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Abstract

Synthetic aperture radar interferometry has long been used to derive three-dimensional topo-
graphic information independently of cloud coverage or daytime. This has made it a valuable
tool for rapid data acquisition in time-critical scenarios such as defense-related reconnaisance
missions or disaster response situations. The side-looking SAR imaging geometry, however, leads
to disturbing effects like layover and shadowing. In order to cope with these deficiencies, this
thesis investigates enhanced InSAR processing strategies for a reconstruction of urban surface
models utilizing both multi-aspect and multi-baseline data. Since only sensors carried by aircraft
provide the possibility to acquire high-coherent single-pass data from almost arbitrary aspect
angles, this thesis is focused on the utilization of airborne SAR.

The first step in a multi-baseline InSAR processing chain usually is the estimation of the
complex covariance matrices for all pixels in the stack of co-registered images, since these matri-
ces contain the full interferometric information of the corresponding resolution cell. Therefore,
the first contribution of this thesis is the proposition of two new adaptive covariance matrix
estimation procedures, which are specifically designed for single-pass InSAR stacks consisting of
just few acquisitions.

Secondly, a novel maximum-likelihood-based SAR tomography algorithm aiming at the sep-
aration of layovered scatterers and the focusing of sparse three-dimensional SAR images is
described. In contrast to most hitherto proposed TomoSAR approaches, it does not rely on
an exploitation of repeat-pass data stacks in order to provide a large overall baseline and high
number of observations per resolution cell for a sufficient elevation resolution.

Complementary to that, as a third contribution, the fusion of InSAR data acquired from
multiple aspect angles is investigated with respect to the goal to fill in information occluded
by radar shadowing in single aspects. For this reason, a radargrammetric registration approach
for multi-aspect SAR data is proposed, which is used as a pre-processing step for further fusion
operations. Building on this pre-requesite, a new maximum-likelihood estimation framework is
developed, which is used to fuse multi-baseline InSAR data acquired from multiple aspect angles
simultaneously in order to derive comprehensive 2.5D height models. In analogy, a voxel-space-
based fusion of 3D point clouds generated by SAR Tomography is proposed.

The applicability of all the methods described in this thesis is analyzed using experimental
SAR data acquired by the airborne millimeterwave sensor MEMPHIS, which is able to provide
single-pass multi-baseline InSAR stacks containing four co-registered images. The test dataset
shows the inner city area of Munich, Germany, and serves as an example for complex urban
scenes. It is comprised of dense building blocks, isolated large buildings, streets, and many
urban trees.

In a first set of experiments, both efficiency and adaptivity of the covariance matrix estima-
tion methods are evaluated based on image processing techniques. Subsequently, the layover
resolution capabilities of the maximum-likelihood TomoSAR algorithm are examined, before
the reconstruction results achieved by simultaneous fusion of multi-aspect multi-baseline InSAR
data are investigated. Finally, these reconstruction results are compared to the 3D data resulting
from a fusion of multi-aspect TomoSAR point clouds. By matching both kinds of reconstruction
results to a dense point cloud derived from helicopter-borne multi-aspect LiDAR measurements,
it could be shown that a comprehensive reconstruction of 2.5D height maps and 3D point clouds
with accuracies of about 1 m are possible from airborne single-pass InSAR data.
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Kurzfassung

Schon seit vielen Jahren wird Synthetik Apertur Radar-Interferometrie dazu verwendet, die drei-
dimensionale Topographie der Erdoberfläche unabhängig von Wolkenbedeckung oder Tageszeit
zu erfassen. Sie gilt deshalb als wertvolles Werkzeug für schnelle Datenerfassung vor allem in
zeitkritischen Szenarien. Die seitwärtsblickende SAR-Abbildungsgeometrie führt jedoch zu den
störenden Effekten Überlagerung und Radarschatten. Mit dem Ziel, diese Nachteile aufzulösen,
untersucht die vorliegende Arbeit innovative InSAR-Prozessierungsstrategien zur Rekonstruk-
tion urbaner Oberflächenmodelle unter Verwendung von Daten mehrerer Aspekte sowie Basis-
linien. Da nur Flugzeuge die Möglichkeit bieten, hochkohärente Single-Pass-Daten von beinahe
beliebigen Aspektwinkeln aufzunehmen, liegt der Fokus der Arbeit dabei auf der Verwendung
von flugzeuggetragenem SAR.

Der erste Schritt in einer Mehrfachbasislinien-InSAR-Prozesskette ist normalerweise die
Schätzung der komplexen Kovarianzmatrizen aller Pixel im Stapel der koregistrierten Bilder, da
diese Matrizen die vollständige interferometrische Information der zugehörigen Auflösungszelle
beinhalten. Deshalb ist der erste Beitrag dieser Arbeit die Vorstellung zweier neuer adaptiver
Verfahren zur Kovarianzmatrix-Schätzung, die speziell für Single-Pass-InSAR-Stapel mit nur
wenigen Aufnahmen entworfen wurden.

Als zweites wird ein neuartiger Algorithmus zur SAR-Tomographie beschrieben, der darauf
abstellt, überlagerte Streuer zu trennen und die Fokussierung dünnbesetzter dreidimensionaler
SAR-Bilder zu ermöglichen. Im Gegensatz zu den meisten bislang vorgeschlagenen TomoSAR-
Ansätzen ist er nicht auf Repeat-Pass-Datenstapel, die sich durch eine große Gesamtbasislinie
und eine hohe Zahl an Beobachtungen ausweisen, angewiesen, um eine ausreichende Elevation-
sauflösung bereitzustellen.

Ergänzend dazu wird als dritter Beitrag die Fusion von Multi-Aspekt-InSAR-Daten un-
tersucht. Dabei ist das Ziel Informationen dort aufzufüllen, wo sie in einzelnen Aspekten
von Radarschatten verdeckt wurden. Zu diesem Zweck wird ein radargrammetrischer Reg-
istrierungsansatz, der als Vorprozessierungsschritt für weitere Fusionsoperationen verwendet
wird, beschrieben. Auf dieser Voraussetzung aufbauend wird ein neues Maximum-Likelihood-
Schätzverfahren entwickelt, das verwendet wird, um InSAR-Daten mehrerer Aspekte und Basis-
linien simultan zu fusionieren um ein flächendeckendes 2,5D-Höhenmodell zu generieren. Analog
dazu wird eine Voxelraum-basierte Fusion von 3D-Punktwolken, welche durch SAR-Tomographie
gewonnen wurden, vorgeschlagen.

Alle in der Arbeit beschriebenen Methoden werden mit Hilfe von experimentellen SAR-
Daten des flugzeuggetragenen Millimeterwellen-Sensors MEMPHIS untersucht. Sie bestehen
aus Single-Pass-Mehrfachbasislinien-InSAR-Stapeln, die vier koregistrierte Aufnahmen enthal-
ten. Der Testdatensatz zeigt die Innenstadt von München und dient als Beispiel für komplexe
urbane Szenen. Er ist zusammengesetzt aus dichten Gebäudeblocks, isolierten großen Gebäuden,
Straßen und vielen Stadtbäumen.

Zuerst wird in den Experimenten sowohl die Effizienz als auch die Adaptivität der
Kovarianzschätzungsmethoden mit Hilfe von Bildverarbeitungstechniken evaluiert. An-
schließend wird die Fähigkeit, Überlagerungen aufzulösen, des TomoSAR-Algorithmus unter-
sucht, bevor die Rekonstruktionsergebnisse, die mit der simultanen Fusion von Multi-Aspekt-
und Mehrfachbasislinien-Daten erreicht werden, analysiert werden. Zuletzt werden diese Rekon-
struktionsergebnisse mit den 3D-Daten, die durch eine Fusion von Multi-Aspekt-TomoSAR-
Punktwolken erhalten werden, verglichen. Indem die beiden Rekonstruktionsergebnisse mit einer
dichten Laser-Punktwolke abgeglichen werden, kann gezeigt werden, dass eine flächendeckende
Rekonstruktion von 2,5D-Höhenkarten und 3D-Punktwolken mit Genauigkeiten im Meterbereich
mit flugzeuggetragenen Single-Pass-InSAR-Daten möglich ist.
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1 Introduction

1.1 Motivation and Objective of the Thesis

During the last decades, synthetic aperture radar imaging has become an invaluable tool for the

remote sensing of the Earth’s surface. Its principle is based on the emission of electromagnetic

waves to illuminate the scene of interest, measuring the echo of the backscatter and the following

generation of a reflectivity map. Therefore, in comparison to optical and infrared sensors, a

different kind of information is acquired: Whereas in the optical domain chemical characteristics

cause the reflectivity of the object surfaces, in the microwave domain dielectric and geometrical

properties are responsible for the observed backscattering. In addition to that, radar imaging

shows some specific advantages with respect to conventional optical and infrared remote sensing

systems: First of all, radar sensors are active sensors, providing their own illumination; they can

therefore be well operated independent of any daylight. Since microwaves furthermore provide

significantly longer wavelengths than optical light, radar imaging techniques can also be applied

during adverse weather conditions, e.g. cloud coverage or even rain. Last, but not least, the

large frequency diversity in the microwave domain, ranging from about 1 mm to 1 m, enables the

measurement of quite different scene characteristics: In longer wavelengths (e.g. L- or P-band)

most surfaces show a mirror-like appearance, and volume structures such as vegetation can be

penetrated. In shorter wavelengths (e.g. Ka- or Ku-band), instead, even rather smooth surfaces

appear rough and volume penetration is less likely.

Like for all imaging techniques, also in SAR remote sensing a mapping of the three-dimensional

world to a two-dimensional image takes place. In order to recover the lost third dimension, the

coherent SAR signals can be exploited interferometrically. SAR interferometry (InSAR) has

been an established tool for the measurement of extended terrain topography for more than two

decades. In combination with modern sensors that offer resolutions well in the sub-meter and

even decimeter range, the detailed analysis of urban objects like streets, buildings, or even single

trees has met growing interest recently. However, SAR remote sensing of urban areas is a difficult,

non-trivial task: Due to the side-looking sensor principle, geometrical effects like shadowing and

layover appear. Whereas shadowing leads to image areas without any information, layover leads

to a superposition of different reflection components, such that several scattering contributions

are mixed in one resolution cell.

These drawbacks can be tackled using advanced InSAR techniques based on multi-baseline and

multi-aspect acquisition geometries. A special case of multi-baseline SAR interferometry, often

also called SAR Tomography (TomoSAR), can be seen as an extension of the conventional InSAR

technique, allowing the reconstruction of the three-dimensional scattering distribution within a

resolution cell by establishing a second synthetic aperture in elevation direction. In urban areas,

this can gainfully be exploited to solve the layover problem. In addition to that, the fusion of

multi-aspect InSAR data can help to fill scene parts with information that are occluded in the

single aspects due to radar shadowing. Furthermore, redundant measurements can be exploited

to improve the overall accuracy.
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The topic of this thesis is the reconstruction of urban surface models from multi-aspect and

multi-baseline interferometric SAR using data acquired with an airborne single-pass sensor. For

that purpose, new approaches for the separation of layover contributions by tomographic SAR

inversion and the simultaneous fusion of multi-aspect multi-baseline InSAR data in a maximum-

likelihood estimation framework are developed. Since both methods rely on a knowledge of the

complex covariance matrix for every pixel in the image stack, furthermore two novel procedures

for adaptive covariance matrix estimation are proposed.

1.2 Structure of the Thesis

The structure of this thesis can be summarized as follows:

An introduction to the basics of synthetic aperture radar interferometry is given in Chapter 2.

First, the synthetic aperture radar principle is outlined. Subsequently, geometrical and radiomet-

rical effects occurring in SAR imaging are explained. Finally, the concept of SAR interferometry

is described.

The state-of-the-art of interferometric SAR remote sensing over urban areas is discussed in

Chapter 3. From that, the objectives of this thesis are developed.

