs, 2005]. However, the algorithm applied here is
without global contrast normalization. A possible concept is to detect shadow areas and
treat them differently [Makarau et al., 2011].

Another important parameter is the decision of how many bins each feature consists.
The experiment for human detection showed that an optimal number of bins is 9 [Dalal
& Triggs, 2005]. Own experiments showed that there is no difference between 9 and 8
bins. Even the difference between 4 and 8 bins is not very high. However, in the further
approach 8 bins are utilized. In a very time critical environment the recommendation is
to go for 4 bins only. The information stored in 4 bins can be enough to describe the
typical rectangular shape of a car which is the mainly used attribute.

Furthermore, another important issue is if the histograms are calculated for 180 degrees
only or for the total 360 degrees of the orientation of the cars. In the first case training
cars are not oriented in one direction only but the diametrically oriented cars are also
used. In contrast, the second case uses only cars strictly oriented in the same direction.
As I stated before, the training data should be as homogeneous as possible, hence the
optimal solution would be to use 360 degrees and thus only cars which are oriented in one
single direction.

However, when applying a detector based on single oriented cars to an image where cars
are included in two diametrically orientations, all cars of the other orientation are detected
as well. The reason is the anyway already existing strong generality of the detector due
to the fact that cars can never be completely homogeneous. Consequently, the detector
trained for one orientation is also applied for the opposite orientation.
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3.5 Vehicle gradient classifier

3.4.3 Car model and similarity measurement

The calculated histograms need to be compared. Therefore a schema has to be applied
which returns a distance and enables us to evaluate the distance between two histograms.
A common way do do that is using the Bhattacharyya distance DB [Bhattacharyya, 1943].

DB(P,Q) = −ln(BC(P,Q)) (3.18)

BC(P,Q) =
n
∑

i=1

√

∑

pi
∑

qi (3.19)

where P , Q are two histograms, pi, qi are the corresponding bins (elements) of the his-
tograms, and thus

∑

pi or
∑

qi is the magnitude of the respective bin of the histogram.

The DB is positive and symmetric however it violates the triangle inequality [Kailath,
1967]. A fact which would not interfere but the Hellinger distance DH instead meets all
axioms that are necessary for the definition of a metric [Comaniciu et al., 2003] and is
used in the following.

DH(p, q) =
√
1− BC (3.20)

3.5 Vehicle gradient classifier

The training procedure of the gradient-based classifier is assigned to implicit methods
[Gomes et al., 2009]. Within that group a further division is possible between unsupervised
and supervised classification. The first mentioned is the generic term for methods using
statistics of the data itself to separate the feature space. In contrast, the second mentioned
which uses extra training data to figure out the setting of the parameters. This thesis
deals in the following section with a supervised classification and the Boosting algorithm.
It is going to be explained how the selection of training data and its processing is carried
out. Subsequently, relevant AdaBoost variants are described and compared.

3.5.1 Selection of training data

The success of the final classification result is highly ascribable to the preparation of the
training data. It is insufficient to cut out the vehicles haphazardly and forward that data
to the Boosting algorithm. The explanation is as follows. All training data, positive ones
as well as negative ones, provide a set of features (which are calculated as described in
Section 3.4.2). These features are the origin for determining the dividing lines within
the feature space. These dividing lines are the base of the parameters of the subsequent
classification. If the positive features are very heterogeneous it is more difficult to separate
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3 Process Strategy

them from the negative class of features. At a certain point it will not be possible to divide
the feature space accurately and you have to make the decision whether to accept more
false positives or more false negatives.

The general heterogeneity of the vehicles in aerial images is connected to the following
reasons:

◦ Vehicles have different dimensions which depend on their genre

◦ Vehicles are differently oriented, even if they are rotated the potential problem of
shadow remains

◦ Vehicles are differently illuminated due to different day times and changing weather
conditions

◦ Vehicles can be in various contexts, such as a parking area where other cars are
adjacent

These problems can be countered with the following actions. In the case of the different
dimensions it is necessary to split up the training data and thus also the detection proce-
dure into several vehicle classes. It seems to be clear that it is not recommended to put
large trucks in the same class as small cars. But there are also dimensional differences
existent in the class of cars. If these differences are too large it is better to set up a new
class. The threshold for cars being to large is related to the spatial resolution of the data
and the desired precision. Of course, more classes lead to a higher manual effort when
training data is prepared.

Moreover, it is not recommended to cut out samples and rotate these in order to retrieve
the desired orientation and pad out the training data. This will lead to an imprecise
classifier as well. The reason for this can be observed in Figure 3.9. If there is sun shine
during acquisition of the images, the sun will inherently light from the south-east, south or
south-west. Hence the shadow of the cars is more or less in a direction that is somewhere
to the north of the object. Due to this fact shadow is a feature which becomes obvious
when we compare cars of two different orientations (Figures 3.9a and 3.9b).

Furthermore, it has to be noted that a homogeneous training data set is also necessary
because of a general sensitivity to noise of the chosen training procedure (Section 3.5.2).
The reasonable number of training samples is determined to about 50 pieces and they are
manually selected (see Section 4.3).

3.5.2 Training of the classifier

The following lines give an explanation for the training of the classifier. The explained
methodology is valid for probabilistic approaches only. Every object to be examined
belongs to a class. The relation to a class can be seen as a characteristic of variable Y .
Based on an observation vector x, the assignment to a class should be carried out. The
relationship of Y and x can be seen as a conditional probability (Y |x). Furthermore,
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3.5 Vehicle gradient classifier

(a) (b)

Figure 3.9: Impact of sunshine for the training of the classifier. Two cars from the same
dataset (original size 32 x 32 pixels) where the impact of sunshine becomes
clear. (a) A car sample which is oriented in a western direction. The shadow
in the northern direction is plain to see. (b) A car facing the northern direction.
The sun is still shining and illuminates the object, however, the shadow can
hardly be seen.

the relation can be estimated by classifier C, which can be created, for instance, using
knowledge from similar observations where the class of the object is already known.

In our case, several thousand features are calculated (Section 3.4.2) from each training
patch (Section 3.5.1). Additionally, each feature consists of several elements again. Fi-
nally, these elements are concatenated to one feature vector which provides us the implicit
description of the object. It is good to have many features (long feature vector), on the
one hand, because the description is very detailed and could be helpful to distinguish
between similar objects. On the other hand, it is problematic because it leads to a feature
space of very high dimensionality.

Some training methods, for instance support vector machines (SVMs), are not suitable to
handle feature spaces of such high dimensionality. The application of SVMs can be enabled
when only highly informative features are selected and unimportant or redundant ones are
discarded. This can be achieved, for example, by applying a principal component analysis
(PCA). In contrast, the AdaBoost algorithm is inherently not limited to a maximum
number of features.

Generally, Boosting creates a strong classifier by combining several weak classifiers – those
that correctly classify more than 50 percent of the training data. Initially, this has been
achieved by Schapire [1990] and Freund [1990], but the method was not adaptive at that
time. Due to this missing characteristic, variants like AdaBoost have been developed
[Freund & Schapire, 1995, 1996, 1997].

The training data consists of two classes which are car and no car. Therefore, the following
description of the AdaBoost algorithm is restricted to the binary variants and does not
include multi-class variants. If needed, more classes could be used to classify, for instance,
trucks as well. However, it is not essential and can be done in a separate process as well.

In a first step, the training data is split up into training and evaluation parts. The
evaluation part is used to determine the termination criterion. Parameters leading to
termination of the iterative training procedure are the desired detection rate and the
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accepted false negative rate. At the beginning, all samples in the training part are treated
with the same weight values. Then a binary recursive partitioning procedure generates a
classification tree [Breiman et al., 1984]. Training samples which have been inaccurately
classified are treated with a higher weight in the next training round. The actual goal is
the special consideration of samples which are difficult to classify. In the end, all obtained
trees are combined in one classifier. This can also be done in the style of a cascade [Viola
& Jones, 2001].

It is necessary to add that there are two variants of training data selection for the Ad-
aBoost algorithm. One method applies the weights directly to the training samples, and
the another method uses the weights as probabilities to decide which training samples
are drawn. In the following process only these training samples are used. The choice
depends on the subsequent function and whether it is able to handle weighted input
data [Hechenbichler, 2005]. In the following scenario, weights are directly applied to the
training samples.

Moreover, it is necessary to mention that AdaBoost is quite sensitive to noise [Bauer &
Kohavi, 2009]. To address this problem the gentle AdaBoost variant has been developed.
In comparison to real AdaBoost, outliers are not treated in such an extreme way. However,
the best solution is still to select the training data carefully(Section 3.5.1).

Another general problem of training algorithms is termed over-fitting. It normally occurs
when the training data is memorized or the noise of the training data is learned. Although
over-fitting of the AdaBoost algorithm could be expected, it is seldom observed [Polikar,
2006]. A detailed explanation based of the margin theory is given by Schapire et al.
[1998]. However, referring to the experience gained with car data from aerial imagery,
over-fitting may happen. It occurred in situations when the group of training cars was
quite inhomogeneous – in other words, noisy.

Variants of the AdaBoost algorithm are explained in the following paragraphs. The
mathematical notation of the AdaBoost descriptions is similar to Hechenbichler [2005]
and can be studied there in detail.

Discrete AdaBoost

The mathematical expression of the discrete AdaBoost algorithm can be written in fol-
lowing way:

1. Start with weightings w1 = ... = wnL
= 1/nL for the observations of training sample

L.

2. Do step m as follows:

a) The classifier C(., Lm) is created using weighted observations Lm of training
sample L

40



3.5 Vehicle gradient classifier

b) The classifier C(., Lm) is applied on L and ǫi = 1 if the ith observation is
classified as false. Otherwise ǫi = 0.

c) The re-sampling weights are updated with em =
∑nL

i=1 wiǫi, bm = (1− em)/em,
and cm = log((1− em)/em):

wi,new =
wib

ǫi
m

∑nL

j=1 wjb
ǫj
m

=
wiexp(cmǫi)

∑nL

j=1 wjexp(cmǫj)
(3.21)

3. After M steps we receive the aggregated vote for the observation x:

argmaxj

(

M
∑

m=1

cmI(C(x, Lm) = j)

)

(3.22)

where em is a weighted sum of errors. The term cm is the logarithmic ratio of right and
wrong classified samples. The term is not arbitrarily chosen because it is responsible of
the fact that half of the total weights are used for right classified samples and the other
half are used for the false classified samples [Hechenbichler, 2005].

Real AdaBoost

In contrast to the discrete AdaBoost algorithm the real AdaBoost algorithm, introduced
by Friedman et al. [2000], utilizes a real-valued classifying function f(x, L). That means
the result of C(x, L) = 1 is now obtained with values between the range of ]0, 1] and
vice versa if C(x, L) = −1 the obtained confidence values range from [−1, 0[. The class
indicator Y is now defined Y ∈ {−1, 1} and the algorithm is mathematically descried as
follows:

1. Start with weightings w1 = ... = wnL
= 1/nL for the observations of training sample

L.