Chapter 4 then presents techniques for adaptive covariance matrix estimation, a necessary

pre-requesite for the exploitation of single-pass InSAR data stacks by the methods developed

in this thesis: A maximum-likelihood-based approach for SAR tomography intending to separate

layover contributions in urban areas is developed in Chapter 5. Subsequently, Chapter 6 describes

ways to fuse InSAR results from multiple aspects, finally leading to an estimation framework for

simultaneous fusion of multi-aspect multi-baseline InSAR data proposed in Section 6.4.

In Chapter 7 the utilized Ka-band test system is introduced and the peculiarities of millime-

terwave SAR are discussed.

Chapter 8 contains the experimental results and corresponding discussions for determination

of the efficiency of the adaptive covariance matrix estimators (Section 8.1), as well as the applica-

bility of maximum-likelihood SAR tomography (Section 8.2) and multi-aspect multi-baseline SAR

interferometry (Section 8.3). In addition, experiments aiming at an assessment of the benefit in-

troduced by multi-aspect data fusion (Section 8.4) and a comparison of the two 3D reconstruction

approaches (Section 8.5) are shown.

Chapter 9 finally concludes the thesis and gives perspectives for future research directions.
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2 Synthetic Aperture Radar
Interferometry

In this chapter, the fundamentals of synthetic aperture radar interferometry are described. Since

this technology has been intensively studied and well described in many textbooks during re-

cent decades, only the background necessary for understanding the contents of this thesis are

touched. For in-depth discussion, see e.g. [Curlander & McDonough, 1991; Jakowatz et al., 1996;

Franceschetti & Lanari, 1999; Hanssen, 2001; Hein, 2004; Oliver & Quegan, 2004; Cumming &

Wong, 2005; Massonet & Souyris, 2008; Richards, 2009].

The chapter starts with an explanation of the very basics of the synthetic aperture radar

technology, from the process of image formation and the synthetic aperture principle to the

critically important statistical attributes of SAR measurements. In the second section, the well-

known geometrical and radiometrical effects occuring during SAR imaging are described, before

finally the concept of SAR interferometry is developed.

2.1 Synthetic Aperture Radar Basics

2.1.1 SAR Principle

In this first section the basic principle of SAR image acquisition and formation are shortly intro-

duced. For a more detailed discussion, the reader is referred to one of the many textbooks on the

topic, e.g. [Curlander & McDonough, 1991] or [Cumming & Wong, 2005].

Radar (Radio Detection And Ranging) is an active sensor technology, which acquires mea-

surement data by illuminating the scene of interest with electromagnetic signals and receiving the

backscattered waves. Theoretically, any frequency may be used, but frequencies in the microwave

domain, especially X- (2.4-3.8 cm), C- (3.8-7.5 cm) or L-band (15-30 cm), are most common.

Imaging radar systems enable a two-dimensional imaging of the Earth’s surface. The basic

configuration of a typical side-looking airborne radar (SLAR) can be seen in Fig. 2.1. The antenna

axis is usually orthogonal to the velocity vector of the aircraft, creating a two-dimensional image

coordinate system defined by azimuth (Az), corresponding to the flight direction, and range (R),

corresponding to the distance from the sensor. The range resolution is a function of the bandwidth

BW of the emitted pulses:

ρR =
c

2 ·BW
, (2.1)

where c is the speed of light. Therefore, ρR is theoretically independent of the distance to the

target. The azimuth resolution is limited by the length of the physical antenna and gets worse with

increasing distance. This is overcome by the synthetic aperture principle, which was introduced

by Carl A. Wiley of Goodyear Aircraft Company in 1951 [Wiley, 1954]. SAR systems employ a

comparably short physical antenna with a broad beamwidth. During the forward movement of the
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Figure 2.1: Side-looking airborne SAR geometry. The aircraft flies in X-direction and images a strip to
the side of the flight trajectory.

carrier platform and coherent processing of the backscattered signals a long, synthetic aperture

is achieved. The length of the synthetic aperture depends on the total illumination time of the

target. Since the illumination time increases with increasing distance from the target, also the

azimuth resolution of SAR sensors is independent from the distance and just related to the length

of the physical antenna da:

ρAz =
da
2
. (2.2)

Detailed information on the signal processing techniques applied during SAR image formation

are addressed in [Cumming & Wong, 2005]. For the scope of this thesis, it is only important to

mention that the resulting imagery consistis of complex-valued resolution cells (or pixels), each

describing the amplitude and phase of the focussed radar signal. Whereas the amplitude represents

the reflectivity of the scene and is related to roughness, dielectric properties and the geometrical

appearance of the surface, the phase carries information about the distance of the target to the

sensor. In Section 2.3 we will see that therefore the phase is the key observation for measurement

of topography.

2.1.2 Statistics of SAR Resolution Cells

The statistics of SAR images can be explained by looking at the two extreme cases of scattering

objects [Bamler & Hartl, 1998]: point scatterers and Gaussian scatterers. While the response

of a point scatterer can be seen as a deterministic signal, Gaussian scatterers are the result of

a sufficiently high number of random subscatterers within a resolution cell, whose individual

responses are not known and cannot be reconstructed from the data. The resulting amplitude
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(a) (b)

Figure 2.2: (a) Coherent summation of independent subscatterers within one SAR resolution cell. This
phenomenon is often referred to as random walk. (b) Random walk process considering a dominant scatterer
(displayed in red color) in the resolution cell.

and phase of the backscattered signal then results from coherent summation of the subscatterer

signals (cf. Fig. 2.2).

If the number of subscatterers in the resolution cell is large enough, the central limit theorem

applies, and the SAR image pixel value z can be considered a complex circular Gaussian random

variable. In general, this assumption is true for low and medium resolution SAR and rural scenes

containing mostly natural scatterers such as soil, rock, vegetation, or agriculture. In contrast to

that, the assumption is often violated for high and very high resolution SAR data showing urban

scenes, where artificial objects and man-made structures cause only few dominant scatterers

to be present in each resolution cell, such that either deterministic point scattering or a Rician

distribution has to be applied. The Gaussian assumption can, however, be considered a convenient

approximation in most cases, leading to the probability density function (pdf)

f (z) = f (Re{z}, Im{z}) =
1

2πσ2
exp

(
−Re{z}2 + Im{z}2

2σ2

)
, (2.3)

where σ2
/2 =

σ2
Re{z}/2 =

σ2
Im{z}/2 is the variance of the Gaussian distribution considering that real

and imaginary parts are uncorrelated.

Exploiting the relations

Re{z} = A cosϕ

Im{z} = A sinϕ,
(2.4)

which lead to

A =
√

Re{z}2 + Im{z}2

ϕ = arctan
Im{z}
Re{z}

,
(2.5)
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(a) (b)

Figure 2.3: Exemplary SAR probability density functions: (a) Rayleigh distributed pdfs of amplitudes for
varying σ. (b) Uniformly distributed phase pdf.

the probability density function for amplitude and phase f (A,ϕ) can be deduced. For this, the

usual techniques for transformations of random variables have to be employed:

f (A,ϕ) = f (Re{z}, Im{z})
∣∣∣∣∂ (Re{z}, Im{z})

∂ (A,ϕ)

∣∣∣∣ =
A

2πσ2
exp

(
− A2

2σ2

)
, (2.6)

where |∂(Re{z},Im{z})
∂(A,ϕ) | is the Jacobian of of the transformation (2.4). The marginal probability

density function of the amplitude alone can then be derived as

f (A) =

π∫
−π

f (A,ϕ) dϕ =
A

σ2
exp

(
− A2

2σ2

)
, (2.7)

while the marginal pdf of the phase is found to be

f (ϕ) =

∞∫
0

f (A,ϕ) dA =
1

2π
. (2.8)

Both probability density functions are plotted exemplarily in Fig. 2.3. Equation (2.8) shows

that the phase of the backscattered signal of a single SAR resolution cell is uniformly distributed,

i.e. it does not contain any useful information. The amplitude pdf of the signal instead follows a

Rayleigh distribution, which characterizes the so-called speckle effect, which is well known from

the context of coherent imaging of rough surfaces [Goodman, 1975]. Although speckle is often

referred to as noise, this is rather misleading: the speckle pattern of the imaged object contains

information about its subresolution structure and can therefore be exploited beneficially.

In contrast to the uniformly distributed phase of a single resolution cell, which does not contain

relevant information, the information content of the phase difference of two SAR signals depends

on the degree of correlation between each other. Lee et al. [1994] and Bamler & Hartl [1998]

derived the relation between this phase difference and the coherence between the two signals as

f (φ) =
1− |γ|2

2π
(

1− |γ|2 cos2 (φ− φ0)
)
1 +

|γ| cos (φ− φ0) arccos (− |γ| cos (φ− φ0))√
1− |γ|2 cos2 (φ− φ0)

 , (2.9)
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Figure 2.4: Probability density functions of the interferometric phase for l = 1, 2, 4 and 10 looks and a
coherence magnitude of |γ| = 0.7 (after [Meyer, 2004]).

where φ0 denotes the expectation of the phase and γ the complex coherence, which will be

explained in Section 2.3.3 in greater detail. It has to be noted that (2.9) was derived only

for single-look, i.e. unfiltered data. In many cases, it is, however, desirable to denoise the

interferometric phase by multilooking. This procedure of course changes the probability density

function of φ, which then becomes

f (φ) =
Γ
(
l + 1

2

) (
1− |γ|2

)l
β

2
√
πΓ (l) (1− β2)l+

1
2

+

(
1− |γ|2

)l
2π

·F

(
l; 1;

1

2
;β2
)
, (2.10)

with β = |γ| cos (φ− φ0), the Gamma function

Γ (a) =

∞∫
0

ta−1 exp (−t) dt (2.11)

and the Hypergeometric function

F

(
l; 1;

1

2
;β2
)

=
Γ
(
1
2

)
Γ (l)Γ (1)

∞∑
i=0

Γ (l + i)Γ (1 + i)

Γ
(
1
2 + i

)
i!

(
β2
)i
. (2.12)

The probability density functions for interferometric phases with l = 1, 2, 4 and 10 looks and a

coherence magnitude of |γ| = 0.7 are exemplarily shown in Fig. 2.4. It is obvious that the number

of looks corresponds to an improvement of the phase accuracy.

2.2 Geometrical and Radiometrical Effects in SAR Imagery

In synthetic aperture radar imaging, the 3D objects of the scene are mapped to the two-dimensional

azimuth-range image plane. Due to the side-looking imaging geometry and the fact that radar

is based on measuring the distances to the real-world objects, certain geometrical effects occur if
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Figure 2.5: Geometrical effects in SAR imaging. After [Lillesand et al., 2004, p. 655].

elevated objects (e.g. mountains, trees or buildings) are illuminated: foreshortening, layover and

shadowing are illustrated in Fig. 2.5 and can be explained if the impact of the surface slope angle

β is investigated.

Foreshortening occurs for surfaces that are oriented towards the sensor and show a terrain

slope smaller than the radar look angle θ, i.e. −θ < β < θ. In short, it means that the relative

distance between two points is shortened due to its projection onto the slant range plane. Image

parts affected by foreshortening therefore appear relatively bright in the SAR intensity image,

because the backscattering energy of a surface patch is concentrated in a proportionally smaller

image patch. If the terrain slope is even steeper than the look angle (β > θ), the layover effect

appears, i.e. several objects are mapped on the same location in the SAR image and their

backscattering signals mix. In Fig. 2.6, for example, the first building’s facade is overlayed with

the ground in front of the building, and parts of the roof even mix with both facade and ground.

Therefore, the positions of elevated objects are inverted and seem to be shifted towards the sensor

in SAR imagery. The resulting image parts also appear bright in the intensity image due to the

accumulation of several backscattering contributions. For β < θ − 90◦, radar shadowing occurs.

Here, the sensor-scene configuration leads to surfaces invisible to the sensor, such that no data is

available for the corresponding areas of the scene. With the exception of thermal noise influences,

radar shadow appears black in the SAR intensity images. All three effects depend on the look

angle of the radar signal with respect to the geometry of the objects in the scene.



2.3. SAR Interferometry 23

Figure 2.6: Layover and shadowing in an urban environment. The response of the first building mixes with
the response of the ground in front, whereas the response of the second building overlays the shadow of
the first one.

2.3 SAR Interferometry

2.3.1 Types of SAR Interferometry

Since synthetic aperture radar interferometry has been introduced in the 1970s [Graham, 1974], it

has continuously attracted the attention of an interdisciplinary research community. In general,

SAR interferometry can be employed in two different modes (cf. Fig. 2.7 and [Klausing & Holpp,

2000]):

• Across-track interferometry

The antennas are spatially aligned such that a baseline component in cross-track direction

is introduced. This technique is used for derivation of terrain height.

• Along-track interferometry

The antennas are arranged along-track, i.e. the baseline is parallel to the flight direction.

Along-track interferometry is usually employed for the detection of slow target movements

(e.g. ocean currents or glacier movements) with respect to the radar line-of-sight.

Especially the derivation of the topography of extended areas by cross-track interferometry

has received great attention and been used operational for quite some years now [Bamler & Hartl,

1998; Rosen et al., 2000; Hanssen, 2001; Richards, 2007].

Besides the classification in across-track and along-track methods, SAR interferometry can also

be distinguished with respect to the number of antennas on the carrier platform (cf. Richards

[2009]):

• Single-pass interferometry

Two (or more) antennas are mounted on the same carrier platform. An interferometric

acquisition therefore needs just a single pass over the scene.

• Repeat-pass interferometry

Just one antenna is mounted on the carrier platform. For an interferometric analysis multiple

passes over the scene are required.
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(a) (b)

Figure 2.7: Types of SAR interferometry (after [Klausing & Holpp, 2000]): (a) Across-track InSAR geom-
etry. (b) Along-track InSAR geometry.

Besides the additional time that is needed in order to acquire a repeat-pass InSAR dataset,

another disadvantage is caused by the fact that repeat-pass data are affected by temporal decor-

relation (see Section 2.3.3 for more detailed explanation). On the other hand, repeat-pass data

can be used for determination of movements in addition to topography reconstruction.

2.3.2 Basic InSAR Principle

In general, SAR interferometry is based on the main characteristic that sets radar aside from

optical imaging technologies: In radar imaging, instead of just intensity, both the amplitude and

the phase of the signal backscattered from the landscape are received and stored in the form of a

complex number for each resolution cell:

z = A exp (jϕ) , (2.13)

where A is the amplitude of the signal and

ϕ = −2π

λ
(Rfw +Rbw) + ϕscatt (2.14)

the signal phase resulting from the two-way distance between the sensor and the target. λ denotes

the wavelength of the radar signal, Rfw and Rbw the radial distances between the emitting horn

and the target, and the target and the receiving antenna, respectively. ϕscatt denotes an offset

mainly caused by the physical properties of the target, which therefore is individual for each

backscatterer. The offset can be eliminated by calculation of the phase difference (or interfero-

metric phase) of two SAR signals. This is usually established on a pixel by pixel basis employing

two precisely coregistered single look complex (SLC) SAR images s1 and s2. The interferogram

is calculated by

s1s
∗
2 = A1A2 exp

(
−j 2π

λ
(ϕ1 − ϕ2)

)
. (2.15)

From (2.15) it can be seen that under the pre-condition ϕscatt,1 = ϕscatt,2 and the utilization

of the same emitting horn for both images leading to Rfw,1 = Rfw,2, the interferometric phase is

just related to the range difference of the two antennas:

φ = ∆ϕ = ϕ1 − ϕ2 = −2π

λ
(Rbw,1 −Rbw,2) = −2π

λ
∆R. (2.16)

Unfortunately, by definition, the phase values are restricted to the interval [−π, π[, corre-

sponding to one so-called fringe. Therefore, the interferometric phase is ambiguous and usually
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has to be unwrapped prior to terrain reconstruction. The relationship between the wrapped and

the unwrapped, absolute phase is given as follows:

φabs = φ+ 2πk. (2.17)

Solving for the integer value k generally is a non-trivial task and has thoroughly been studied

in the literature for decades [Goldstein et al., 1988; Ghiglia & Romero, 1994; Fornaro et al.,

1996a,b; Flynn, 1997; Costantini, 1998; Ghiglia & Pritt, 1998; Zebker & Lu, 1998; Davidson &

Bamler, 1999; Xu & Cumming, 1999; Gens, 2003].

2.3.3 Interferometric Coherence

One of the key parameters in SAR interferometry is the interferometric coherence, whose mag-

nitude is providing a valuable measure for the quality of interferometric phase measurements.

As described in Section 2.3.2, the interferometric exploitability of two SAR acquisitions is based

on the assumption that the scatterer phases ϕscatt,i are identical in both images, thus yielding a

perfectly defined phase difference. In reality, however, several phenomena disturb this assumption

and lead to different kinds of decorrelation:

• Change of the backscattering properties of the scene between the acquisition times. This

is especially critical for vegetation or moving surfaces such as glaciers, and for repeat-pass

systems.

• Differences in the information content of the images caused by different viewing angles or

different sensors.

• Thermal noise of the radar system hardware.

• Errors introduced during processing.

The degree of correlation, or coherence, between two co-registered images of a SAR interferometer

is measured by

γ =
E{z1z∗2}√

E{|z1|2} ·E{|z2|2}
= |γ| · exp (jφ) , (2.18)

where E{ · } denotes the expectation of the complex SAR signal. In practice, it is substituted by

the spatial average over L adjacent looks assuming local stationarity. The coherence magnitude

|γ| ∈ [0; 1] resembles the correlation coefficient between the images, i.e. 0 indicates complete

decorrelation, while 1 means full coherence. Since the phase standard deviation is related to the

coherence magnitude by the Cramer Rao bound [Rodriguez & Martin, 1992]

σϕ =
1√
2L

√
1− |γ|2

|γ|
, (2.19)

where L is the number of looks utilized for coherence (and therefore also phase) estimation, it is

obvious that a high coherence is a necessary prerequesite for SAR interferometry.
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Figure 2.8: Basic interferometric SAR geometry.

2.3.4 Phase-to-Height Conversion

The geometry of a cross-track SAR interferometer is shown in Fig. 2.8. The two radar antennas

are separated by the baseline B, and antenna 1 be both emitting and receiving, antenna 2 be

only receiving. In principle, the imaging geometry of cross-track SAR interferometry is similar

to stereogrammetric techniques as known from photogrammetry. The main difference is that

in stereoscopic systems the parallax is determined by a direct measurement of the observation

angles, whereas a SAR interferometer exploits the phase difference between the received signals of

both antennas. As we have seen from (2.16), the phase difference φ is corresponding to the range

distance of the antennas ∆R. Therefore, the interferometric phase is a very precise measure of the

range difference between the antennas with an accuracy down to the fraction of a wavelength. In

analogy to stereogrammetry, this equals an enhanced angular resolution. Applying the cosine law

to the triangle defined by the antennas and the measured object, the distance R2 of the second

antenna can be written as

R2
2 = R2

1 +B2 + 2R1B cos (90◦ − θ + α) . (2.20)

Considering that R2 = R1 +∆R and cos (90◦ − θ + α) = sin (θ − α) we receive

∆R =
√
R2

1 +B2 + 2R1B sin (θ − α)−R1 (2.21)

for the range difference. Combining (2.21) with (2.16), we see that the interferometric phase at

a certain range distance R = R1 and for a known baseline described by its length B and its

inclination α only depends on the sensor look angle θ:

φ = −2π

λ

(√
R2 +B2 + 2RB sin (θ − α)−R

)
. (2.22)

If the fact that the look angle θ is range and height dependent, i.e.

θ = arccos

(
H − h
R

)
, (2.23)
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is considered, we can deduce the direct relationship between the topographic height h and the

measured interferometric phase

φ = −2π

λ

(√
R2 +B2 + 2RB sin

(
arccos

(
H − h
R

)
− α

)
−R

)
, (2.24)

which can be solved for h employing non-linear optimization techniques. Usually, however, one is

not interested in the full interferometric phase, but only its topographically induced share. For

this, we have to reformulate (2.21) as

B sin (θ − α) = ∆R+
∆R2

2R
− B2

2R
. (2.25)

Since the baseline B and the range difference ∆R are usually small in comparison to the range

distance R, the two last terms in (2.25) can be neglected, such that (2.16) becomes

φ = −2π

λ
∆R ≈ −2π

λ
B sin (θ − α) (2.26)

for a scatterer at reference height. If then another scatterer with the same range distance but with

a topographic height difference ∆h to the first scatterer is measured, its interferometric phase

becomes

φ (∆h) = −2π

λ
B sin (θ +∆θ (∆h)− α) (2.27)

because of the slightly changing look angle θ + ∆θ. Exploiting the approximation ∆θ (∆h) ≈
∆h

R sin(θ) , the observed phase difference between both scatterers can be expressed as

∆φ = −2π

λ
B (sin (θ +∆θ (∆h)− α)− sin (θ − α))

≈ −2π

λ
B cos (θ − α)∆θ (∆h)

≈ −2π

λ

B cos (θ − α)

R sin (θ)
∆h,

(2.28)

with B⊥ = B cos (θ − α) being the orthogonal or normal baseline. Often,

kz =
2π

λ

B⊥
R sin θ

(2.29)

is referred to as vertical wavenumber, which can be used to introduce a linear relation between

phase and height:

φ = −kz ·h. (2.30)

Note that application of (2.30) requires that the reference height h0 and the corresponding phase

φ (h0) have to be calibrated to 0 first.

As mentioned before, the interferometric phase is only known modulo 2π, i.e. in the interval

[−π; +π[. Therefore, the so-called height of ambiguity

h2π =
λR sin (θ)

B cos (θ − α)
. (2.31)

can be deduced by inversion of (2.30). It describes the height leading to a phase change of 2π.

Before applying any of the phase-to-height conversion formulas described in this section, it is

necessary to reconstruct the absolute phase from the observed wrapped phase. Although a vast

number of phase unwrapping algorithms have been published during the last decades, no fully

satisfactory and reliable solution has been found yet. In general, the ability to resolve phase

ambiguities mainly depends on the local terrain slope and the phase noise level, making it a

particularly challenging task for urban areas with many strong height jumps.
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3 State of the Art in SAR
Interferometry of Urban Areas

The analysis of urban areas by SAR interferometry belongs to the great challenges in remote

sensing and has been studied extensively since the first sensors providing sufficient resolution have

been introduced. Following the developments in this field of research and in spite of potential

overlaps, most of the hitherto published approaches can be classified in four main categories:

interferometric SAR image analysis, Markovian regularization frameworks, persistent scatterer

interferometry, and SAR tomography. This section gives a short survey over the state-of-the-art

in SAR interferometry of urban areas and elaborates the contribution of this thesis with respect

to this background. More comprehensive information on radar remote sensing of urban areas, not

limited to SAR interferometry, can be found in [Soergel, 2010].

3.1 Interferometric SAR Image Analysis

Many of the early approaches in urban SAR remote sensing exploit the signatures of buildings in

the InSAR data by methods from the field of image analysis. Instead of analyzing the data on a

pixel-by-pixel basis or by reconstructing the interferometric range-Doppler imaging geometry in

a comprehensive way, geometric approximations are utilized. Consequently, both the shadowing

and the layover effect are either exploited within geometrical relationships or considered to be

disturbances, which have to be coped with by the proposed building reconstruction algorithms.

Some of the first considerations towards building extraction from InSAR data were presented

in [Burkhart et al., 1996]; they were largely based on the hypothesis that gradients in an inter-

ferometrically derived elevation map directly correspond to building edges. The main focus of

the paper was put on the filtering of elevation maps, and an exploitation of the so-called “front

porch” effect caused by building layover.

[Gamba et al., 2000] provides an extension to this by proposing a complete procedure for

the extraction of building structures from InSAR elevation data segmented by a region-growing

method and following local approximation of the 3D data by means of best-fitting planes. In

[Gamba & Houshmand, 2000], the authors state that LiDAR-derived height data is better suitable

for the shape characterization of buildings, because layover and shadowing can only partially be

corrected by means of segmentation procedures.