2. Do step m as follows:

a) The classifier C(., Lm) is created using weighted observations Lm of training
sample L

b) The classifier C(., Lm) is applied on L and p(xi) = P̂ (Ỹi = 1|xi) is received

c) Based on these probabilities a real-valued classifier is developed

f(xi, Lm) = 0.5 ∗ log p(xi)

1− p(xi)
(3.23)
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and the weights are updated for the next step:

wi,new =
wiexp(−Ỹif(xi, Lm))

∑nL

j=1 wjexp(−Ỹjf(xj, Lm))
(3.24)

3. After M steps we receive the aggregated vote for the observation x:

sign

(

M
∑

m=1

f(x, Lm)

)

(3.25)

Gentle AdaBoost

The gentle AdaBoost algorithm proposed by Friedman et al. [2000] introduces a new term
for updating the weights. Instead of the logarithmic quotient of the probabilities (Equa-
tion 3.23) the new term is calculating the difference of the two probabilities (Equation
3.26). The goal is to put less emphasis on outliers. Furthermore, it is numerically more
stable and there is no need to close gaps in the definition of the function [Hechenbichler,
2005].

The mathematical description is as follows:

1. Start with weightings w1 = ... = wnL
= 1/nL for the observations of training sample

L.

2. Do step m as follows:

a) The classifier C(., Lm) is created using weighted observations Lm of training
sample L

b) The classifier C(., Lm) is applied on L and p(xi) = P̂ (Ỹi = 1|xi) is received

c) Based on these probabilities a real-valued classifier is developed

f(xi, Lm) = p(xi)− (1− p(xi)) (3.26)

and the weights are updated for the next step:

wi,new =
wiexp(−Ỹif(xi, Lm))

∑nL

j=1 wjexp(−Ỹjf(xj, Lm))
(3.27)

3. After M steps we receive the aggregated vote for the observation x:

sign

(

M
∑

m=1

f(x, Lm)

)

(3.28)
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Figure 3.10: Example of what kind of features are used for the classifier. The classifier
was trained with cars having vertical orientation. First stage of the classifier
uses features colored orange, while second and third stage are blue and green,
respectively. The result can be compared to Figure 3.5 in order to visually
estimate which significant edges have been used.

In some empirical tests gentle AdaBoost leads to better results than real AdaBoost [Lien-
hart et al., 2003]. However, in our situation it is not superior to real AdaBoost. Empirical
tests showed a slightly better result when using the real AdaBoost variant. Hence, the
results in Chapter 5 are based on the real AdaBoost algorithm.

3.5.3 Vehicle classification

The obtained classifier from Section 3.5.2 is now applied to the remaining parts of the
image. Remaining parts are those areas which have neither excluded by the disparity
image (Section 3.2.1) nor by the segmentation procedure (Section 3.3).

Resulting classifiers consist of several cascades. The final number of cascades depends
on the termination criterion which was set at the beginning. Training data, for instance,
which consist of very different positive samples and negative samples lead to fewer cas-
cades. Moreover, the number of utilized weak classifiers per cascade increases when used
later in the process. This can be seen in Figure 3.10 where utilized features are marked
in different colors. The colors are related to the stage of the cascade. The demonstrated
classifier consists of three stages. The first stage (orange) has features with a larger area
as it is usual.
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3.6 Final weighted selection of vehicles and coordinate

transformation

The two finalizing steps take care about multi detections and the global coordinates. The
first point is necessary to receive an optimal detection result, whereas the second point is
used to transform the data in a sharable format.

3.6.1 Final weighted selection of vehicles

Finally, after the steps described above remains a number of multiple detections. This
phenomenon can be explained by the inhomogeneity of the training data (Section 3.5.1).

A standard solution is the use of the mean shift algorithm [Fukunaga & Hostetler, 1975].
However, the presented approach takes a different path and uses a faster non-iterative
technique. All confidence values of the detections are summed up in a Gaussian weighted
manner according to their distance within a certain area. That means values far away,
but still in a certain area, contribute less. At the end of the process the candidate with
the highest votes within the limited area is accepted and proven to be the real center of
the detected car.

A graphical explanation is shown in Figure 3.11. The green variables are confidence values
voting for a car. The confidence value of variable a is extended by surrounding variables
which lead to a new vote a∗:

a∗ = a+ g(dab)b+ g(dac)c+ g(dae)e+ g(daf )f (3.29)

where surrounding variables b, c, e, f are weighted according to their distances dxx. The
Gaussian weighting procedure is symbolized by function g(dxx). Variable o in the figure
is outside the considered area and is therefore ignored. It could be a completely different
car due to the larger distance to a.

The fixed certain area usually is the size of a small average car. The size can be set because
the GSD of the aerial image is known. Moreover, because of the fixed certain area also
false positives can be identified and rejected. A drawback is the rotation invariance, but
this prerequisite has already been set in previous steps of the strategy.

3.6.2 Transformation of vehicle positions to global coordinates

After all preceding steps, the current position of the cars is only defined by local co-
ordinates which are consisting of row and column in the search image. In order to provide
the extracted traffic information in a useful format for further-processing partners, global
coordinates are requested. Therefore, Gauss-Krueger or Universal Transverse Mercator
(UTM) coordinate systems are suitable.
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Figure 3.11: Sketch showing how multi detections are treated. The grid is a small part
of the search image. The cell size of the sketch is equivalent to the pixel
size of the original image. The green variables stand for confidence values.
l, w represent length and width of the rectangle set to the average size of a
small car. dxx is the Euclidean distance between two variables. Variable o is
outside the rectangle and therefore ignored – in the same manner as all other
variables outside.

Since the search image is not ortho-rectified and the geocode is missing a transformation
is needed. Here again the colinearity equation is used.

X = X0 + (Z − Z0)

[

r11(x
′ − x′

0) + r21(y
′ − y′0)− r31c

r13(x′ − x′

0) + r23(y′ − y′0)− r33c

]

(3.30)

Y = Y0 + (Z − Z0)

[

r12(x
′ − x′

0) + r22(y
′ − y′0)− r32c

r13(x′ − x′

0) + r23(y′ − y′0)− r33c

]

(3.31)

where X, Y, Z are the coordinates of the object (vehicle), X0, Y0, Z0 are the coordinates
of the projection center in the coordinate system of the object. The principal point is
defined by x′

0, y
′

0 and the position in the image is given by x′, y′. The calibrated focal
length is involved by c.

The height of the projection center Z0 can be taken from the GPS receiver of the aircraft
and the corresponding height of the object is taken from the global DEM (e.g., SRTM).

For detailed information about the UTM coordinate system and the further transforma-
tion starting from the Cartesian coordinates X,Y,Z you are referred to Kahmen [2005].
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3.7 Car candidate validation using background and color

information

The color information of the vehicle on the one hand and the background of the vehicle
on the other hand are features that have been utilized quite seldom for car detection
(Section 2.2). However, the potential of these features is examined and thus an approach
to validate vehicle candidates is developed. The approach is mainly inspired by Heitz &
Koller [2008] and Chang & Krumm [1999].

The idea is based on the development of a technique which has different roots than
normal segmentation or classification techniques. The reason is that the method is aimed
to apply as validation technique and no true positives should be removed. A SVM or
another machine learning algorithm would need a slack variable to do so.

Firstly, CCHs are calculated from training data but these are not given to a machine
learning technique. Instead, the distribution is calculated and generalized using a beta
function. The idea behind is the higher transparency and also the better understanding
and the intervention possibilities. The corresponding workflow of the approach is shown
in Figure 3.12. The work is also published by Leister et al. [2013]. A detailed description
plus experiments can be found in Leister [2013].

3.7.1 Background separation and HSV color space

The way to obtain the background of the vehicle candidate and the utilized color space
are described in the following subsections.

Background separation

Firstly, foreground and background of each car candidate are examined separately. How-
ever, the technique is identical for foreground and background areas. At the beginning,
all candidates are represented in the RGB color space.

In order to apply a mask the orientation of the vehicles has to be known. Since the
presented approach is planned to act as validation method, the orientation can be obtained
from the preceding detection algorithm. Alternatively, road databases can be used to
determine the potential driving direction of the cars. Additionally, it is assumed that a
car is in the center of the examined image patch.

The principle of the fore- and background mask is depicted in Figure 3.13. The size of
the foreground mask is determined by the average size of a car. It is derived from the
dimensions of 30 training cars. However, pixels close to the contour of the cars have been
ignored. The reason is that often artifacts occur at these positions due to shadow. The
major objective of the presented method is to get statistical information about color and
lightness of the car and the background, and thus artifacts could adulterate the statistics.
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3.7 Car candidate validation using background and color information

Figure 3.12: Workflow of the vehicle validation technique.

Figure 3.13: Extraction of foreground for validation purpose. Foreground (potential car
candidate) and background (potential street) can be set as a fixed area since
the orientation of the cars is assumed to be known. The foreground is in the
center of the patch while the background is restricted to the areas to the left
and right of the car.
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d = 1 d = 2 d = 3

Figure 3.14: CCH and example of a circular symmetric structure of neighborhood. This
variant is utilized.

The background area is represented by the remaining rectangular areas to the left and
the right side of the cars. The area in front and behind a car is not used in the further
process because often cars are parked in a row and other cars which disturb the process
can be found at these positions.

HSV Color Space

After the separation a transformation into the HSV color space is performed. From that
moment on the color information and the intensity can be independently accessed. A
special property of the HSV color space is the necessity of only one channel to define the
color value. The transformation from RGB to HSV color space can be found in Gonzalez
& Woods [2007].

3.7.2 CCH feature and likelihood calculation

Color co-occurrence histogram

Subsequently, color co-occurrence histograms (CCH) are calculated. Co-occurrence his-
tograms are based on the relation of neighboring pixels and give a statement about the
properties of the texture [Liu et al., 2012]. A graphical explanation can be seen in Figure
3.14.

The calculation of a CCH can be mathematical written as:

H(I, d) =
∑

x

∑

y

{

1 | I(px, py) = I(x, y) ∩ d = 1

0 else
(3.32)

The factor d = 1 has been chosen because experiments have not shown significant dif-
ferences between d = [1, 3, 5, 10]. On the other hand with d = 1 the fewest comparisons
need to be done and calculation time can be saved.
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3.7 Car candidate validation using background and color information

Likelihood decision

A closer empirical examination of the histograms shows that often an accumulation around
a certain value occurs [Leister et al., 2013]. Hence, the implication is that the mean of
the histogram is able to provide enough information for the following decision. To this
end, the mean of a CCH is calculated as shown in Equation 3.33.

m =
1

∑

I h(I)

∑

I

h(I) · I (3.33)

where h(I) is the I-th value in the CCH.

A training set consisting of samples from all used classes is necessary for the following
process. The reference data is essential for a correct classification of the candidates and
the possession of an appropriate large dataset of reference data is recommended, in order
to be able to make a significant statement. Calculating the mean values of these training
candidates leads to characteristic histograms for all three categories. Finally, we obtain
three CCHs from every candidate and out of it three means (mH, mS, mV). Subsequently,
every value is compared with the values of the corresponding histogram of the three classes
which we calculated from the training data. For example, the process is as follows. mH

is compared to the values of the hue-histogram of cars, roads and vegetation. We take
the three corresponding (i. e. mH → [hcar(mH), hstr(mH), hveg(mH)]) values hcat(m) and
compare them with each other. The nine quantities (qH,car, qH,str, . . . , qV,veg) stating to
which distribution the mean value of a candidate belongs to are calculated using Equation
3.34.

qchan,cat(mchan) =
hchan,cat(mchan)

∑

cat hchan,cat(mchan)
(3.34)

In the next step we multiply the quantities of the same category to get a combined value
(Equation 3.35).

kcat =
∏

chan

qchan,cat(mchan) (3.35)

This gives us three values, named kcar, kstr and kveg, describing the frequencies for the
examined area of being car, road or vegetation. The new values kcat are then assumed to
be directly correlated to the likelihood of being such a candidate.