More segmentation-based approaches were proposed by Soergel et al. [2000, 2001] and Stilla

et al. [2003], with the extension that now the elevation data were combined with the corresponding

intensity and coherence maps in order to improve the segmentation result. Apart from that, again

SAR peculiarities caused by the side-looking imaging geometry were discussed.

Although the work published up until then already showed the general potential of airborne

high-resolution InSAR data for urban area reconstruction, the missing information caused by
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radar shadowing still remained an open problem. Therefore, in parallel, the first solutions utilizing

InSAR data acquired from multiple viewing directions were suggested [Bolter & Leberl, 2000;

Bolter, 2001]. The idea was readily seized on and fused with the segmentation-based approaches

[Soergel et al., 2003]. Thiele et al. [2007a, 2010a,b] further investigated in this direction by

considering the signatures of flat- and gable-roofed buildings in multi-aspect InSAR data. Their

approach is centered around the extraction of geometrical primitives such as double bounce lines

in slant range amplitude data and an analysis of phase profiles in building layover areas [Thiele

et al., 2007b, 2008]. After geocoding, the primitives are grouped and expanded to building

footprints. Then, in combination with the InSAR-derived heights, 3D hypotheses are generated

and compared to simulated phase profiles in order to determine the correct building model.

3.2 Markovian Regularization Frameworks

Whereas the approaches described in the last section were based on an exploitation of geometrical

approximations, building signatures in InSAR data and image analysis techniques, another group

of publications utilizes statistical regularization frameworks in order to extract comprehensive

surface models rather than building models from single- or multi-baseline InSAR data. Ferraiuolo

et al. [2004], for example, proposed a Gaussian Markov random field for recovering topographic

profiles affected by strong height discontinuities. In a similar manner, Denis et al. [2009] presented

a Markov random field in combination with total variation regularization for a joint denoising

of phase and amplitude data, aiming at the 3D reconstruction of urban areas. The approach

proposed in [Tison et al., 2007] provides a framework for simultaneous reconstruction of height

model and classification map, again based on a Markovian optimization. Starting from previously

extracted high-level features, a digital surface model and the object classes are estimated and

afterwards improved by comparison with a layover/shadow map derived from the estimated DSM.

Ferraioli [2008] was among the first to extend the idea of the hitherto published global regular-

ization approaches to multi-channel (i.e. multi-baseline or multi-frequency) InSAR data. Starting

from the need to solve the phase-unwrapping problem, which has already been tackled by multi-

baseline approaches before [e.g. Corsini et al., 1999; Essen et al., 2007], a local Gaussian Markov

random field (LGMRF) is developed and optimized using the iterated conditional modes (ICM)

algorithm. The method also allows the integration of auxiliary input data such as optical im-

agery [Baselice et al., 2009b], and provides interesting perspectives for edge detection [Baselice &

Ferraioli, 2012].

The latest extension to this group of approaches was proposed by Shabou et al. [2012]. The

algorithm is designed to simultaneously unwrap and regularize the complex InSAR data. In

particular, the exploitation of amplitude data within the unwrapping process helps to preserve

sharp discontinuities as they are frequently encountered in urban areas. Again, the estimation

framework is a Markov random field, which is optimized using a graph-cut-based optimization.

Although the authors state the algorithm has yet to be extended in order to be able to consider

geometrical distortions such as layover, it is able to compute highly accurate height maps of areas

containing large, isolated buildings.

3.3 Persistent Scatterer Interferometry

One of the most important developments in the field of SAR remote sensing certainly was the

introduction of persistent scatterer interferometry (PSI) by Ferretti et al. [2001]. The main

advantage of this technique is that only quasi-deterministic scatterers, whose reflectivities remain

stable during a set of multi-temporal acquisitions, are considered for the analysis. Thus, high
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quality 3D point clouds can be derived, even containing information about the movement of

the points [Kampes, 2006]. Since persistent scatterers rely on stable backscattering processes as

they usually only occur on non-vegetated areas, the high potential for urban area remote sensing

has been recognized early [Perissin & Rocca, 2006; Crosetto et al., 2010]. The breakthrough,

however, came with the advent of very high resolution spaceborne SAR missions, which now even

allowed for a 4-dimensional monitoring of single buildings [Gernhardt et al., 2010; Gernhardt,

2012; Schunert & Soergel, 2012].

In parallel, Ferretti et al. [2011] extended the PSI concept to distributed scatterers, i.e. in

addition to resolution cells containing just point scatterers now also groups of resolution cells

caused by the same backscattering phenomenon can be considered now. This way, the number

of scatterers – and also the number of reconstructed 3D points – can greatly be enlarged [Wang

et al., 2012].

However, as with all other hitherto mentioned approaches, PSI itself does not provide a

solution to the missing information caused by radar shadowing. Therefore, a fusion of PSI point

clouds processed from data acquired from ascending and descending orbits has been proposed in

analogy to the previously mentioned multi-aspect fusion in the image analyis context [Gernhardt

et al., 2012].

3.4 SAR Tomography and Layover Separation

Among the most recent developments in urban SAR remote sensing is the extension of PSI by an

adaption of SAR tomography (TomoSAR) to the discrete scattering profiles, which are frequently

encountered in man-made environments.

Originally, the desire to extend the synthetic aperture radar (SAR) principle to a fully three-

dimensional imaging technique has led to the highly investigated field of TomoSAR. Since its first

practical introduction around the turn of the century [Homer et al., 1996; She et al., 1999; Reigber

& Moreira, 2000], a rapid development of more sophisticated processing algorithms – providing,

for example, super-resolution [Rößing & Ender, 2001] – as well as the opening of a variety of

application fields has taken place: At the beginning, the most important research direction was

the analysis of volume structures such as forests. Using sensors with relatively low frequencies

(e.g. L- or P-band), the coherent combination of multi-baseline SAR images from several flight

tracks enables a full reconstruction of the continuous volume between canopy and ground [Frey

et al., 2008; Frey & Meier, 2011; Tebaldini & Rocca, 2012; Aguilera et al., 2013], even allowing

for the detection of objects hidden below foliage [Nannini et al., 2008; Huang et al., 2012].

Besides this reconstruction of continuous reflectivity profiles, SAR tomography also makes

the determination of multiple (discrete) scattering contributions within a single resolution cell

possible. This is particularly interesting for the separation of layover contributions in mountainous

terrain and urban areas and can also be seen as a multi-baseline extension to conventional single-

baseline SAR interferometry (InSAR) [Gini et al., 2002; Lombardini et al., 2003]. With the newest

generation of sub-meter- and even decimeter-resolution spaceborne SAR sensors, the interest in

this topic was newly stimulated as now a detailed 3D analysis of densely built-up inner city areas

has become feasible. The most recent development in this field is based on the rationale that

discrete scatterers cause sparse reflectivity profiles, which eventually led to the adaption of sparse

reconstruction techniques and compressive sensing theory to the TomoSAR context [Budillon

et al., 2011; Zhu & Bamler, 2010a]. This way, even higher tomographic focusing resolutions have

become possible. In addition to that, TomoSAR methods can be integrated into the persistent

scatterer framework, which enhances the potential of PSI for urban point cloud reconstruction

even more [Ferretti et al., 2005; Fornaro & Serafino, 2006; Zhu et al., 2012]. The most recent
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step in this field of research is the fitting of facades to the point cloud data in order to enable the

reconstruction of building models in a bottom-up approach [Zhu & Shahzad, 2014].

3.5 Contribution of this Thesis

While the methods summarized in Section 3.1 all start from conventionally derived InSAR height

maps and try to cope with the SAR inherent geometric effects (layover and shadowing) by image

analysis techniques, the described PSI and TomoSAR approaches share the need for large multi-

temporal data stacks acquired by repeat-pass platforms. However, collecting this kind of repeat-

pass data is expensive and cumbersome, especially if the main advantage of SAR remote sensing,

namely its applicability in time-critical scenarios, is considered. In case, for example, a 3D model

of a disaster-affected city is to be produced in order to provide orientation information for response

teams, it is not possible to wait for a whole PSI stack to be delivered.

Apart from that, current satellite missions only use ascending and descending orbits, which

means that only two aspects can be combined for filling up image gaps caused by shadowing.

In contrast, airborne single-pass multi-baseline SAR interferometers provide small InSAR stacks

from just a single flight over the scene of interest, and are able to fly along arbitrarily defined

flight trajectories in order to realize a large variety of many different multi-aspect configurations.

Figure 3.1 illustrates the wide range of possible acquisition campaigns: While aspects are defined

by the heading angle of the flight, paths relate to differing flying altitudes, which lead to severely

dissimilar viewing angles such that no interferograms can be created between acquisitions of two

different ones. In contrast to that, multiple passes with only slightly different trajectories can be

used to simulate a multi-antenna array if the carrier platform is equipped with only one receiving

antenna. It is important to mention, however, that in the context of the methods described in

this thesis, paths are treated like aspects (Q = Q1 + Q2), whereas for each aspect/path either

multi-antenna or multi-pass data can be employed to form multi-baseline interferograms (N = N1

or N = N2).

Therefore, with this kind of airborne sensor setup, the full timely flexibility of SAR remote

sensing is kept, while still multi-baseline data acquired from multiple aspects can be exploited for

comprehensive urban area reconstruction.

In this context, the contribution of this thesis is to provide new processing chains, which

enable the comprehensive reconstruction of urban area surface models, where the layover and

shadowing effects are to be coped with inherently. That is, conventional SAR interferometry is

to be extended by multi-baseline techniques and multi-aspect data fusion in such a way that the

resulting height data is as correct and as precise as possible and without having to collect large

amounts of multi-temporal data first.

In order to reach this main goal, the intermediate goals are three-fold:

1) Development of adaptive estimation techniques for covariance matrices of single-pass multi-

baseline InSAR resolution cells. This is a necessary prerequisite for a statistical exploitation

of coherent SAR observations.

2) Development of a workflow for tomographic layover separation in single-pass multi-baseline

InSAR stacks with just few images.

3) Development of methods for the fusion of multi-aspect multi-baseline InSAR data both after

tomographic height reconstruction as well as during the height reconstruction process.
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Figure 3.1: Sketch illustrating the variety of the possible multi-aspect multi-baseline InSAR acquisition
geometries. The acquisition configuration can be chosen almost arbitrarily.

Although the goals of this thesis aim at the peculiarities of airborne single-pass multi-baseline

SAR interferometers, all developed methods can be applied to any kind of SAR data straight-

forwardly, no matter if spaceborne or airborne, repeat-pass or single-pass – basically even to

imagery acquired by circular SAR as described e.g. by Oriot & Cantalloube [2008] or Palm et al.

[2012]. The generalization usually is straight-forward and consists mostly of an adaption of the

flight geometry from linearized tracks to, for example, polynomial orbits, or an addition of more

available observations.
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4 Adaptive Covariance Matrix
Estimation

Apart from multi-looking based SAR tomography as, for example, presented by Gini & Lombar-

dini [2005] or Baselice et al. [2009a] the estimation of the covariance matrix for each resolution

cell is a critical processing step for many multi-dimensional applications of synthetic aperture

radar imaging [Just & Bamler, 1994; Tough et al., 1995; Cloude & Papathanassiou, 1998; Lopez-

Martinez & Fabregas, 2003].

In the low- and medium-resolution beginnings of InSAR mapping, fixed-size boxcar windows

were commonly used for both the estimation of the complex coherence and the denoising of the

interferometric phase as the hypothesis of statistical homogeneity of neighboring pixels could be

considered valid for rural scenes, which were in the center of interest then. For high-resolution

images of complex scenes such as urban areas, however, this approach is not suitable anymore

[Touzi et al., 1996; Gao, 2010]. Therefore, more sophisticated adaptive methods have to be

found in order to ensure an unbiased estimation of the covariance matrices. In the literature,

many papers can be found on the topic of adaptive filtering of different kinds of SAR data, all

based on the exploitation of homogeneous pixel neighborhoods. Among the first problems to be

addressed was the simple speckle filtering of amplitude or intensity imagery [Lee, 1980; Frost et al.,

1982; Kuan et al., 1985]; a comprehensive survey of the methods published during the 1980s and

1990s can be found in [Touzi, 2002]. Via the application to multi-temporal amplitude imagery

[Ciuc et al., 2001], the general idea of these filters was gradually extended to interferometric

and polarimetric SAR data, now aiming at an unbiased estimation of phase, coherence, and

polarimetric scattering information [Lee et al., 1998; Vasile et al., 2004, 2006]. One of the most

efficient filters in this context was proposed by Deledalle et al. [2011]: This algorithm, which

utilizes a non-local estimation framework [Buades et al., 2005; Yang & Clausi, 2009], allows for

the simultaneous extraction of all relevant information of a pair of co-registered InSAR images.

Unfortunately, NL-InSAR was designed under the assumption of bivariate datasets; it can not be

applied to stacks of multi-baseline imagery∗.

Therefore, more recently some first papers have been published about the adaptive filtering

of multi-dimensional SAR stacks. Ferretti et al. [2011] proposed DespecKS, an algorithm em-

bedded in their SqueeSAR framework that uses a two-sample Kolmogorov-Smirnov test in order

to evaluate if two stack pixels within a pre-defined search window belong to the same statistical

distribution. Parizzi & Brcic [2011] further investigated this approach with respect to different

goodness-of-fit tests such as Kullback-Leibler divergence, Anderson-Darling test, or generalized

likelihood ratio test. Although all these formulations show promising results, they all suffer from

one certain disadvantage: They typically work only for stacks of at least eight images and up

[Stephens, 1970]. If, however, just standard InSAR pairs or stacks with a limited number of

∗Only during finalization of this thesis, an extension of NL-InSAR to multi-dimensional data – now called
NL-SAR to express its generalized nature – was proposed in a pre-print [Deledalle et al., 2013].
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images, e.g. acquired by single-pass multi-baseline systems as they are frequently equipped on

airborne platforms, are to be processed, alternative methods are necessary. Aiming to overcome

the limitation on the large sample number inherent to [Ferretti et al., 2011] and [Parizzi & Brcic,

2011], in this thesis two novel algorithms for the adaptive multilooking of airborne single-pass

multi-baseline InSAR stacks that typically consist only of a low number of simultaneously ac-

quired images (three to six) are described. The first method was published in [Schmitt & Stilla,

2014b] and intends to concentrate the information of the stack – no matter of how many acquisi-

tions it consists – via principal component (PC) analysis (PCA). A filtered version of the first PC

is then used to determine homogeneous pixels around the resolution cell of interest using just a

simple thresholding. From these homogeneous pixels then the complex covariance matrix of the

resolution cell is estimated. The second approach is described in [Schmitt et al., 2014a]. In con-

trast to all other mentioned filters, which rely on the assumption that the amplitude values of the

pixels can be used as a hint for changes in their phase values as well, it exploits the whole complex

information for homogeneity determination. Usually, the determination of statistical similarity is

solely based on the pixel amplitudes, while phase and coherence information is neglected. If an

object in the scene causes a backscattering amplitude similar to the background, its phase values

will be joined with the phase of this background during filtering, potentially causing blurring

or even the loss of the object’s phase information. In comparison, the general idea of this new

method is based on an analysis whether resolution cells belong to the same statistical distribution

as the currently investigated center pixel by thresholding of the respective probability density

function.

4.1 Statistical Properties of Multi-Baseline InSAR Resolution

Cells

This whole thesis is centered around the assumption that each single look complex (SLC) obser-

vation z agrees at least approximately with Goodman’s model [Goodman, 1975], where both the

real and imaginary parts follow a zero-mean Gaussian distribution, i.e.

Re{z}, Im{z} ∼ N
(

0,
σ2

2

)
, (4.1)

and are statistically independent (cf. Section 2.1.2). Although De Zan [2008] has investigated this

assumption in comparison to a Constant-plus-Gaussian model, which might be considered more

appropriate for hetereogeneous scenes such as urban areas, where often (quasi-)deterministic point

scattering can occur, he came to the conclusion that it is a sufficient approximation. This view

is also seconded by other authors working with X-band SAR [Baselice et al., 2009a; Wang et al.,

2012], while for smaller wavelengths (e.g. millimeterwave SAR), the validity of the assumption

should be even better (cf. Section 7.2).

Therefore, it follows that each pixel vector z in a stack of coregistered SAR images can be

considered a sample from the multi-variate probability density function

f (z) =
1

πN det (C)
exp

(
−zHC−1z

)
, (4.2)

which is fully characterized by its complex covariance matrix

C =


I1 γ12

√
I1I2 . . . γ1N

√
I1IN

γ∗12
√
I1I2 I2 . . . γ2N

√
I2IN

...
...

. . .
...

γ∗1N
√
I1IN γ∗2N

√
I2IN . . . IN

 (4.3)
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The Ii denote the intensities of all N acquisitions in the stack, whereas

γij =
E
{
ziz
∗
j

}
√
IiIj

= |γij | exp (jφij) (4.4)

is defined as the complex coherence, which itself is composed of the magnitude of coherence (or

correlation) |γij | and the interferometric phase φij between acquisitions i and j, where zi and zj
are the related complex observations.

Applying the normalization of (4.4) to (4.3) such that the main diagonal of the covariance

matrix becomes a unity vector, we receive the so-called coherence (or correlation) matrix

Γ=


1 |γ12| exp (jφ12) . . . |γ1N | exp (jφ1N )

|γ21| exp (jφ21) 1 . . . |γ2N | exp (jφ2N )
...

...
. . .

...

|γN1| exp (jφN1) |γN2| exp (jφN2) . . . 1

. (4.5)

The most interesting characteristic of the complex covariance matrix of InSAR stack pixels

therefore is that the covariance information is directly related to its interferometric information

content. After estimating

C = E{zzH} ∈ CN×N (4.6)

for each pixel by

Ĉ =
1

L

L∑
l=1

zlz
H
l (4.7)

from L statistically homogeneous pixels, all the denoised interferometric measurements can be

extracted: despeckled intensity images, all possible multi-looked interferograms, and finally all

related coherence maps. Two important facts have to be noted in this context: First, in addition

to ensuring backscattering homogeneity, usually also the local phase fringe frequency has to be

eliminated for a fully unbiased estimate of the covariance matrix [Trouve et al., 1996; Wu et al.,

2006; Vasile et al., 2008; Cai et al., 2008]. For small patch sizes and a relatively large ambiguity

height, however, a simple subtraction of the phase corresponding to the terrain surface of the

scene can be considered a valid approximation [Richards, 2007]. Second, whenever possible, it

should be ensured that L > N in order to receive a non-singular covariance matrix for which its

often needed inverse exists.

Two approaches for adaptive covariance matrix estimation with an emphasis on small inter-

ferometric stacks (i.e. a comparably low number of images, usually between three and six) are

described in the following sections. Boiled down to their essence, they are supposed to answer

the question: Which pixels should be used for covariance matrix estimation?

4.2 Principal Component Analysis-Based Thresholding

In this section, the thresholding based procedure carried out on the first principal component of

the stack of logarithmic amplitude images of the dataset is described. The PCA is applied in

order to get a more reliable indicator of backscattering homogeneity as would be possible from

one raw amplitude image alone (see Section 4.2.1.) After the PCA, as described in Section 4.2.2, a

total variation (TV) norm based denoising algorithm [Getreuer, 2012] is used in order to receive a

more reliable indicator of backscattering energy on which then a sliding window is moved across.
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Figure 4.1: A flowchart of the PCA-TV-based covariance matrix estimation method. Note that after the
thresholding an 8-connectivity check is applied.

Within the sliding window, a thresholding is applied that yields the pixels of the window that are

considered to show homogeneous backscattering.

A flowchart of the proposed procedure is shown in Fig. 4.1. Inspired by [Ferretti et al., 2011], a

sliding search window is defined that moves from pixel to pixel, such that each pixel is considered

as a center pixel of the search window once.

4.2.1 Principal Component Analysis of the InSAR Stack

Principal Component Analysis is a well-known mathematical method that uses an orthogonal

transformation in order to convert a dataset into a set of linearly uncorrelated variables, called

principal components [Shlens, 2009]. The idea is to identify linear combinations of the original

variables that contain most of the information present in the data. This is based on the assumption

that useful information is proportional to the variance of the data. Since the number of principal

components is less than or equal to the number of original variables, the method is often employed

for dimension reduction.

Considering a stack of N coregistered SAR amplitude images, the first step is a transformation

of the stack onto its principal components. In order to ensure that the Gaussian assumption that is

a prerequisite for a correct application of PCA is met at least approximately, the decadic logarithm

to the approximately Rayleigh distributed amplitude images is applied [Gao, 2010]. Afterwards,

all the amplitude values of the stack are put into a two-dimensional data matrix X = [x1 . . .xN ]T

with xi being the pixel values of image i put into a row vector. This means, the rows of X describe

the images of the stack as variables, whereas the columns denote the logarithmic amplitude values
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as observations of these variables. After mean-centering of the dataset, i.e. subtraction of the

row means, the data covariance matrix is estimated by

K =
1

P − 1
XXT (4.8)

P denotes the number of pixels in one image, K quantifies the correlations between all possible

pairs of observed amplitudes. Since we want to reduce any redundancies, i.e. exploit redun-

dant observations in order to remove noise, we seek a transformation of the data such that the

covariances between separate measurements become zero.

Therefore, K is decomposed by eigenvalue decomposition, i.e.

K = EDET , (4.9)

where E is a matrix containing the eigenvectors of K, and D is a diagonal matrix containing

the related eigenvalues. The transformation matrix we are looking for is then simply defined by

A = ET , if the eigenvectors contained in E are ordered with respect to their related eigenvalues

(from the largest eigenvalue to the smallest one).

Finally, we are able to project our stack of amplitude images onto its principal components

using

X̃ = AX. (4.10)

X̃ then consists of N rows and P columns where each row represents one principal component

of the dataset. Since we assume that the first principal component (PC1) contains most relevant

signal information, while the other principal components contain only noise (cf. Fig. 4.2), we just

keep PC1, i.e. the first row of X̃ as input to the neighborhood homogeneity test. Exemplary

relations between the first PC and the following ones for stacks of different size can be found

in Fig. 4.3. It can be seen that a distinction between signal and noise information is of course

not possible with one image alone, whereas the relative share of signal energy contained in the

first principal component becomes less for larger stacks until at some point convergence will be

reached. Note that the relationship between the single principal components depends on the

overall noise level.

4.2.2 Total Variation Denoising

After the data have been projected onto the first principal component, a TV norm based image

denoising algorithm is used to receive an even more reliable indicator of the backscattering charac-

teristics of the scene [Getreuer, 2012]. The algorithm combines the Split Bregman method for L1

norm regularization problems [Goldstein & Osher, 2009] with the Rudin-Osher-Fatemi problem

[Rudin et al., 1992], which basically consists of estimating a denoised image u as the solution of

the minimization

û = arg min‖u‖TV +
µ

2
‖f − u‖22, (4.11)

where µ is a positive regularization parameter that can be determined by methods like generalized

cross-validation (GCV) or L-Curve [Batu & Cetin, 2011]. f = u+n describes the relation between

the noisy image f , the denoised image u and the additive white Gaussian noise n. The term

‖u‖TV ≈
rows∑
i=1

cols∑
j=1

|∇ui,j | (4.12)

describes the TV norm of u, which sums the vector magnitude over all pixels ui,j and basically is

the L1-norm of the gradient image. By looking for the solution with the sparsest gradient image
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Figure 4.2: Example of PCA on a stack of four logarithmic amplitude images (left column). The cor-
responding principal components are shown in the right column, from top to bottom sorted by their
corresponding eigenvalues. In this case, the first principal component accounted for 82% of the signal
energy.
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Figure 4.3: The relative share of the eigenvalues corresponding to the principal components of data stacks
with different number of images is plotted exemplarily. The sum of all eigenvalues always gives the entire
energy content in the signal or image, respectively. Note that the number of principal components is always
less than or equal to the number of available images.

discontinuity-preserving filtering is ensured. The second term in (4.11) ensures that the solution

of the optimization is as close as possible to the observed image f . The resulting image then is a

filtered version of the main principal component with a high rate of detail and edge preservation

that serves as a very good index for the following homogeneity investigation.