Based on these six (2× 3) kcat values of the foreground and the background, a decision
can be made whether a candidate is a car or not. We can compare these values to each
other and find scenarios which mostly show cars on streets, pure streets or others.

The following three rules describe conditions when the candidate is supposed to belong
to the no car class:
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◦ Road in foreground:

[kstr(foreground) > kveg(foreground)] ∧ [kstr(foreground) > kcar(foreground)]

◦ Vegetation in background:

[kveg(background) > kstr(background)] ∧ [kveg(background) > kcar(background)]

◦ A too small difference between foreground and background:
∑

chan |mchan(foreground)−mchan(background)| ≤ threshold

The threshold can be specified dependent on different light conditions and sensor prop-
erties. In our experiments, the threshold ranged from 10 to 15. When the difference was
too low, foreground and background were the same category.

Instead of using the histograms of the training data, the corresponding beta-functions
give us the possibility to estimate the values of the histograms hchan,cat where we do not
have training data.

3.8 Moving-object incorporation

The entire approach presented is designed to detect parked or ’not moving’ cars. However,
often there are some cars moving in a scene and this incidence can be used to enhance
the overall detection quality – also of parked cars.

Generally, moving cars are easier to detect than parked ones. The reason is that for
a detection of these objects the search space can be reduced with simple methods (as
shown below). The idea is to detect these moving cars first and combine the results with
the strategy described in the previous sections. The benefit is that, besides all possible
complications, at least all moving cars are reliably detected. Additionally, it can be
assumed that no other detection is valid within a certain radius of the reliable detection.
This helps to identify false positive detections from a less reliable detection procedure
such as the procedure for stationary cars.

Firstly, a color space is chosen which is technically oriented. That means per definition
the color space must be a linear transformation of the RGB color space. The utilized
color space is I1I2I3 and can be calculated from RGB color space in the following way
(Equation 3.36).





I1
I2
I3



 =





1/3 1/3 1/3
1/2 0 −1/2

−1/4 1/2 −1/4









R
G
B



 (3.36)

where R, G, B represent the red, green, blue channels and I1, I2, I3 are the resulting
channels of the I1I2I3 color space model.
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3.8 Moving-object incorporation

Furthermore, three subsequent images are co-registered (e.g., using SIFT) or, if available,
the geocode of the images is used. Subsequently, the difference of the current image and
the previous image, and the difference of the current image and the subsequent image
are calculated. The two resulting difference images are linked with the Boolean AND.
The method expressed in formulas can be seen in Equation 3.37 where the first difference
image D1 is calculated [Rehrmann & Birkhoff, 1995]:

D1(t1, t2, x, y) =



















1, if |II1(t2, x, y)− II1(t1, x, y)|
+ |II2(t2, x, y)− II2(t1, x, y)|
+ |II3(t2, x, y)− II3(t1, x, y)| > dmin

0, else

(3.37)

where the functions of the images are II1(t, x, y), II2(t, x, y) and II3(t, x, y). The parameter
t is the triggering time whereas x and y are row and column coordinate of the three
different channels I1, I2, I3. The parameter dmin is a threshold which is necessary for
excluding intensity changes of pixels due to sensor noise, various illuminations or the
different illustration geometry. Afterwards, those two calculated difference images are
linked (Equation 3.38):

D2(t1, t2, t3, x, y) =











1, if D1(t1, t2, x, y) = 1

∧D1(t2, t3, x, y) = 1

0, else

(3.38)

with D1(t1, t2, x, y) difference image of previous and current image and D1(t2, t3, x, y)
difference image of current and consecutive image.

The utilized technique is standard in the field of moving object detection from video data
where very high imaging frequencies provide more information due to the high sampling
rate. In the field of lower sampled information it works up to a certain limit. Prerequisites
are at least three images of the same area. This situation can be also expected for low-
frequent aerial images due to their usually large field of view and the resulting overlap.

Finally, the obtained binary maskD2 is used to identify candidate areas of moving objects.
These areas are further examined using the detector from Section 3.5.3. The principle is
schematically explained in Figure 3.15. A fusion of detected moving cars with non-moving
cars detected by the previously explained main technique (Section 3.1–3.5.3) is carried out
with the method explained in Section 3.6.1. There, vehicle candidates from the approach
for moving cars are introduced with higher weights.
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Search image

Motion Mask

Detector (only applied if motion mask=true)

(white=true, black=false)

Figure 3.15: Schematically explanation of the utilized motion mask: The binary motion
mask (black and white layer in the Figure) is calculated according to Equa-
tion 3.38. Black and white indicate areas where stationary and moving ob-
jects are expected, respectively. Furthermore, the motion mask is projected
to the search image. The detector, which is schematically shown in the Figure
as arrow perpendicular to the motion mask, is applied to the search image.
However, the detector is only applied to areas where the motion mask is set
to true (white areas). Black areas of the motion mask are skipped.
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The following sections describe the data which is used to test the car extraction technique
explained in Chapter 3. Moreover, also the conduction of the experiments is described.
Results of the experiments are then shown in the subsequent Chapter 5.

4.1 Sensors and platforms

The general topic of this thesis is car extraction from aerial imagery. A fundamental part
of this process is the nature of the image data. Therefore, in the following text properties
of the used sensors including their optimal settings are examined. Utilized airborne sensors
are on the one hand, a low cost camera system named 3K camera system and its successor
the 3K+ camera system. On the other hand, a professional photogrammetric camera
system named UltraCam Eagle is used. All of these systems are specially constructed for
the use in aircraft.

Aircraft used for the 3K/3K+ camera system are the Cessna 208B Grand Caravan or the
Dornier Do 228-212. The carrier of the UltraCam is unknown.

The experiments concerning the camera settings and image quality are only carried out
with the 3K/3K+ camera systems. Reason for this is the lack of possible flight opportu-
nities with the UltraCam sensor (Section 4.1.2).

4.1.1 3K and 3K+ camera systems

The 3K/3K+ camera systems have been developed for the purpose of mapping and traffic
monitoring large areas. Each of them is composed of 3 off-the-shelf cameras namely Canon
EOS 1Ds Mark II and Canon EOS 1Ds Mark III for 3K and 3K+, respectively. A picture
of the 3K+ camera system is shown in Figure 4.1. Detailed information of the camera
systems can be taken from Table 4.1.

The 3K/3K+ camera systems generally have fewer technical equipment features than
professional aerial camera systems e.g., no motion forward control. Also the ground
sampling distance is lower, mainly due to different lenses. However, besides the significant
lower price, there is an important advantage of the 3K/3K+ camera system concerning
the frame-rate. In case of the car extraction strategy presented here a higher frame rate is
useful for the calculation of the disparity map (Section 3.2.1) and for the optional moving
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Figure 4.1: The 3K+ camera system; unmounted in the laboratory.

Table 4.1: Specification of 3K and 3K+ camera systems.

3K 3K+

Cameras 3 × EOS 1Ds Mark II 3 × EOS 1Ds Mark III
Sensor 36 × 24 mm CMOS 36 × 24 mm CMOS
Physical pixel size 7.21 µm 6.41 µm
Image size 3 × 4992 × 3328 (16.7 MPix) 3 × 5616 × 3744 (21.0 MPix)
Max. frame rate 3 Hz a) 5 Hz b)

File size 20 MByte (RAW) 25 MByte (RAW)
Aperture 1.4 – 22 1.4 – 22
Shutter speed 1/8000 – 30 s 1/8000 – 30 s
Lenses Canon EF 1.4/50 mm Zeiss Makro-Planar 2/50 mm
GSD c) 15 cm 13 cm
Data rate 8.3 MByte/s 9.8 MByte/s
FMC no no

a) only up to 50 images
b) only up to 63 images
c) at a flight altitude of 1000 m
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object incorporation (Section 3.8). The calculated disparity map will be more accurate
and reliable by using redundant information of overlapping images. Also the moving
object detection can be simplified and speeded up by a higher frame-rate. Additionally,
applications which are interested in traffic flows and vehicle velocities can extract the
desired information of temporal change more precisely.

Important facts for information extraction from aerial imagery are the radiometric prop-
erties. Because this information is directly responsible for the image quality. Based on
that knowledge, general statements about sharp edges or objects specific reflections are
possible.

The following paragraphs give information about the radiometric properties of the
3K/3K+ camera system. The goal is to optimize the use of off-the-shelf cameras for
airborne monitoring purposes, i.e., to acquire images with best resolution and contrast in
the presence of forward motion blurring and changing incoming radiance. In contrast to
high level photogrammetric systems, the forward motion blurring of off-the-shelf cameras
is reduced by short exposure times, which worsens the conditions for achieving radio-
metrically optimal images. As the internal processing of the camera has no changeable
parameters, it works like a black box and there is no further influence on how they affect
the radiometric quality. The remaining free configurable parameters are the f-number
and the ISO speed which are dependent on each other, so that only an appropriate com-
bination allows the best possible imaging result. Concise information about the influence
of these parameters on the radiometric performance is given in the following paragraphs.

The f-number is the focal length divided by the ’effective’ aperture diameter. A low
fnumber (e.g., 2.0) passes a lot of light to the sensor but also results in blurring due to
the larger circle of confusion. However, the image sharpness in the focal plane varies with
the relative aperture size. Additionally, there is optical vignetting which is sensitive to
the f-number and lens architecture. In general, the blurring can be cured by a reduction
in aperture of 2 steps. Due to the lens properties of 3K/3K+ f-numbers greater than 4.0
are able to produce satisfying results. For instance, Zeiss Makro Planar 2 has an aperture
range of f/2 to f/22.

The shutter speed is indirectly proportional to the light reaching the sensor. As mentioned,
short exposure times are aspired in order to reduce forward motion blurring. A flying
velocity of e.g., 70m/s at 1000m altitude, with a shutter speed of 1/2000 s results in 3.5 cm
movement which approximately corresponds to 1/4 pixel. Higher shutter speed values
reduce the incoming light and thus enforce the f-number and film speed to inappropriate
values. Our test supports the assumption that a shutter speed of 1/2000 s is an acceptable
compromise. Edge spread functions (ESF) and their corresponding line spread functions
(LSF) based on an image with shutter speed 1/2000 s are shown in Figure 4.2 and one with
shutter speed 1/8000 s in Figure 4.3. Comparing both LSFs shows that the image with
lower shutter speed has sharper edges (sigma 0.73, respectively sigma 0.92). Obviously,
the reason is that a faster shutter speed is not able to compensate the lower f-number.

ISO speed is the measure of the sensor’s sensitivity to light. Higher values result in noisy
images. Hence, the aim is a low ISO speed, but this can be an impossible requirement –
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(a) (b)

Figure 4.2: Edge spread function (a) and line spread function (b) of an image from the
3K+ camera system with 1/2000 s exposure time.