4.2.3 Thresholding

Within the search window, which is moved across the denoised PC1 image, all pixels are checked

for similarity to the respective center pixel by a simple thresholding:

|gp − gc|2 ≤ σ (4.13)

gc denotes the PC1 value of the center pixel, gp the PC1 value of the tested pixel, and σ the

standard deviation of the whole first principal component image. The reason the distance between

gp and gc is taken to the power of 2 is motivated by the consideration that small differences (< 1)

are mellowed whereas larger differences (> 1) are even emphasized. From empirical trials, it

was found that this way also outlier pixels that sometimes occur within homogeneous areas are

mitigated.

The main advantages of this approach over region-growing based algorithms are the speed

and a natural upper limit of the number of tested pixels given by the search window size. This

limited extent enhances the chance that the homogeneous patch as detected by the algorithm

really just corresponds to one certain backscattering phenomenon of the scene. If on the contrary

the emphasis is put on larger neighborhoods and stronger filtering, the search window size can

easily be enlarged by the cost of computational speed and robustness of the thresholding step.

Finally, after the thresholding, an 8-connectivity check is carried out in order to ensure that

only pixels connected to the central pixel are considered to belong to the same backscattering

area. An example of the thresholding for a heterogeneous as well as a homogeneous image patch

can be seen in Fig. 4.4. The main advantage of this inspection is that the search window can
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Figure 4.4: Thresholding on filtered main principal component for a heterogeneous (top row) as well as a
homogeneous (bottom row) image patch. From left to right the search window extracted from the main
principal component, the TV-filtered window and the thresholding result are shown: pixels that passed
the thresholding test and are included in the homogeneous neighborhood are marked.

in principle be chosen arbitrarily large, because spatial similarity, i.e. all pixels really belonging

to the same backscattering phenomenon, is ensured by the pixel connectivity. In a final step,

it would be possible to check the detected neighborhood for a minimum size, e.g. in order to

ensure a minimum amount of smoothing or the estimation of a non-singular covariance matrix.

By default, the minimum neighborhood size is set to 1 pixel due to the intention of showing the

natural behaviour of the proposed method. An example of the final neighborhood size for every

pixel can be seen in Fig. 4.5. After having determined the homogeneous neighborhood, the sample

covariance matrix is estimated by (4.7).

4.3 Probabilistic Similarity Determination

In this section, another approach for adaptive InSAR covariance matrix estimation is described. In

analogy to the PCA-based thresholding procedure described in the last section, also this method

is centered around a sliding window operation (see Fig. 4.6). Again, the search window defines

the maximum size of the homogeneous pixel neighborhood. In addition to that, a smaller central

window, which need not be rectangular necessarily, is defined. Using the pixels in this central

window, a robust covariance estimator (see next section) is applied in order to generate an initial

guess for the covariance matrix of the respective center pixel from its direct, enclosing neighbors.

Afterwards, the circularly-symmetric complex Gaussian probability density function for each pixel

in the search window is evaluated with respect to this initial covariance matrix, and a threshold is

applied such that pixels belonging to the distribution of the center pixel are separated from pixels

belonging to a different distribution. Again, the adaptivity test is finalized by a connectivity

check in order to ensure that only pixels connected to the center pixel are considered for the

neighborhood. Finally, the desired covariance matrix is estimated from all connected inliers, i.e.

from all pixels that were detected to be part of the homogeneous neighborhood.
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Figure 4.5: Size of the homogeneous neighborhood as detected for each pixel. Note how especially strong
scatterers are generally just comprised of very few pixels, while homogeneous areas use almost the whole
search window most of the time.

4.3.1 Robust Estimation of Initial Covariance Matrix

The initial guess for the covariance matrix of the center pixel’s distribution is calculated from

its enclosing 4- or 8-neighborhood. However, it is possible – and in heterogeneous areas such as

urban scenes even probable – that not all resolution cells in this neighborhood really belong to a

statistically homogeneous population of backscattering observations. Hence, a robust estimation

of Ĉinit is employed in order to minimize the potential bias. An additional advantage of this

robust initialization is that the effect of single pixels affected by strong speckle is mitigated. The

utilized M-estimator, which has been proposed by Ollila & Koivunen [2003] and was recently

discussed in further detail by Zoubir et al. [2012] is defined as

Ĉinit,k+1 =
1

Linit

Linit∑
l=1

w
(
zHl Ĉ−1init,kzl

)
zHl zl, (4.14)

where Linit is the initial number of looks, i.e. the size of the initial neighborhood, and Ĉinit,0 is

the standard sample covariance matrix estimated from the classic 3 × 3-boxcar window. Since

Linit needs to be larger than N in order to ensure that Ĉinit,0 is non-singular and can be inverted

in (4.14), a larger initial neighborhood has to be employed for stacks with more than 9 images.

w (x) is a robust weighting function, which is descending to zero, such that a highly deviating

observation zl with large ‖Ĉ−
1
2

initzl‖2 = zHl Ĉ−1initzl receives smaller weights in the estimation. The

general idea behind this robust estimation procedure is the assumption that the random vectors z
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Figure 4.6: Sketch of the sliding window based adaptive filter. Within an arbitrarily large search window
around the pixel of interest, all pixels are thresholded whether they belong to the probability distribution
defined by the robust covariance matrix estimated initially from the pixels in the central window. A
subsequent connectivity check then separates connected inliers from unconnected inliers.

in the local window are assumed to follow a complex multivariate t-distribution Ctk,ν (µ,C) with

ν > 0 degrees of freedom:

f (z|µ,C) = c|C|−1
(

1 + 2
s

ν

)− 2k+ν
2
, (4.15)

where s = (z− µ)H C−1 (z− µ) and c is a normalizing constant. With ν = 1, this distribution

is called the multivariate complex Cauchy distribution, which is a prominent robust heavy-tailed

alternative for the Gaussian distribution, that itself is obtained for ν →∞. Due to this reason, the

complex multivariate t-distributions are very useful for analyzing the robustness of multivariate

statistics, since a decrement of ν yields a distribution with an increased heaviness of the tails.

Therefore, the weighting function is chosen by

w (x) = wν (x) =
2N + ν

ν + 2x
. (4.16)

Usually, the parameter is chosen in the range 1 ≤ ν ≤ 5 if the goal is to ensure a certain robustness

against outliers and noisy data.

As a stopping criterion for the iterative estimation of (4.14)

‖Ĉinit,k+1 − Ĉinit,k‖ < ε (4.17)

is chosen, where ε > 0 is a small number. The benefit achieved by relying on a robust estimation of

the initial covariance matrix instead of just the standard sample estimate is illustrated in Fig. 4.7.

4.3.2 Similarity and Connectivity Testing

After a robust initial guess of the distribution’s covariance matrix has been attained, the statistical

similarity to the corresponding central population is determined for each pixel within the larger
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Figure 4.7: Comparison of conventional and robust covariance matrix estimation. The Frobenius norm
of the difference between estimated covariance matrix and theoretical covariance matrix is plotted with
respect to a growing percentage of outlier observations. The benefit of robust covariance matrix estimation
is clearly visible.

search window. A stack pixel z is assumed to be part of the distribution CN
(
0, Ĉinit

)
of the

central pixel if a certain threshold on the probability density is exceeded:

f
(
z|Ĉinit

)
> εpdf. (4.18)

The choice of this threshold is further investigated in Section 4.3.3.

After applying the thresholding, a final 4- or 8-connectivity test is carried in analogy to the

previously described PCA-TV-based approach. Then, the sample covariance matrix is estimated

from the set of connected inliers by (4.7).

4.3.3 Determination of Optimal Parameter Settings

From Sections 4.3.1 and 4.3.2 it is obvious that the proposed algorithm depends on two main

parameters, which have to be tuned manually: The degrees of freedom ν for robust estimation of

the initial covariance matrix, and the probability density threshold εpdf for determination whether

a pixel belongs to the same distribution as the center pixel. Fig. 4.8 shows two plots analyzing the

optimal parameter choice with respect to the noise standard deviation and the number of images

in the stack. For this investigation, monte carlo simulations were carried out. The simulated

data is synthesized from a set of true amplitude and phase images according to the multiplicative

speckle noise model discussed e.g. in [Richards, 2009]. The primary noise level is assumed to be

equal for the real and imaginary part, resulting in Rayleigh distributed amplitude and Gaussian

distributed interferometric phase (cf. Section 2.1.2). Finally, in addition to this SAR inherent

speckle, the signal is augmented with Gaussian distributed thermal noise of the SAR sensor.

Both speckle and thermal noise are summarized to describe the overall noise level shown in the

evaluation figures.

Obviously, ν does not depend on the stack size but only on the noise level and is optimally

chosen between 2.9 and 3.8, which corresponds to the statement of Ollila & Koivunen [2003], who

suggest 1 ≤ ν ≤ 5. Due to the small variations, the choice of ν seems not very critical; if the

noise level is not known a priori, ν = 3 is suggested as a good compromise.

The decadic logarithm of εpdf stays at approximately −10 independently of the noise level.

For larger stacks, however, it slowly decreases to −12. However, also the choice of the threshold is

not very critical. Therefore, in the remainder of this thesis, a constant threshold of εpdf = 10−10 is
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Figure 4.8: Optimal choice of degrees of freedom ν for the robust initial covariance matrix estimation and
optimal choice of probability density threshold εpdf for similarity checking: (a) Plot for fixed stack size (2
images) with respect to growing noise level. (b) Plot for fixed noise level (STD 0.5) with respect to growing
number of images in the stack.

employed. If large stacks, such as typically encountered in the context of repeat-pass spaceborne

SAR, serve as input to the presented approach, the threshold should be lowered accordingly.

Considering these empirical findings, the proposed method does not necessarily require any

manual settings or parameter tunings and can be applied to different kinds of InSAR data with

pre-defined default parameters. Only if highest precision is required and, e.g., very large stacks

are to be processed or very large noise levels are present, a refinement of the parameters can be

advisable.
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5 Maximum-Likelihood SAR
Tomography

As already explained in Chapter 3, the extension of SAR interferometry to multi-baseline data

and eventually to SAR tomography was one of the most important developments in SAR remote

sensing so far – as now real three-dimensional imaging is enabled. This is especially true for

the analysis of urban areas and other scenes rich of man-made structures, as the observations

are frequently affected by layover in these cases. Although many promising methods for the

separation of scattering signals contributing to a layover observation have been published during

the last years, most of them rely on large data stacks as they can only be acquired in the context

of repeat-pass campaigns. Whereas airborne sensors usually enable an almost arbitrary flight

planning, yielding the possibility to acquire the repeat-pass data still in a relatively short time,

this is an even more severe drawback for spaceborne platforms that follow pre-defined orbits

and therefore usually experience a temporal baseline of at least several days. This repeat-pass

configuration eventually leads to a) a loss in coherence depending on wavelength and temporal

baseline, b) the need to consider displacements even of stable scatterers for larger temporal

baselines, and c) the need to wait for data delivery, which can be unfavorable for time-critical

applications (e.g. disaster response scenarios).

The reason for this drawback is that most TomoSAR methods rely on spectral estimation

algorithms designed for array signal processing [Krim & Viberg, 1996], which means they are

physically limited by the Rayleigh resolution of the available sensor geometry. This resolution

in elevation direction can only be enhanced by providing a sufficient tomographic aperture and

a sufficient number of receiving antennas. Although there are many super-resolution procedures

available, even the most sophisticated ones are not able to resolve two arbitrarily close scattering

contributions [Zhu & Bamler, 2011]. Due to the fact that the number of antennas and the overall

antenna length is typically limited on single carrier platforms, the system attributes are then often

artificially enhanced by simulating a multi-antenna sensor via multiple passes over the scene of

interest.

In contrast, a maximum-likelihood-based estimation framework was developed in [Schmitt &

Stilla, 2014a], which allows the separation of multiple scattering contributions in a single resolution

cell without being limited by the Rayleigh resolution limit, since no conventional inversion of the

spectrum is employed. As for other methods in this vein, apart from the signal-to-noise ratio

(SNR) the achievable resolution only depends on a priori knowledge of the model order.

To the author’s knowledge, two different alternative maximum-likelihood-based TomoSAR

approaches have been proposed so far: The first is an adaption of [Wax, 1991] and was e.g.

described in [Sauer et al., 2009]. It is part of the class of spectral estimation algorithms, aiming

at simultaneously solving the detection and localization (i.e. reconstruction) problems. The

second one was published in [Baselice et al., 2009a] and is more similar to the approach proposed

in this paper. However, the approach proposed in this thesis does not make use of any assumptions
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concerning the coherence of the scatterers, nor does it aim at estimating scatterer heights and

reflectivities in a single step. This reduces the number of unknowns that have to be estimated

simultaneously significantly, and clearly separates detection from localization.

Since the proposed method allows a precise reconstruction of 3D scatterers and their reflec-

tivities even for single-pass data, this contribution will help to explore the potentials and limits

of SAR tomography with respect to sparse datasets. The findings will aid the optimization of

future sensor developments as well as the design of orbit configurations for future tandem-like

multi-satellite missions [Krieger & Moreira, 2005]. For some of the rare literature about single-

pass SAR tomography experiments, see for example [Rößing & Ender, 2001; Lombardini et al.,

2004; Zhang et al., 2012].

In the remainder of this chapter, first the general TomoSAR imaging model will be explained,

before a new two-step procedure for the realization of SAR tomography on single-pass stacks

consisting of just few SLC images is described. After the complex covariance matrices of every

resolution cell have been estimated, a model order selection for determination of the expected

number of scatterers, which have contributed to the SLC observations is carried out. With the

thus determined prior knowledge, tomographic SAR inversion is realized based on a maximum-

likelihood estimation framework.

5.1 Tomographic Imaging Model

As already mentioned, TomoSAR aims at creating a synthetic aperture not only in azimuth but

also in elevation direction. However, in opposition to the high number of densely and regularly

spaced azimuth samples, for the elevation aperture comparably few observations per resolution

cell are available in the form of a stack of N coregistered SLC SAR images acquired from slightly

different antenna positions (cf. Fig. 5.1). As, for example, described by Zhu & Bamler [2010b],

the complex measurement stored in a pixel of the nth acquisition with a baseline Bn between the

respective slave antenna n and the master antenna is the ingegral of the reflected signal weighted

by a linear phase term:

zn =

smax∫
smin

= x (s) exp (j ·φn (s)) ds, (5.1)

where x (s) is the reflectivity function along elevation, and [smin; smax] defines the relevant part

of the elevation profile. φn can be calculated via the vertical wavenumber kz,n as described in

Section 2.3.4 (2.29), if the elevation s is converted to height h for compability with conventional

interferometry by

h = s · sin (θ) . (5.2)

In particular for sparse reflectivity profiles, as they are usually encountered in urban areas or

mountaneous terrain, it is advisable to approximate (5.1) by discretizing and sparsifying it. The

measurement vector is then formulated as

z =
K∑
k=1

xka (h) + n = A (h) x + n. (5.3)

In this notation, x = [x1, . . . , xK ]T is the source signal vector containing the complex reflectiv-

ities of the K discrete scattering contributions, and n represents complex circularly symmetric

Gaussian noise. A (h) = [a (h1) , . . . ,a (hK)] is the N ×K steering matrix containing K steering

vectors each of which corresponds to one backscattering source:

a (h) = [exp (j · kz,1 ·h) , . . . , exp (j · kz,N ·h)]T . (5.4)
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Figure 5.1: Typical TomoSAR situation for a single-pass antenna array consisting of four receiving an-
tennas. The three backscatterering contributions (lawn, facade, roof) are mixed in the resulting signal
measured by the corresponding resolution cell. Antenna 1 is assumed to act both as transmitter (Tx) and
receiver (Rx).

It has to be noted that the utilization of kz in the presented linear manner is only justified

if the sensor is sufficiently far from the target such that range- or height-dependent changes in

the off-nadir angle (and therefore the phase) can be neglected. In the remainder of this thesis,

approximation-free modelling of the phase term will be employed due to the focus on airborne

SAR typically flown at comparably low altitudes.

In summary, the task of urban SAR tomography is now to invert the imaging model described

in this section in order to reconstruct the K scatterers that contributed to a certain resolution

cell both with respect to their elevation positions (corresponding to certain heights above the

reference surface) and their reflectivities.

5.2 Model Order Selection

From the descriptions in the following section, it will become clear that the proposed multi-

baseline InSAR method relies on a preliminary knowledge of the model order, i.e. the actual

number of scattering contributions in each resolution cell. Very promising model order selection

methods for multi-snapshot scenarios based on information theoretic criteria (ITC) have been

proposed by Wax & Kailath [1985]. They have been further investigated in the context of multi-

baseline SAR interferometry by Gini & Bordoni [2003] and Lombardini & Gini [2005]. Their basic

idea is to minimize a criterion over the hypothesized number of signals k. All these approaches

need a family of probability density functions, which describe the model that generated the data
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while being a function of k. In additition to that, different penalty functions are needed, because

otherwise the minimum would always be found for the highest possible model dimension. The

general form of each ITC is then the penalized log-likelihood function

ITC (k) = − ln f
(
g|ϑ̂ (k)

)
+ p (η (k)) , (5.5)

where ϑ̂ (k) is the maximum-likelihood estimate of the vector of parameters, which describe the

model that generated the data g. p (η (k)) is the penalty function depending on the degrees of

freedom η (k). The main difference between the different ITC is the formulation of this penalty

term: The Akaike information criterion [Akaike, 1974], for example, is then given by

AIC (k) = − ln f
(
g|ϑ̂ (k)

)
+ η (k) , (5.6)

while the minimum description length [Schwarz, 1978; Rissanen, 1978] is defined by

MDL (k) = − ln f
(
g|ϑ̂ (k)

)
+

1

2
η (k) logL. (5.7)

The MDL is a special case of the family of efficient detection criteria developed by Zhao et al.

[1986]. They are all consistently based on the formulation

EDC (k) = − ln f
(
g|ϑ̂ (k)

)
+ η (k)CL, (5.8)

where CL can be any function of L such that

lim
L→∞

CL
L

= 0 and lim
L→∞

CL
ln (lnL)

=∞. (5.9)

In [Lombardini & Gini, 2005], two EDC were implemented by choosing CL = logL (EDC1) and

CL =
√
L logL (EDC2), respectively.

As shown in [Wax & Kailath, 1985], the log-likelihood function, which serves as the first term

of all the ITC can be expressed by

ln f
(
g|ϑ̂ (k)

)
= L (N − k) ln

 N−k
√∏N

i=k+1 λ̂i

1
N−k

∑N
i=k+1 λ̂i

 , k = 0, 1, . . . , N − 1 (5.10)

for sensor array data affected by additive white Gaussian noise. The λ̂i (i = 1 . . . N) are the

eigenvalues in descending order of the previously estimated complex covariance matrix. In analogy,

the expression for the degrees of freedom can be written as

η (k) = k (2N − k) , k = 0, 1, . . . , N − 1. (5.11)

Concluding from the available literature and empirical findings, in this thesis EDC2 is utilized,

which eventually transforms (5.5) to

EDC2 (k) = L (N − k) ln

 (N−k)
√∏N

i=k+1 λ̂i

1
N−k

∑N
i=k+1 λ̂i

+ k (2N − k)
√
L logL, (5.12)

where again L is the number of looks, i.e. the number of pixels that were used to estimate the

sample covariance matrix. Looking at (5.12), it becomes obvious that a sensor with N antennas

can only resolve N − 1 scatterers, since the data term is always 0 for EDC2 (k = N).
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Accordingly, the number of scatterers in the resolution cell can finally be determined by

K̂ = arg min
k∈[0;N−1]

EDC2 (k) . (5.13)

A more thorough explanation and discussion of ITC methods is beyond the scope of this

thesis and has been carried out in the literature extensively. The reader is, for example, referred

to [Wax & Kailath, 1985; Gini & Bordoni, 2003; Lombardini & Gini, 2005; Sauer, 2008] for

additional details.

5.3 Maximum-Likelihood-Based TomoSAR Inversion

After the necessary pre-processing steps of adaptive covariance matrix estimation and model

order selection, this section describes the core method for single-pass SAR tomography based on

maximum-likelihood estimation. In a first step, the heights of the K̂ scatterers assumed to be

contributors to the resolution cell are estimated using a K̂-dimensional grid search. Afterwards,

the reflectivities of the scatterers are reconstructed from the eigenvalues of the covariance matrix.

A flowchart of the procedure is shown in Fig. 5.2.

5.3.1 Height Estimation

As all other methods developed in the framework of this thesis, also the proposed TomoSAR

inversion algorithm is based on the assumption of Gaussian scattering as described in Section 2.1.2.

Therefore, the modelling of the problem employs the circularly complex Gaussian probability

density function introduced in (4.2):

f (z) =
1

πN det (C)
exp

(
−zHC−1z

)
. (5.14)

However, for the algorithm presented in this thesis, things are done back to front: First of all,

the sample covariance matrix Ĉ is considered the observation, whereas z is replaced by a model

signal vector composed of the model signals related to N receiving antennas and K̂ unknown

scatterer heights h =
[
h1, . . . , hK̂

]T
:

z̃ (h) = [z̃1 (h) , . . . , z̃N (h)]T . (5.15)

Based on the a priori estimate of the model order K, the individual model signals z̃n (h) can be

calculated by

z̃n (h) =

K̂∑
k=1

exp (jϕ̃n,k) , (5.16)

where

ϕ̃n,k = ϕn (hk)− ϕn (0) (5.17)

is the absolute signal phase caused by scatterer k at height hk minus the “flat earth phase” defined

by the reference surface at height h = 0. Both can be calculated without any approximation by

ϕn (h) = −2π

λ

(√
(R sin θ)2 + (h−H)2 +

√
(R sin θ −Bn cosα)2 + (h− (H +Bn sinα))2

)
,

(5.18)

where λ is the wavelength, R the slant range distance, θ the off-nadir angle, H the altitude of the

master antenna, Bn the baseline between the master antenna (which is assumed to be emitting)

and the receiving antenna n, and α the baseline inclination.
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Figure 5.2: Flowchart of the Maximum-Likelihood-based TomoSAR algorithm.

As can be seen from (5.16), the model vector z̃ (h) resembles the steering vector from (5.3) and

(5.4), respectively. The main difference is that it contains a mixture of K̂ phase contributions

as they appear when different scatterers collapse in a layover resolution cell. Based on this

formulation, the likelihood function

L
(
Γ̂; z̃ (h)

)
=

1

πN det
(
Γ̂
) exp

(
−z̃H (h) Γ̂−1z̃ (h)

)
(5.19)

is created, where

Γ̂ =


1 γ̂12 . . . γ̂1N
γ̂∗12 1 . . . γ̂2N
...

...
. . .

...

γ̂∗1N γ̂∗2N . . . 1

 (5.20)
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Figure 5.3: Simulated peak of the likelihood function given in (5.19) for one scatterer at h = 100 m if (a)
the covariance matrix and (b) the correlation matrix is used in the maximum-likelihood estimation.

is the estimated version of (4.5), i.e. the sample coherence matrix. This normalization is necessary

since z̃ does not contain any information about the intensity values of the observations. The

benefit of this normalization is illustrated in Fig. 5.3.

The principle of the proposed method is to maximize (5.19) with respect to the K̂ unknown

scatterer heights hk. However, De Zan [2008] has shown in a different context that the determinant

in (5.19) is constant during the iterations of the maximum search, wherefore the term can be

discarded. The simplified objective function to be maximized then becomes:

ĥ = arg max
h∈[hmin;hmax]

exp
(
−z̃H (h) Γ̂−1z̃ (h)

)
, (5.21)

where ĥ =
[
ĥ1, . . . , ĥK

]T
.