(a) (b)

Figure 4.3: Edge spread function (a) and line spread function (b) of an image from the
3K+ camera system with 1/8000 s exposure time.
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especially on cloudy days. The impact of different ISO speed parameters can be observed
in Figure 4.4, which illustrates that higher ISO values cause noisy images. A test campaign
with the 3K+ sensor was performed with different f-numbers, shutter speed values and
ISO settings to find out the best camera settings with the highest effective GSD. The range
of settings for the shutter speed was 1/1000 s to 1/8000 s, for the f-numbers ranging from
2.8 to 5.6, and for the ISO values from 250 to 1600. The campaign showed that the best
results are obtained by taking fixed settings for the exposure time and the f-number, while
the ISO setting is variable according to the illumination conditions. The settings vary
from case to case, for instance areas covered by concrete have a higher reflectance than
forests. The resolution (effective GSD) of the 3K/3K+ camera system was determined
by a Siemens star with a diameter of five meters as seen in Figure 4.5. The formula to
obtain the effective GSD l using a Siemens star is depicted in Equation 4.1.

l =
π · d
n

(4.1)

where d is the diameter of the blurred area in the center of the Siemens star and n is the
number of black and white bars.

According to that experiment we obtain an effective GSD of 18.6 cm for the 3K and
13.2 cm for the 3K+ camera compared to the theoretical GSD of 15 cm respectively 13 cm
from 1000m above ground. Also the signalized edge is sharper in the 3K+ image than
in the 3K image. The standard deviation of the LSF is σ = 1.07 pixels for the 3K image
and σ = 0.69 pixels for the 3K+ one.

For further detailed information about the 3K+ camera system refer to Kurz et al. [2012].

4.1.2 UltraCam Eagle camera system

Although the car extraction strategy presented here has been developed with regard to
low-cost camera systems like the 3K/3K+ ones, it should be shown how generally applica-
ble the technique is. Therefore, an alternative sensor is introduced which is the UltraCam
Eagle from Microsoft (Table 4.2). It has more technical features such as forward motion
compensation. Additionally, a higher resolution is achievable compared to 3K/3K+ at the
same flying altitude which is due to the 80 mm lens and the larger sensor area. However,
the frame rate is much lower compared to 3K/3K+. Nevertheless, there is still a sufficient
overlapping area which enables us to calculate the disparity image (Section 3.2.1).

There is no detailed examination of the radiometric properties because the camera itself
has never been in my possession. However, there is a project of the German Society
for Photogrammetry, Remote Sensing and Geoinformation which dealt with this issue
[Cramer, 2010; von Schönermark, 2010]. The data have been kindly made available by
the Bavarian State Office for Surveying and Geoinformation.
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(a) (b)

Figure 4.4: Images taken with two different ISO speed settings. Visualization of 3K+
sensor noise (enlarged areas of the concrete areas shown in the image of Figure
4.5b). The images have been taken with following settings: (a) ISO 250,
1/2000 s, f2.8 (b) ISO 1600, 1/2000 s, f5.6.

(a) (b)

Figure 4.5: Image of Siemens star and black/white edge; used to measure resolution and
line spread function of (a) 3K (b) 3K+ camera systems. The orange d depicts
the blurred inner circle and the orange D depicts the entire diameter of the
Siemens star.
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Table 4.2: Specification of the UltraCam Eagle camera system.

Microsoft UltraCam

Camera UltraCam Eagle (panchromatic) [color]
Sensor 104.05 × 68.02 mm CCD
Physical pixel size 5.2µm
Image size [pixel] 20010 × 13080 (260MPix) [3 × 6670 × 4360]
Max. frame rate 0.56 Hz
File size 842 MByte
Aperture 5.6
Shutter speed 1/500 – 1/32 s
Lenses 80mm
GSD a) 6.5 cm
Data rate 462.5 MByte/s
FMC yes (max. 50 pixels)

a) at a flight altitude of 1000m

Table 4.3: Main properties of the test scenes. All scenes are from the inner city area of
Munich, Germany.

Dataset No. Pixels Hz GSD View Date (local time) Sensor

1 677 × 268 3 13 cm nadir 06-07-2011 11:51 3K+
2 799 × 288 3 13 cm nadir 06-07-2011 11:51 3K+
3 720 × 691 3 13 cm nadir 06-07-2012 12:08 3K+
4 1752 × 520 3 13 cm nadir 26-04-2012 11:08 3K+
5 1632 × 474 0.56 20 cm nadir 26-05-2012 - -:- - UltraCam

4.2 Data and scenes

The following scenes have been utilized for carrying out the experiments described in
Section 4.3. Moreover, the results based on these images are then presented in Chapter
5. Furthermore, Table 4.3 gives an overview of the main properties of the test scenes.

Datasets of the 3K+ camera system are only taken by the center camera of the system
and thus provide nadir view. Alternatively, images from the left and the right camera
would provide an oblique view which leads to more occluded areas – especially in urban
areas with high buildings.

59



4 Experiments

4.2.1 Dataset 1 - 3K+, small road, city center, Munich

Dataset 1 is a small road which is oriented in a west-east direction and located close to
the city center of Munich. The dataset has been chosen because of the typical inner city
structure – high buildings are to the left and the right side of the road. These kinds of
image are not easy to handle for unsophisticated car detectors due to car like structures
on the roofs and on the faca̧des which can cause false positive detections. Additionally,
parked cars are very close to faca̧des and roofs which is useful to test the accuracy of the
ground extraction step.

The dataset is of further interest because often the accuracy of road databases is very low
in areas where small roads are bordered by high houses. The reason is mainly the low
availability of GNSS satellites due to shadowing effects. When a road database is set up,
which is usually done by GNSS receiver equipped vehicles, the resulting inaccuracy of the
measuring points has to be accepted

4.2.2 Dataset 2 - 3K+, small road, city center, Munich

Dataset 2 is similar to Dataset 1 and should be used to confirm the results achieved with
Dataset 1. Here, the road is also bordered by houses, and cars are also close to the roof
(aerial view). Additionally, at the time when the image was taken a garbage disposal is
at work. This introduces two interesting objects into the image. A waste container which
is sometimes classified as a car due to its rectangular shape, and the garbage collection
truck which should not be mistakenly classified as a car because it is a truck, not a car.
As further features vegetation and shadow areas are included. Shadow areas can pose
problems due to the low contrast between car and background. Moreover, texture of
vegetation sometimes leads to errors

4.2.3 Dataset 3 - 3K+, big road, inner-ring road, Munich

Dataset 3 is from the inner-ring road of Munich which is between the densely populated
inner city area and the sparsely populated areas some kilometers off the center. At the
time the image was taken, there was a large construction site in this area to build a
tunnel. This results in the road course changing very quickly (sometimes daily) and
road databases can no longer be used. Furthermore, the scene is interesting due to the
slight curve which can be an indicator of how stable the detection algorithm is related to
the orientation of the cars. Additionally, many road markings are present which can be
used to test whether the detection is affected by these objects. Last but not least, the
surrounding of the road is lower compared to the inner city areas (Dataset 1+2), hence
the performance of the ground extraction step can be easily evaluated for this situation
as well.
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Figure 4.6: A scene of the main campus of the Technische Universitaet Muenchen (TUM)
and its surrounding. The yellow rectangle indicates Dataset 4. The scene
is interesting because some vehicle detection approaches have been already
tested there. The scene includes heterogeneous objects with vegetation, roads
and buildings; also shadow and partly occluded cars are present.

4.2.4 Dataset 4 - 3K+, TUM, Arcisstrasse, Munich

Dataset 4 is from the road passing the main entrance of the Technical University in
a north-south direction. The example scene is marked with a yellow rectangle in the
original scene in Figure 4.6. However, just part of the original scene is used to focus the
discussion more on details. Several interesting objects are in this image, ranging from
debris containers in the parking lane to bike paths which are painted on the road – both
can cause false positives. Additionally, many cars are partly occluded due to vegetation,
and many cars are partly or completely standing in the shady area. Generally, this is
again a good test area for all algorithms of the strategy.

Moreover, exactly this area has been utilized to detect vehicles by a number of researchers
in the past [Yao, 2010; Leitloff, 2011]. Although, sometimes the property of the base data
is different (e.g., different sensor), the dataset can be perfectly used for comparing the
effectiveness of the presented approach to others.
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4.2.5 Dataset 5 - UltraCam, TUM, Arcisstrasse, Munich

Dataset 5 shows the same area as Dataset 4 but collected by another sensor at a different
date and time. The utilized sensor was the UltraCam Eagle which usually has a better
effective GSD compared to the 3K+ camera system (Section 4.1.2). However, the flying
altitude at the collection time has been higher which results in an effective GSD of ap-
proximately 20 cm. Also edges are not sharp as delivered by the 3K+ system. Logically,
the different time of recording leads to a different car constellations than in Dataset 4.
Cars are at different positions and also the overall number of cars in the scene is lower.

Nevertheless, the scene is suitable to make the evaluation of the presented strategy more
independent of the utilized sensor. Besides, it shows if the strategy is still applicable in
case of reduced resolution.

4.3 Conducting the experiments

The section on conducting the experiments provides a detailed description of the condi-
tions on which the results shown in Chapter 5 are based. This includes the determination
of the optimal parameter settings and the interfaces between the methodological sections.
Moreover, in some sections the expected results of the experiment are mentioned. All
experiments, with the exception of Section 4.3.1, are based on the datasets introduced in
Section 4.2.

4.3.1 Testing of each step considered independently

The following subsections present the conditions of the experiments for each single step of
the process strategy (Chapter 3). The parameter settings are determined not regarding
dependencies of preceding or subsequent steps of the strategy.

Accuracy of extracted coarse road segments

Generally, accuracies of available road databases are of broad interest for many applica-
tions, not only for vehicle extraction. Therefore, testing the accuracy of commercial and
non-commercial road databases has already been carried out by several institutions (see
below). Thus, in this work, road database accuracy has not been extensively tested but
examples are presented where typical problems occur. In addition, the consequences for
vehicle detection are discussed. Besides, I am aware of the inaccuracy of road databases,
and thus the whole car extraction strategy has been designed to cope with these inaccu-
racies and is labeled coarse extraction of road segments (Section 3.1).

Furthermore, as mentioned above, several researchers published articles related to accu-
racy assessments of road databases. For instance, studies have been carried out to mea-
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Table 4.4: Utilized parameters for extracting the ground regions. The weighting parame-
ters P1 and P2 are utilized in Equation 3.3. The three height parameters are
used to limit the range in which the corresponding disparity is searched. The
unit in meter can be simply transformed into a value in pixels using the GSD
parameter.

Parameter Parameter value

P1 750
P2 1450
GSD 13 cm
mean height 540 m
lower height 450 m
upper height 650 m

sure the positional accuracy of the OpenStreetMap (OSM) vector data combined with an
enhancement solution using aerial imagery [Canavosio-Zuzelski et al., 2013; Canavosio-
Zuzelski, 2013]. Additionally, another approach also based on remotely sensed imagery
presents an automatic quality assessment of road database data [Gerke & Heipke, 2008].

In contrast, the following approaches are not necessarily linked to remotely sensed data.
There is, for example, a comparison of the OSM and the Navteq data from Germany
[Ludwig et al., 2011]. Also from regions in Germany a comparison of the OSM and the
TeleAtlas data is made by Zielstra & Zipf [2010]. Whereas, Haklay [2010] compares the
OSM and the Ordnance Survey dataset from England, particularly the London area. The
English Ordnance survey dataset is similar to the German ATKIS.

Selection of ground regions

The experiments in this section are designed to make an assumption of how helpful dis-
parity maps are for car detection. Especially in urban areas, cars are sometimes close to
buildings. Hence, an important factor is the accuracy at the boarders from ground areas
to non ground areas. In highly inaccurate cases many cars would be lost after that step.

In contrast, when to many wholes are included in the disparity map because there were
no corresponding pixels found, the desired ground regions would be mixed with regions
from a higher level like buildings or vegetation. This effect would lead to a higher number
of false positives.

Finally, the ground regions are extracted from the disparity images. The parameter
setting of the utilized SGM algorithm is shown in Table 4.4. The parameters have been
chosen empirically. More information and a detailed evaluation about parameter setting
for disparity map calculation can be found in Zhu et al. [2011].

63



4 Experiments

Table 4.5: Utilized parameters for extracting the candidate regions. Please refer to Sec-
tion 3.3 for the corresponding equations and the detailed explanation of each
parameter.

Algorithm Parameter value(s)

Gauss filter σ = 5
mean curvature flow σ = 1, θ = 0.5, i = 10
regiongrowing U = max 3
select area I A1 = max 550
select anisometry An = max 6
select compactness C = max 4
select area II A2 = min 100, max 150000

Segmentation and extraction of candidate regions

A fundamental aim at the beginning of the initial development of the algorithm was to
make it as general and as simple as possible. Therefore, all candidate regions, presented
in Section 5.1, are processed with the same parameter setting, although some datasets
are obviously different. Of course, if the parameters had been adjusted for each single
dataset the outcome would have been enhanced but then the constraint of generalization
would have been violated as well.

The parameter values have been empirically determined because an adequate evaluation
could only be done by a human operator. The utilized values of the parameters can be
found in Table 4.5.

Training of vehicle gradient classifier

The training of the classifier is carried out with 50 vertical oriented cars acting as positive
samples and 2000 negative samples showing areas without cars (e.g., vegetation, roads,
road markings, buildings). As previously described the size of the samples is 44×44. All
other parameters of the gradient classifier and its utilized features are explained in Section
3.4.

The training samples are taken from a different flight other than the Datasets 1–4. How-
ever, they are still from the 3K+ camera system with 13 cm GSD but of course with a
slightly different illumination which is normal for a different flight. The major goal of this
experiment is to show that the manual interaction can be kept very low by extracting only
50 positive training samples. The negative samples are randomly selected from a large
patch of a scene which also requires low manual effort. Furthermore, no online training
has been performed for which false positive detections are ported back to the training set.

Due to the low number of positive training samples and the aimed high generalization,
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Table 4.6: Number of features utilized for each cascade of the classifier. The position of
the specific single features is drawn in Figure 4.7

cascade no. 1st 2nd 3rd 4th

number of features 3 4 5 6

column [44 pixels]
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Figure 4.7: Position of each single HOG feature utilized in the example classifier. Orange,
blue, green, pink rectangles are from the 1st, 2nd, 3rd, 4th cascade, respectively.

the classifier consists only of 4 cascades and 18 features. The number of features in each
cascade is shown in Table 4.6. The position of the features in the 44×44 window from
the example classifier used for vertical detections in Chapter 5.1.4 and 5.2 can be seen in
Figure 4.7.

The same training data has also been used for Dataset 5 from the UltraCam camera.
Although, the GSD of the UltraCam data is approximately 35% worse compared to the
3K+ camera data (20 cm → 13 cm).

The intentionally accepted drawback of the reduced training set and of the high general-
ization is that a satisfying result is unachievable without appropriate pre-processing steps.
Hence, for reasons of comparison also results of the classifier without combining preceding
steps are prepared (Section 5.1.4).

In case of Dataset 4 and 5 another additional detector has been trained and applied with
an offset of 90 degrees . The reason is that cars are also oriented in the horizontal direction
due to crossing roads. Normally, when the technique should be operationally applied, the
crossing roads would be treated separately which is possible due to the integrated road
databases. However, in the experiments these horizontal cars should be also detected in
order to show this ability. Besides, also cars parked in the courtyard of Dataset 4 and 5
should be detected.
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Vehicle classification using gradients

The classifier for vertical oriented cars is applied to Dataset 1–5 using the sliding window
technique for the whole image except an certain area at the boarders of 22 pixels. In
addition, in Dataset 4 and 5 also horizontal oriented cars are detected by a classifier
trained with horizontal oriented cars. Finally, the classification returns a confidence image
which shows the car classifier response.

Weighted selection of vehicles

The probabilities of positive detections are passed further to the weighted selection al-
gorithm in order to eliminate multi-detections and to use the information of neighboring
detections (Section 3.6.1). The region where confidence values are added is 15×15 pixels.
After this step a threshold is applied to all agglomerated confidence values. However, the
values are not longer normalized due to the local Gaussian weighted agglomeration.

4.3.2 Testing of complete car-detection strategy

The complete car-detection strategy is tested by carrying out the whole approach from
Sections 3.2 to 3.6.1. The test Dataset 1 to 5 are utilized again. The orientation of the
roads in the datasets is according to the segments of the Navteq road database. However,
the automatic use of the road segments as described in Section 3.1 has not been applied.

Unless otherwise mentioned, the used parameter setting is also the same as explained in
Section 4.3.1 where each single step is tested. Please note, there is no parameter change
for the Dataset 5 of the UltraCam with lower GSD. Additionally, in case of Dataset 3 no
ground region estimation is used because the calculation failed as explained in Section
5.1.2.

The last two parts of the strategy (Section 3.7 and 3.8) which are marked as optional
are not tested due to their very experimental state. In the case of the validation strategy
(Section 3.7) the necessary fine tuning is missing. Whereas in the case of the incorporation
of moving objects only a few cars are moving in the utilized datasets (Section 3.8). In
addition, a method to link moving and stationary cars is still not developed. Nevertheless,
these two methods are mentioned in the discussion chapter (Chapter 6).

Furthermore, the impact of the confidence threshold is shown in completeness-correctness
graphs of Dataset 1, 2, 3 and 5. There is no detailed evaluation of Dataset 4 due to a
missing ground truth. In this dataset many cars are at such locations which hardly allow
me to count them correctly.

Finally, for the following evaluation, values like true positives (TP), false positives (FP),
false negatives (FN) are used to calculate performance ratios. These ratios are correctness
(Equation 4.2) and completeness (Equation 4.3). Additionally, the strictest evaluation
value is the quality shown in Equation 4.4.
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4.3 Conducting the experiments

correctness =
TP

TP+FP
(4.2)

completeness =
TP

TP+FN
(4.3)

quality =
TP

TP+FP+FN
(4.4)
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5 Results

This chapter details the results of the experiments which are described in Section 4.3.
Please note that the utilized parameter settings are also included in the previous Section
4.3. Almost all results are based on the five datasets which are introduced in Section
4.2 with the exception of Section 5.1.1. Moreover, this section shows the neutral results
without evaluation – the detailed evaluation plus a discussion is then given in Chapter 6.

As mentioned, the results from every step viewed independently are first shown and
then, in the next section, the final results of all steps working together are presented in
combination.

5.1 Results of each step considered independently

The following results are the outcome of each single step of the strategy. Intentionally,
experiments are carried out without dependence on a previous step to present each result
of a single step more comprehensibly. Furthermore, also the impact of each single step
becomes clearer.

5.1.1 Accuracy of extracted coarse road segments

In this section only one example is presented. The scene from the inner city of Munich is
used to show an example of road extraction using vector data from road databases. The
road segments of the Navteq database are drawn in red in Figure 5.1. The image is from
the 3K+ camera system.

The green dashed rectangular area shows an extreme case of inaccurate road databases.
When it is aimed to extract this road the symmetric buffer around the middle axis has
to be as large as indicated by the green rectangle. The consequence is, if only relying on
road databases to limit the search space for vehicle detection many disturbing elements
from the neighboring roof have to be tackled. Generally, the overall buffer size for all road
segments must adhere to the least accurate road segment.

The problematic issue for this example is not the inaccurate geocode of the image because
most of the vector segments more or less fit the center of the roads. The issue is the road
database itself which was originally made for navigational purposes.
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Figure 5.1: Accuracy of roads from the Navteq database in the center of Munich. The
database is from the year 2008. It can be seen what problems are posed
when it is aimed to only extract the road surface. The dashed green rectangle
shows an extreme case of inaccuracy (All other roads must be extracted using
the same buffer size as the most inaccurate one.). The normal application is
routing and therefore the shown accuracy is good enough.
Additionally, the yellow D1 and D2 indicate the roads of Datasets 1 and 2,
respectively.
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(a) (b)

(c) (d)

Figure 5.2: Ground regions of Datasets 1 and 2. The disparity maps of Datasets 1 and 2
are shown in (a) and (b), respectively. The corresponding masked test images
are then shown in (c) and (d). The ground regions are determined by applying
the previously calculated threshold to the disparity maps. Finally, those masks
are overlaid onto the original images.

5.1.2 Selection of ground regions

The results of the algorithm to extract ground regions (Section 3.2) are shown here. In
Figure 5.2a and Figure 5.2b the calculated disparity images for Datasets 1 and 2 are shown,
respectively. In addition, in Figure 5.2c and Figure 5.2d, the original search images are
overlaid by the calculated masks to show which parts of the images remain and what
accuracy can be obtained.

The same algorithm applied to Dataset 4 and 5 leads to the results presented in Figure
5.3. Please note that the baseline of the two consecutive images used for calculating the
disparity map of Dataset 5 is longer compared to Datasets 1 to 4 due to a lower recording
frequency.

Finally, the four different graphs received from the Minimum Error Thresholding for
Datasets 1, 2, 4 and 5 are shown in Figure 5.4. The minimum of each graph is the
threshold which decides whether the area is at ground level or not. The effective values
are displayed in Table 5.1. In the same Table the ratio of the remaining ground area to
the original area is also included.

The result of Dataset 3 is treated separately because the algorithm failed due to areas
below ground level (Figure 5.5b). These areas have been caused by a construction site
and lead to a malfunction of the Minimum Error Thresholding algorithm (Figure 5.5a).
As can be seen the determination of a correct minimum is impossible.
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(a) (b) (c) (d)

Figure 5.3: Ground regions of Datasets 4 and 5. The disparity maps of Datasets 4 and 5
are shown in (a) and (c), respectively. The corresponding masked test images
are then shown in (b) and (d). The ground regions are determined by applying
the previously calculated threshold to the disparity maps. Finally, those masks
are overlaid onto the original images.

Table 5.1: Statistics of ground region extraction. The minimum errors of Datasets 1 to 5,
received from Equation 3.4. These errors are used as threshold to distinguish
between ground and non-ground areas. Finally, it is applied to the histogram
equalized disparity map. The second row shows the ratio of the ground area to
the original image which could be successfully excluded from the subsequent
car detection process.

Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5

minimum error
84 87 15 85 87

(threshold)

remaining area [%] 36 37 n/a 53 49

72



5.1 Results of each step considered independently

0 50 100 150 200 250 300

7.5

8

8.5

9

9.5

x

y

(a) Dataset 1

0 50 100 150 200 250 300

7.5

8

8.5

9

9.5

x
y

(b) Dataset 2

0 50 100 150 200 250 300

7.5

8

8.5

9

9.5

x

y

(c) Dataset 4

0 50 100 150 200 250 300

7.5

8

8.5

9

9.5

x

y

(d) Dataset 5

Figure 5.4: Graphs resulted from the Minimum Error Thresholding (Equation 3.4). The
x-axis indicates the value of the threshold ranging from 5 to 251 (not 1 to
256 because a limit is used). The y-axis indicates the result of Equation 3.4
without argmin at every x position. The global minimum of the graphs is the
value of the 8 bit disparity map which separates ground from non-ground area.
The minimum is very clear for every utilized dataset. Minima in the range of
very low values (0-5) are excluded from the process because they can cause a
wrong result. Values in that range are often from areas in the disparity image
where no match was found.
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Figure 5.5: Graph resulted from the Minimum Error Thresholding – Dataset 3. (a) Re-
sult of Equation 3.4. (b) Disparity map of Dataset 3. The construction site
included in Dataset 3 leads to a result which shows limitations of the particu-
lar ground selection strategy. The area of the construction site is below road
level, thus the Minimum Error Thesholding sets the Minimum to 15 which is
the threshold between underground level and ground level. In this case the
presented strategy is not suitable and alternative ways have to be discovered.
Alternative methods are, for instance, presented in Sezgin & Sankur [2004].
However, the occurrence of large regions below ground level in dense urban
areas is relatively seldom.
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5.1.3 Segmentation and extraction of candidate regions

The extraction of candidate regions is shown stepwise for every single dataset. The results
for Datasets 1, 2, 3, 4 and 5 are shown in Figure 5.6, 5.7, 5.8, 5.9 and 5.10, respectively.
In each Figure, part (a) shows the image after the mean curvature flow. It can be seen
that contours of objects are preserved but the color gradient of the objects is smoothed.
Subsequently, subfigure (b) shows the result of the color region-growing (Section 3.3.2)
and subfigure (c) and (d) show the outcome of the select area I algorithm (Section 3.3.2)
and the select area II algorithm (Section 3.3.2), respectively. The final candidate regions
are then presented in (e) after the intersection step.

Each color describes one region. The different colors are for visualization reasons. They
are randomly chosen and have no deeper meaning. Finally, in the optimal case, every
region is an object like a single car or a line of cars.

The necessity of the last intersection step (e) can be well seen by comparing Figure 5.6d
and Figure 5.6e (lower left corner). Also the upper left corner of Figure 5.7d shows a
location where the intersection step was helpful. The second region growing before (d)
leads to new undesired regions which have to be removed again. However, this last step
was not necessary in the case of the other datasets.

An analytical contribution is illustrated in Table 5.2. The impact of each step in total
pixels and in percent relative to the original area is presented. Furthermore, a second
Table 5.3 shows the quality of the extraction. The table includes numbers of cars which
are lost after the candidate extraction step and under which conditions this occurred.
For instance, areas with special light conditions like shadow areas or partly shadow areas
are of special interest. These areas can pose problems when the usage of a fix parameter
setting is desired.

5.1.4 Vehicle classification using gradients

The results of the application of the HOG feature-based classifier are presented in the
following figures. Datasets 1 and 2 are classified as follows (Figure 5.11). These two
datasets are presented in the same figure due to their similarity. Results of Dataset 3 can
be seen in Figure 5.12. Furthermore, the outcome after the classification of Dataset 4 is
shown in Figure 5.13 and the result of Dataset 5 is presented in Figure 5.14.

Objects which are assumed to be cars are marked with a red cross. The complete con-
fidence map showing responses of the classifier for each pixel is always presented on the
right side in the figures. The color code can be interpreted in the following way: a high
positive value indicates that the classifier is very confident that there is a car at this
position (the typical color range is from yellow to red). In contrast, negative values like
turquoise and blue indicate that the pixel belongs to a non-car object. It is good to see
which areas are wrongly identified by the classifier.
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(a) (b) (c) (d) (e)

Figure 5.6: Segmentation and extraction of candidate regions applied to Dataset 1. (a)
Mean curvature flow. (b) Region growing. (c) Selection area. (d) Selection
area II. (e) Intersection.

(a) (b) (c) (d) (e)

Figure 5.7: Segmentation and extraction of candidate regions applied to Dataset 2. (a)
Mean curvature flow. (b) Region growing. (c) Selection area. (d) Selection
area II. (e) Intersection.
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(a) (b)

(c) (d)

(e)

Figure 5.8: Segmentation and extraction of candidate regions applied to Dataset 3. (a)
Mean curvature flow. (b) Region growing. (c) Selection area. (d) Selection
area II. (e) Intersection.
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(a) (b) (c) (d) (e)

Figure 5.9: Segmentation and extraction of candidate regions applied to Dataset 4. (a)
Mean curvature flow. (b) Region growing. (c) Selection area. (d) Selection
area II. (e) Intersection.

(a) (b) (c) (d) (e)

Figure 5.10: Segmentation and extraction of candidate regions applied to Dataset 5. (a)
Mean curvature flow. (b) Region growing. (c) Selection area. (d) Selection
area II. (e) Intersection.
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Table 5.2: Statistics of the segmentation procedure. It is shown how many pixels are
excluded after each processing step. The first number is the absolute number
of pixels while the second one relatively expresses the result in percent. The
description of the single algorithms can be found in Section 3.3.

Number of pixels Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5

at the beginning 181436 230112 497520 911040 773568
[%] 100 100 100 100 100

after select area 42305 50760 106511 162461 152128
[%] 23 22 21 18 20

after select anisometry 41169 48924 101976 150472 140521
[%] 23 21 21 17 18

after select compactness 37331 44747 97685 127121 112072
[%] 21 19 20 14 15

after intersection 29301 38055 73165 107001 84572
[%] 16 17 15 12 11

The threshold of the confidence values leading to the marked detections in Figures 5.11a,
5.11c, 5.12a, 5.13a and 5.14a is set manually, in order to get a visual impression. An
automatic threshold can be determined by considering the information of Figure 5.18. A
reasonable compromise between completeness and correctness must be found which also
depends on the kind of application (Section 6.1.1).

5.2 Results of complete car-detection strategy

The final results of the whole car detection strategy for Datasets 1 and 2 are illustrated
in Figure 5.15. Moreover, the result for Datasets 3, 4, 5 is in Figure 5.16, 5.17a, 5.17b,
respectively.

The impact of the threshold for the classifier is indicated by the completeness-correctness
curves in Figure 5.18. The utilized thresholds for the visualized results are a trade-off
between completeness and correctness. There is no numeric value given because it is
not normalized. The reason for this is the Gaussian weighting procedure which returns
not-normalized thresholds and requires a threshold which is not between 0 and 1.

Finally, the achieved quality of the overall strategy can be seen in Table 5.4. The quality
value is calculated using Equation 4.4.
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Table 5.3: Statistics of the segmentation procedure II. It is shown how many cars are lost
due to the segmentation procedure. Additionally, lost cars in shadow areas are
listed as well.

Number of cars Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5

in the scene 28 37 36 136 67
[%] 100 100 100 100 100

in shadow area 3 2 0 18 7
[%] 11 5 0 13 10

partly in shadow area 0 15 0 13 11
[%] 0 41 0 10 16

lost after segmentation 3 3 0 13 3
[%] 11 8 0 10 4

lost and in shadow area 3 1 0 11 2
[%] 11 3 0 8 3

lost and partly in s. a.a) 0 2 0 2 1
[%] 0 5 0 0 1

a) s. a. = shadow area

Table 5.4: Maximum quality of the final results. The quality value is the strictest value
for evaluating the results because false positive and false negative detections
are included in one number. The calculation is done by using Equation 4.4.

Dataset 1 Dataset 2 Dataset 3 Dataset 5

maximum quality 82 % 70 % 63 % 64 %
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Figure 5.11: Gradient-based classification of Datasets 1 and 2. (a) Dataset 1. The ob-
jects assumed to be cars are marked with a red cross. (b) Confidence map
of Dataset 1. Positive values (yellow to red) indicate a detected car while
negative values (turquoise to blue) indicate a different object than a car. (c)
Dataset 2. (d) Confidence map of Dataset 2.
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Figure 5.12: Gradient-based classification of Dataset 3. (a) Dataset 3. The objects as-
sumed to be cars are marked with a red cross. (b) Confidence map of Dataset
3. Positive values (yellow to red) indicate a detected car while negative values
(turquoise to blue) indicate a different object than a car.

82



5.2 Results of complete car-detection strategy

column

ro
w

100 200 300 400 500

200

400

600

800

1000

1200

1400

1600

(a)

column

ro
w

 

 

100 200 300 400 500

200

400

600

800

1000

1200

1400

1600

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(b)

Figure 5.13: Gradient-based classification of Dataset 4. (a) Dataset 4. The objects as-
sumed to be cars are marked with a red cross. (b) Confidence map of Dataset
4. Positive values (yellow to red) indicate a detected car while negative values
(turquoise to blue) indicate a different object than a car.
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Figure 5.14: Gradient-based classification of Dataset 5. (a) Dataset 5. The objects as-
sumed to be cars are marked with a red cross. (b) Confidence map of Dataset
5. Positive values (yellow to red) indicate a detected car while negative values
(turquoise to blue) indicate a different object than a car.
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Figure 5.15: Final result of Dataset 1 and 2. Red crosses indicate a vehicle candidate.
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Figure 5.16: Final result of Dataset 3. Red crosses indicate a vehicle candidate.
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Figure 5.17: Final result of Datasets 4 and 5. Red crosses indicate a vehicle candidate.
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Figure 5.18: The graphs give an impression how the algorithm performs when the final
threshold of the classifier is adjusted. The completeness is plotted on the x-
axis and the correctness is plotted on the y-axis. The definition of correctness
and completeness can be found in Equation 4.2 and 4.3.
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6 Discussion

The results in Chapter 5 are discussed in the following sections. Moreover, the orga-
nization is also done according to Chapter 5. Thus, results of every step are discussed
individually, followed by a commentary on the complete strategy.

6.1 Discussion of each step considered independently

The single steps are structured in the same way as in Section 5.1. In addition, comments
on the optional methods (Section 3.7 and 3.8) are also included.

6.1.1 Accuracy of extracted road segments

As mentioned before, the accuracy of road databases is often not good enough to mask
out a road precisely (Figure 5.1), and thus many objects in the surrounding road area
have usually to be accepted in the detection process (Section 5.1.1).

In this work road databases have been only applied to get a coarse target area and to
speed up the calculation time of the disparity image. However, detecting cars in densely
populated cities without road databases is not a problem as shown in the next section.
Moreover, the situation changes when traffic from roads which are not surrounded by
buildings is monitored (e.g., highways). Then the use of road databases could be very
helpful.

6.1.2 Selection of ground regions

The simultaneous calculation of disparity images turned out to be a very good supporting
strategy for car detection. Especially, a very reliable ground area could be extracted
from Dataset 1 and 2 (Figure 5.2c and 5.2d). The separation between ground and non-
ground levels is very precise which enables the subsequent detection algorithm to detect
all cars close to the roof (Figure 5.15a and 5.15b). Additionally, problematic areas like
façades with rectangular windows are also partly extracted. Rectangular windows are
often classified as false positives due to their similar contour like cars (see Figure 5.11a
and 5.11c).
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Unfortunately, the experiment failed in case of Dataset 3 (Figure 5.5a). The reason is that
a combination of a large flat area on ground level and an area below ground level poses
problems to the thresholding procedure (Section 3.2.2). The algorithm assumes that the
lowest area of the patch is the desired ground area. Conclusively, the simple strategy using
the minimum error thresholding is not suitable for such advanced problems. A solution
is required which covers all possible situations and checks if the returned ground area is
the actual ground level.

Furthermore, the resulting disparity maps of Dataset 4 and 5 (Figure 5.3b and 5.3d) are
helpful for the subsequent car extraction step but the result is not optimal. This can
be explained by the fact that the sample scene is not optimal for the objective of the
proposed method due to large flat regions non-trafficable (e.g., the lawn in the lower right
corner of Figure 5.3b and 5.3d). These regions pose problems to the detector because
than also objects from non-trafficable areas have to be considered in the subsequent car
extraction approach which are not used in the training procedure. Thus, more potential
false positives are included. Highly densely populated inner city areas like Paris, France
are more optimal. Moreover, a difference between the disparity maps from Dataset 4 and
5 (Figure 5.3a and 5.3c) regarding the quality can be observed. This mainly stems from
the longer baseline of Dataset 5 (distance from sensor position one to sensor position
two) resulting from the lower imaging frequency of the UltraCam compared to the 3K+
camera system (Table 4.2). A longer baseline leads to not all objects being included in
both images – especially as far as façades or general vertical planes are concerned. The
consequence is that more holes are in the disparity map of Dataset 5. In order not to lose
any potential cars, these holes are always classified as ground area which finally leads to
a less accurate ground level mask.

Generally, an important fact, valid for all datasets, is that no car got lost due to the appli-
cation of disparity maps (see Figure 5.2c, 5.2d, 5.3b and 5.3d). The required calculation
time might be the only drawback. For instance, the calculation of a disparity map can
be seen as a single instruction multiple data (SIMD) problem and hence an alternative
implementation using the Graphics Processing Unit (GPU) is many times faster.

Moreover, moving cars are in most cases not a problem because the distance between their
position in the first and in the second image is often so great that the disparity is not
calculated at this position. The maximum disparity is a parameter which corresponds to
the upper height and lower height as shown in Table 4.4. Finally, holes at these locations
are treated as ground area and thus do not disturb the subsequent procedure. However,
problems could occur when a car has a certain velocity which leads to a reasonable dis-
parity and a high object such as a tree or a house is assumed. Consequently, the location
is then masked out but this situation was very rarely observed.

An additional strategy is to exploit the height of the cars in the disparity image. Ap-
proaches which follow that idea are well known in the field of car extraction from LiDAR
data [Toth, 2009; Yao et al., 2011]. The ability to exploit the height of the cars in the
test datasets with a resolution of 13 cm and 20 cm has to be proven.

To this end, the substitution of road databases by disparity images is a very good alter-
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native in dense urban areas (Dataset 1 and 2, Figure 5.2) where up to 64% of the original
image could be excluded. It is more difficult to leave out road databases in flat areas
(Dataset 3, Figure 5.5b) and in partly flat areas (Dataset 4 and 5, Figure 5.3) where up
to 47% could be excluded. Important to note is that the application of disparity maps
never led to an exclusion of a car.

6.1.3 Segmentation and extraction of candidate regions

The novel approach to extract car candidates based on mean curvature flow and region
growing can be evaluated as follows.

Generally, the presented method showed a very robust and flexible performance. Only a
few cars got lost due to the procedure. In the worst case (Dataset 1) up to ten percent and
in the best case (Dataset 3) not one got lost (Table 5.3). Nevertheless, a great effectiveness
could be proven. The remaining final areas (after intersection), which are examined later,
are in the range from 17% to 11% of the original image (Table 5.2). Also clear to see,
in the same table, is that the most effective single step is ’Select Area’ because by this
method large homogeneous areas are removed.

Moreover, the algorithm is able to classify images of 20 cm and 13 cm resolution with
the same parameter setting which can be seen by comparing the segmentation results of
Datasets 4 and 5 (Figure 5.9e and 5.10e). In comparison to the subsequent gradient-based
step, further features are its inherent color incorporation and the very fast processing
speed.

In detail, the presented method is capable to remove road markings which is illustrated
in Dataset 3, 4 and 5 (Figure 5.8e, 5.9e and 5.10e). Road markings are often responsible
for false positive detections because a rectangular plane, similar to the contour of a car,
is spanned by two parallel markings. Examples of false positives due to road markings
can be seen in Figure 5.12a, 5.13a and 5.14a.

In general, the influence of shadow is a problematic issue. Shadow poses problems to
the algorithm due to the lower contrast of these areas compared to sunny areas. A
good example is the car line on the right side of the road in Figure 5.7. Especially dark
cars parking close to the shadow area are classified as shadow and will be lost for the
subsequent gradient classification step. Another example is available in Figure 5.9 and
5.10 where the car line on the right side in the center contains cars which are either very
close to or completely in shadow areas. Again, especially dark cars are problematic due
to the low contrast between car and shadow area. Of course, a possible solution would be
to tune the parameter of the region-growing more sensitively but as a consequence, the
classification result of normal illuminated areas would suffer from that decision.

All in all, the parameters of the whole segmentation approach have to be not adjusted
for all datasets. The parameters of the anisometry step and the compactness step are set
according to the longest vehicle line which is expected.
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It is interesting to see that beside cars other remaining objects are mostly dormers (see
Dataset 1 and 2 in Figure 5.6e and 5.7e). Among others, these objects are also difficult to
classify for the following gradient-based detector (Figure 5.11a and 5.11c). Consequently,
dormers have to be removed in a preceding step as done in the determination of the
ground regions step. This is a case where the importance of the disparity maps becomes
obvious but also shows that every single step of the strategy supports other steps.

6.1.4 Vehicle classification using gradients

The combination of HOG features and AdaBoost belongs to standard state-of-the-art
object detection methods which has been proven several times for car detection (Chapter
2). In contrast to the application in this thesis other approaches rely on extensive training,
e.g., online training or large training sets or sophisticated methods to automatically extend
the training set. A problem is that the process of selecting the training data is often very
in-transparent and the selected training data plays a crucial role for the detection result.
However, the presented method in this work is just applied without much emphasis on
tuning the data in order to get a slightly better result. Instead, the idea was to improve
car detection with different boundary conditions which leads to the combination of several
methods (see Figure 2.1).

The results here show the performance of such a simple detector, and it can be seen
that the achieved result is not satisfying without support (Dataset 1–5 and Figure 5.11,
5.12, 5.13, 5.14). In Dataset 1 (Figure 5.11a) mostly dormers and elements of the façade
cause false positive detections. False positive detections which are simpler to tackle are, for
instance, in the middle of the road due to neighboring cars which present that typical edge
on one side of the body. Additionally, four false negative detections are in the same dataset
in the upper right car line. There is also no response in the corresponding confidence map
(Figure 5.11b). An explanation for this phenomenon after the final weighted selection
might be due to the missing space between these cars or due to two stronger detections
to the left and the right side which does not leave space for a car in the middle.

Similarly, Dataset 2 shows also many false positives due to dormers or parts of the roof
which seem to give a moderate confidence response due to at least one strong edge like
that of the roof ridge (Figure 5.11c). Additionally, many elements of the façade are
incorrectly detected as cars which becomes clear in the confidence map where large regions
are yellow (Figure 5.11d). However, one good property of the detector is its capability of
detecting cars close to the roof or even partly occluded ones. Furthermore, the result of
Dataset 3 shows the great sensitivity of the detector to road markings which are a major
reason for false positives in that case (Figure 5.12a). The same dataset lets us make
a statement about the provided orientation tolerance of the detector. The maximum
tolerance seems to be approximately ±15◦ because cars in the lower part of Figure 5.12a
are correctly detected. In contrast, cars in the upper right part which are not detected
show an orientation of 20◦ (clockwise with zero at the top). In addition, many false
positives occur due to multi-detections. The trigger is often a certain spacing between
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cars, or the trailer of the truck which has a large rectangular shape of the width of a car.
One solution to tackle the false positives due to the spacing could be a different parameter
setting in the final weighted selection algorithm (Section 3.6.1).

Furthermore, a similar situation as seen in the previously shown result can also be observed
in Dataset 4 and 5 (Figure 5.13a and 5.14a). Many false positives and false negatives are
present despite the fact that only the vertical detector has been applied. The results of
the confidence maps clearly show the lack of sophistication of the classifier (Figure 5.13b
and 5.14b).

6.1.5 Discussion of optional sections

The mentioned methods in Section 3.7 and 3.8 are not sufficient when used on their own
but interesting regarding the impact of the utilized features. Sometimes, a combination
with other methods is required. Due to the fact that the two methods were not inves-
tigated in depth only a brief discussion is done. Further results concerning the color
validation part are presented in Leister [2013], and the moving object incorporation part
in Tuermer et al. [2011a].

Validation using vehicle background and color information

Common aerial images are usually 24 bit RGB color images (each channel 8 bit). A
simple approach has been created trying to better incorporate color values. It is assumed
that color features of a car candidate can be matched with the distribution of the color
features from a large training set – in order to validate the candidate in the HSV color
space. A conclusion that could be drawn from the experiment is that the V channel of
the HSV color space is most helpful regarding the separation of car class from the other
tested classes [Leister, 2013]. The V channel adjusts the brightness of the selected color
but is not a color in itself.

The question whether a car can be reliable detected exclusively based on color features
can be answered by other statistics (Figure 6.1): More than three-quarters of the newly
registered cars world wide are strictly speaking not colored which is the case for black,
gray and white (Figure 6.1d). Almost one-quarter of cars newly registered in the world are
white, same as in Europe and in North America (Figure 6.1c and 6.1a, respectively). The
exception is China where almost one-quarter of newly registered cars was black (Figure
6.1b). If the trend is continuously stable, color is a highly overrated feature. However,
may be color can not be used to extract cars themselves but to exclude certain areas. The
following hypothesis assumes that the color distribution of all registered cars is the same
as the newly registered ones in 2012. For instance, green cars only occur very rarely (1%
world wide) but green trees are often a reason for false positives due to their manifold
textures. In some scenarios it could be worth thinking about rejecting all green objects –
as a consequence, the overall completeness of the detection is then maximum 99% only.
However, thereby many false positives could be avoided.
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Actually, the presented car detection strategy already has the color feature incorporated
due to the color segmentation step (Section 3.3.2) which leads to a significantly better
result. However, the benefit of an additional integration of the color feature is still con-
troversial. Recently published works show, on the one hand, the usage of color (color
probability maps) [Kembhavi et al., 2011] and on the other hand, color is not used due
to the fact that colored cars are in the minority [Kozempel, 2012].

Moving object incorporation

The detection of moving objects in video data, using the change of pixels from the current
image to the subsequent one, is a strategy which has already pursued for a long time
(Section 2.1). The same method is also applicable for image data recorded with a low
frame-rate up to a certain limit (Section 2.2). Due to the simplicity and the robustness
of the method, a very accurate detection result can be obtained. Potential inaccurate co-
registration of the two images can be coped by adding a sliding window object detection
technique [Tuermer et al., 2011a]. An improvement of the difference image technique in
urban areas can be obtained with the integration of disparity maps.

However, only moving objects can be detected which excludes stationary and parked cars.
In order to use the advantage of the detection of moving objects a solution could be to
fuse the two detection methods. One method aims to detect all cars, but those moving
cars are validated by the change detection approach. As result shown in [Tuermer et al.,
2011a], the completeness of detected moving cars rises significantly.

6.2 Discussion of the complete car detection strategy

All steps of the presented strategy applied together are discussed in the following para-
graphs.

The final result of Dataset 1 shows only two false positives which are due to the texture
of the façade to the right of the road (Figure 5.15a). However, three cars are not detected
in the upper part of the right car line. These false negatives are caused by the gradient
based detector. They were already missing after the independent application of the single
step (Section 5.1.4) which can be seen in Figure 5.11a. Moreover, this dataset is a good
example to show the robustness of the classifier to slightly rotated cars. Please note, the
rotation is not by chance but the dataset is cut out from a large scene according to the
road segment of the Navteq database which is shown in Figure 5.1.

Similarly, the car lines in Dataset 2 are almost perpendicular to the upper boarder of the
image. Five cars in the right car line are not detected (Figure 5.15b). However, the fault
is only partly due to the gradient based detector. Some cars close to the shadow area,
triggered by the house on the right, are already lost after the segmentation step (Figure
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(a) (b)

(c) (d)

Figure 6.1: Automotive color popularity in the year 2012 [DuPont, 2012]. Top vehicle
colors of (a) North America (b) China (c) Europe (d) World. The trend is
still towards colors which are strictly speaking not a color such as black, gray
and white. More than three quarters are in this group world wide (see (d)).
This fact leads also to the conclusion that color is an overrated feature for
detecting ordinary cars – but this statement is not valid for the separation of
foreground and background. ➞2012 DuPont
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5.7e). A situation which has not happened as often as the wrong classification of the
gradient based classifier.

Furthermore, the false positive detections in Dataset 3 are caused by objects on the
construction site or by the grassed area (Figure 5.16). Avoiding the false positives on
the construction site is not easy due to their car-like contour and texture. If possible, an
efficient solution would be the restriction of the search area to roads only. False positives
on the grassed area can be avoided by using color statistics (Section 6.1.5). Moreover,
it can be realized that trucks are not detected. In this work, trucks were not considered
as target objects and thus the model of the strategy does not include trucks. Also not
detected are cars in the upper right car line and in the center left car line which might be
due to their orientation and the non-invariant gradient-based detector. A positive aspect
is that also partly occluded cars are detected (e.g., occlusion by the tower crane in the
lower part of the image).

The large datasets (Dataset 4 and 5) show all problematic situations similar to the oc-
currence in the other datasets such as façades, rectangular objects the size of a car and
shadow areas (Figure 5.17). However, due to the fact that detectors of two orientations
were applied the result is not directly comparable to Dataset 1 to 3.

The completeness-correctness graph illustrated in Figure 5.18 gives an impression of the
performance of the strategy related to the complexity of the dataset concerning car detec-
tion. Dataset 1 can be considered as easy for the presented strategy, and the completeness
and correctness values are often at a high level (> 90%). The corresponding quality is at
82% in Table 5.4. In contrast, Dataset 5, which has large ground level areas, shows a bad
result - the curve in Figure 5.18 is dropping much faster. Also the quality is only at 64%
in Table 5.4 for that dataset. In other works, benchmark numbers are often calculated
when cars are only detected on roads which are precisely masked out using an accurately
fitting road mask from databases. A case which can hardly be compared.

For all datasets, the following applies.

◦ The utilized disparity maps enhance the overall detection result and are supportive
of the other strategy steps, especially in densely populated urban areas.

◦ In general, segmentation is a crucial step but has been shown a robustness to differ-
ent sensors and to slightly changing spatial resolutions. The benefit can be expressed
by the enabled use of the boosting method utilized here with low training effort.
A drawback of the RGB color region-growing is that shadow areas are often de-
termined as one region. Another color space might provide a solution (e.g., Lab
color space), at least for colored cars. Then the separation between ground (mostly
asphalt) in shadow areas and cars in shadow areas is easier.

◦ Furthermore, the combination of disparity maps and segmentation turned out to
be a good strategy which does not lead to redundant information. Dormers, for
instance, can only be removed by the disparity maps. In contrast, road markings
can only be removed by the segmentation step.
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◦ In addition, the final weighted selection step is also robust. But of course the size of
the rectangle should not be too large in order to preserve all cars instead of losing
ones which are parked close to each other. However, this parameter can be easily
adjusted depending on the resolution of the data. Finally, the detected vehicles could
be refined using the grouping of vehicles but single cars are then discriminated. Also
a potential method is the CRF which introduces relations to neighboring segments.
Vehicle queues can be easily incorporated in the final weighted selection. The idea
was introduced a while ago but the impact of this method might depend on several
issues [Burlina et al., 1997]. Exploiting contextual knowledge of parked cars has
been also done by Stilla & Michaelsen [2002] and Leitloff et al. [2010].
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The next section concludes this thesis and the outlook section gives hints for potential
further improvement of car detection in aerial imagery.

7.1 Conclusion

In this work a strategy for vehicle detection in aerial imagery has been presented. Different
info sources (maps, images) and descriptive features were exploited in order to achieve
high quality results. Vehicle detection in aerial imagery is more than the development
of a single detector using the latest object detection approach. This starts with the
appropriate use of previous knowledge from road databases. A task which has to be done
according to the location of the area of interest and to the objective for which the cars
are extracted. In case of the presented strategy, which aims to detect all cars in dense
urban areas, road segments from databases are only used for an approximate limitation
of the area of interest.

Moreover, the strategy is also based on real-time disparity images which are calculated
directly before extracting the cars. A method that showed its excellent suitability in
densely populated urban areas. Especially, urban canyons provide a very good scenario
to illustrate the high effectiveness of disparity maps. Many objects, such as dormers
or elements of façades, which are sometimes recognized as cars, could be successfully
excluded. In contrast, flat areas, for instance, in rural regions need a different kind of
treatment because the disparity maps from the utilized test data are not applicable for
the fine distinction of objects with a height difference of only a few decimeters.

Furthermore, an essential part of the strategy is the segmentation and the rotation in-
variant extraction of candidate regions. The most important step is the smoothing in
combination with the preservation of certain edges such as the contours of the main body
of the cars. Subsequently, the color segmentation can be carried out on RGB images.
After that, returned regions are filtered according to their geometric properties. The
algorithm has been proven to have a very robust performance – in the worst case 11%
of the cars in the image were lost. However, in the same case the search area could be
restricted to 16% of the original image. In addition, the parameter setting of the method
is simple but a high generality related to different resolutions is still present. Images
of two sensors and with a different resolution could be processed without adjusting the
parameter settings. Due to the segmentation strategy many objects like road markings
or bike lanes could be removed. These objects have two strong parallel edges similar to
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the width of a car and thus they lead often to false positive detections. The reason is
that many cars, especially black ones, only appear as dark rectangular objects, and two
parallel edges in a certain distance are then a reasonable description of a car.

However, the major reason for the importance of the segmentation and the disparity image
is because they pave the way for the application of an loosely trained sliding window
approach using HOG features. The combination of HOG features and AdaBoost has
already shown its ability to classify cars but the training needs a lot of manual interaction
– a point which can be abstained from when using the presented strategy. Even though,
the application of the boosted classifier is not a key factor and can be easily substituted
by another classifier.

The overall objective of the work, the presentation of a robust car detection approach,
showed in the best case a completeness of 86% and a correctness of 92% at the same
time. Although limitations of the approach became obvious during the tests. The quality
of the classification result was reduced due to confusing elements from a construction site.
These elements could not be excluded because of the mostly flat area.

A further problem of the strategy is the rotation variance of the gradient-based vehicle
detector which leads to false negatives and reduces the completeness rate of the detection
result. In addition, progress has also to be made in the treatment of shadow areas for which
concepts have already been presented. Undoubtedly, the weakest link in the processing
chain is the insufficiently trained gradient based detector. However, the power of these
detectors is already proven under the condition of an intensive training. The best case
scenario is the detector which is still robust to changing resolutions and which provides
good results with a low training effort, i.e., preparation of the inertial training data and
the iterative enhancement of the classifier by back-porting of wrongly classified objects.

7.2 Outlook

The continuous technical development of airborne platforms provides innovative oppor-
tunities. For several years vehicle detection in aerial images has been restricted to images
which are taken from aircraft [Voss & Grüber, 2003]. However, since small UAVs / RPAS
(Remotely Piloted Aircraft Systems) are becoming cheaper and more popular, more and
more work is carried out on images taken from RPAS [Moranduzzo & Melgani, 2012,
2013]. The advantage remaining of images from aircraft is a wide coverage of the target
area. In contrast, RPAS are restricted to a shorter operating distance (e.g., range of sight)
and a shorter operation time. Nevertheless, the GSD of the images is many times higher
and an GSD of up to 2 cm can be expected.

Consequently, due to this high resolution images other state of the art methods or their
modifications can be applied. It is reasonable to try the method of deformable parts
(DPM) by Felzenszwalb et al. [2010], for instance, when the high resolution allows recog-
nition of typical single car parts. Moreover, spatial pyramid matching (SPM) by Lazebnik
et al. [2006] could be applied. A method that has also been combined with sparse codes
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(SC) [Yang et al., 2009] and offers future potential for car detection in high-resolution
imagery. An extension of sparse representations for object detection are the histograms
of sparse codes (HSC) [Ren & Ramanan, 2013]. Furthermore, an extension of the method
known as shape context is named feature context (FC) and is presented by Wang et al.
[2011]. It has also not yet been applied to aerial images for car detection.

The following additional aspects may be mentioned in order to improve car detection in
aerial imagery:

◦ Context is still important when aiming to extract cars from aerial imagery. A
method that carries out an iterative segmentation plus detection is shown by Sun
et al. [2012]. The major focus is on the contextual relationship between objects
and the scene geometric. Also the road surface is related to context which could
be really helpful for some car detection applications. There are several automatic
road detection systems. Recently, one has been developed for high-resolution aerial
images [Mnih & Hinton, 2010].

◦ The extension of the AdaBoost detector with additional features like Haar-like,
LBP, Gabor, SIFT, SURF was not realized. This work was already done at an
earlier time (see Chapter 2). An enhancement by doing so could be expected but
still has to be proven. Moreover, another possible improvement is the application
of another machine learning technique. However, in my opinion the results would
be only slightly better because the major impact is related to the utilized features
and the selected training data.

◦ Other works in the field of vehicle detection do not yet consider the direction of
the gradient vector. The idea is to separate bright cars from dark cars and create
two different detectors because the gradients of dark objects on a bright background
is oriented in the opposite orientation than a bright object on a dark background.
Unfortunately, preliminary tests did not return successful results.

◦ As discussed in Section 6.1.3, an alternative solution could be the determination of
shadow areas [Makarau et al., 2011; Das & Aery, 2013]. However, the determination
of such areas by only using the image is not easy as own investigations showed. A
comparison of selected algorithms which are applied to a simple scene including cars
is shown by Chung et al. [2009]. Due to the limited information dark objects are
often classified as shadow areas which also includes dark cars. Hence an approach
using a geometric solution by integrating a DSM and the position of the sun can lead
to better results [Li et al., 2005]. Finally, after the determination of the shadow areas
the histogram of these areas can be adjusted in several ways in order to equalize
shady and sunny areas. An approach for very high resolution images is presented
by Lorenzi et al. [2013] where also fine structures in shady areas could be restored
and their contrast gets equal to normal illuminated areas. However, the question
whether dark objects such as black cars can be always enhanced in the same way
remains unanswered by this article.
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