Instead of the one-dimensional search with following peak detection that is employed for

conventional spectral estimation methods such as Capon beamforming [Capon, 1969] or MUSIC

[Schmidt, 1986], here a K̂-dimensional optimization needs to be solved. As no analytical solution

to this optimization has been found yet, it can be carried out by a simple grid search: For this, the

objective function in (5.21) is calculated for K̂ unknown heights, each hypothesized with respect

to a discretized search interval. Then the maximum is found in the K̂-dimensional search space

aggregated from the K̂ search intervals. An example for K̂ = 2 is illustrated in Fig. 5.4. The

dependence of the optimization problem on prior knowledge of the model order (i.e. the number

of scatterers in the resolution cell under investigation) introduces the need to automatic model

order selection (see Section 5.2).

5.3.2 Reflectivity Estimation

If SAR tomography is not only seen as an extension of SAR interferometry aiming at the separation

of scatterers that have been projected into a common resolution cell, but as a means to carry out

three-dimensional focusing in order to create a real 3D image, not only the scatterer heights but

also their reflectivities have to be estimated. This can be achieved by further exploitation of the

sample covariance matrix: First, the eigen-decomposition of Ĉ has to be applied, such that

Ĉ = ÊΛ̂Ê−1, (5.22)

where Ê =
[
Ê1, . . . , ÊN

]
is the matrix of the N eigenvectors Ên and Λ̂ = diag

(
λ̂1, . . . , λ̂N

)
is

the matrix containing the corresponding eigenvalues on the main diagonal, sorted in descending
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Figure 5.4: Two-dimensional objective function for two simulated scatterers at h1 = 0 m and h2 = 20 m.
The function is normalized to its maximum.

order. Then, we add up the signal space components – which are defined by the number of

scattering contributions K̂ – in order to create a denoised version of the SLC resolution cell under

investigation by

ẑ =
K∑
k=1

√
λ̂k · Êk. (5.23)

In this way, a denoised version of the actual observation vector z is received, which is supposed

to contain only signal information and no noise contribution anymore. A similar concept is also

employed in the context of principal component analysis [Shlens, 2009].

The complex reflectivities of the K̂ scatterers can then be estimated by solving the least-

squares problem

‖Ax− ẑ‖2 → min (5.24)

by

x̂ =
(
AHA

)−1
AH ẑ, (5.25)

where

A = [exp (jϕ1) , . . . , exp (jϕK)] , (5.26)

and

ϕk = [ϕ1,k, . . . , ϕN,k]
T (5.27)

is calculated like described in (5.17).

Since the reflectivities are only estimated for K̂ discrete scatterers, it is obvious that only

sparsely populated reflectivity profiles can be reconstructed with this algorithm at reasonable

computational cost. Similar to the popular compressive-sensing based techniques [Schmitt &

Stilla, 2013], this favors especially the application to urban areas.
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6 Fusion of Multi-Aspect InSAR
Datasets

While Chapter 5 describes a maximum-likelihood-based formulation for layover separation by

single-pass SAR tomography, this chapter aims at the fusion of (multi-baseline) InSAR data from

multiple viewing directions, i.e. aspects. First, a new method for multi-aspect SAR image regis-

tration exploiting the radargrammetric imaging geometry and geodetic least-squares adjustment

is proposed, which can both be employed for amplitude image fusion and as a pre-processing step

for the remaining height reconstruction tasks. Then the fusion of InSAR or TomoSAR observa-

tions by conventional forward geocoding is described, before a statistical estimation procedure

for the simultaneous fusion of multi-baseline data acquired from multiple aspects is developed

exploiting a backward geocoding framework.

6.1 Radargrammetric Multi-Aspect SAR Image Registration

For multi-aspect SAR data fusion, a rigid link between the individual datasets has to be estab-

lished. This holds independently of the specific nature of the SAR data – amplitude/intensity

imagery, InSAR data, etc. In all cases, the side-looking imaging geometry leads to severely differ-

ent appearances of the imaged objects for every viewing angle, making multi-aspect registration

a non-trivial task especially for densely built-up inner city areas.

Building upon the insight that a fusion of decimeter-resolution multi-aspect SAR data of

urban areas is only reasonably possible in object space, in [Schmitt et al., 2013c] a method is

presented that combines the well-known calibration of the SAR flight geometry using one or more

known ground control points [Wu & Lin, 2000; Sohn et al., 2005; Leberl, 1990] with a total least

squares (TLS) approach formulated as a strict Gauss-Helmert model [Neitzel & Petrovic, 2008;

Neitzel, 2010; Lenzmann & Lenzmann, 2004] and the simultaneous adjustment of an arbitrary

number of acquisitions of the same urban scene taken from arbitrarily oriented flight tracks. The

proposed approach does not use any approximations or assumptions with respect to the projection

of the imagery to be registered; also it does not require a preliminary orthoprojection or similar

pre-processing step. Although the mathematical model was derived for linear flight tracks and

zero-Doppler processed data, the algorithm can straight-forwardly be extended to more general

imaging geometries. Even if the method was originally designed for the co-registration and fusion

of SAR intensity images with respect to a reference plane (see Fig. 6.1 for an example), it can

also be used as a pre-processing step for multi-aspect InSAR data fusion: First, interferometric

or tomographic point clouds are calculated in the master images’ slant range geometries, then the

registration algorithm is applied on the corresponding trajectories. Using the resulting registered

trajectory data, each aspect can be geocoded to a common reference frame.
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(a)

(b) (c) (d)

Figure 6.1: Exemplary illustrations of radargrammetric registration results: Comparison of incoherent
mean maps of a corner reflector (a) before and (b) after radargrammetric registration. Obviously the
reflector appears much more focused in the registered case. Image (c) shows a part of a road with some
vehicles and a hoarding along the left side of the road. It can be seen that the level of detail is increased
significantly in the registered case (d) making it easier to recognize the different objects.

6.1.1 Radargrammetric calibration in a strict Gauss-Helmert model

Papers explaining the radargrammetric calibration of SAR imaging geometries using one or more

ground control points have been published for decades [Schreier, 1993]. While it is not uncom-

mon that least-squares based approaches are employed, e.g. [Hellwich & Ebner, 2000; Raggam &

Gutjahr, 2000; Yue et al., 2008], to the author’s knowledge [Schmitt et al., 2013c] was the first

publication to propose a solution based on adjusting only observations in a strict Gauss-Helmert

model. The formulation of the well-known range-Doppler approach in the framework of this so-

phisticated model is shown. The main advantage of this estimation method is that it does not

depend on the introduction of any unknown parameters and just seeks to estimate corrections

that adjust the observations in a least squares sense [Mikhail, 1976, pp. 137 ff.]. One of the

core advantages of this implementation is the fact that an arbitrary number of flight tracks can

be calibrated simultaneously without any loss in redundancy: Usually, the parameters describ-

ing the flight track are considered as unknowns in the calibration, such that each track would

introduce new unknowns and therefore reduce the available redundancy. Due to that, the num-

ber of necessary ground control points and the number of tie points that link the images one to

another increases. In contrast to that, in the proposed formulation for every flight track that is

included in the estimation, the redundancy is even enhanced, because only additional conditional

equations without any unknowns are introduced. An additional benefit is that in a simultaneous

adjustment, all flight tracks will be linked via the ground control points that have jointly been

used for the calibration. Thus, a precise combination of multi-aspect SAR and InSAR data of

urban areas is enabled, an otherwise non-trivial task.
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6.1.2 Recapitulation of range-Doppler geometry

As mentioned before, SAR imaging geometry calibration routines are usually based on the well-

known range-Doppler equations [Leberl, 1990], which – in the airborne case – can be combined

with the assumption of linear flight trajectories and zero-Doppler processed data. This is justified

for airborne SAR data with limited swath length and an appropriate focusing of the raw radar

data [Magnard et al., 2012].

First, the range and azimuth coordinates of any ground control point measured in the scene

can be derived from its pixel position using the linear relations

t = t0 + dt (r − 1) (6.1)

and

R = R0 + dR (c− 1) , (6.2)

respectively. Here, t0 denotes the time at which the first azimuth bin was imaged, whereas R0

is the near-range value of the system given in slant range geometry. dt and dR denote the pixel

spacing in azimuth (time) and range direction, and r and c are the row (azimuth) and column

(range) coordinates of the control point, counted from the center of the top left image pixel.

Using (6.1), the three-dimensional sensor position during each azimuth bin can be derived:

s (t) = s0 + v · t (6.3)

Analogous to t0, s0 describes the sensor position during the acquisition of the first azimuth

bin, and v describes the sensor velocity. Equations (6.2) and (6.3) are then put into the range

and Doppler equations

R− ‖p− s (t) ‖ = 0 (6.4)

v (p− s (t)) = 0, (6.5)

where p is the 3D position of the ground control point in world coordinates. Again it is important

to note that (6.5) is a simplified Doppler equation that only holds for zero-Doppler processed data.

It can, however, easily be extended to other types of SAR processing without loss of generality

for the reasoning of this description.

If (6.4) and (6.5) are set up for every ground control point in every scene, a non-linear system

of conditional equations is constructed. Since all included parameters are typically known from

the flight navigation control and the SAR focusing, respectively, it is convenient to model the

correction of the sensor geometry by a Gauss-Helmert model without unknowns [Mikhail, 1976,

pp. 137 ff.].

6.1.3 Parameter estimation in the strict Gauss-Helmert model

For the parameter estimation, the system of conditions consists of the the range and Doppler

equations (6.4) and (6.5). They depend not only on the flight track, but also on the positions

of the ground control points and their corresponding image positions. Therefore, the goal is to

achieve

f(ν̂) =

 f1(b + ν̂)
...

fQ(b + ν̂)

 = 0, (6.6)
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1a Calibration of a single scene with unit covariance matrix and significance test for corrections 

1b Calibration of a single scene with unit covariance matrix and non-significant observations 
excluded 

1c Calibration of a single scene with fixed GCP measurements 

1d Calibration of a single scene with sophisticated covariance matrix 

2 Joint calibration of several scenes  

3 Proof of multi-aspect combination 

(Checkerboard illustration etc.) 

 

B matrix for one flight: 

 s0X s0Y s0Z vX vY vZ t0 dt R0 dR rP1 cP1 rP2 cP2 p1X p1Y p1Z p2X p2Y p2Z 

p1 
Range                     

Doppler                     

p2 
Range                     

Doppler                     
 
0…2  
2…4 
4…6 
6…8 

Figure 6.2: Exemplary structure of the Jacobian matrix for the case of just a single flight track with two
ground control points (p1, p2) imaged. The magnitude of the partial derivatives is shown from white (no
derivative) to black (very large derivative).

where Q is the number of flight tracks and b̂ = b + ν̂ are the corrected observations. The vector

of conditional equations for a single flight track q ∈ {1, . . . , Q} is

fq(ν̂) =



f
(1)
q,r (b + ν̂)

f
(1)
q,d (b + ν̂)

...

f
(P )
q,r (b + ν̂)

f
(P )
q,d (b + ν̂)


, (6.7)

with P being the number of ground control points and f
(p)
q,r and f

(p)
q,d representing (6.4) and (6.5)

for flight track q and ground control point p ∈ {1, . . . , P}. Equation (6.6) is the objective that is

to be achieved by calculating the correction vector ν̂.

In general, for the application of a Gauss-Helmert model, the conditional equations have to be

linearized, i.e. a Jacobian matrix containing the partial derivatives of the conditional equations

with respect to all the corrections is needed:

B =
∂f (ν)

∂ν
. (6.8)

f denotes the vector of conditional equations, ν the vector of corrections. A visualization of the

structure of the Jacobian matrix for a typical configuration is illustrated in Fig. 6.2.

These corrections ν need to be estimated from the linearized set of conditional equations

Bν̂ + w = 0 (6.9)

based on the least squares principle. In most of the common literature on least squares estimation,

the linearization is only carried out at the position ν0 = 0, leading to the vector of contradictions

w = f (ν0) . (6.10)

The proposed method, however, follows the approach of Lenzmann & Lenzmann [2004] and thus

renews the linearization for every update of ν0, which yields the actual vector of contradictions

w = −Bν0 + f (ν0) (6.11)

that has to be recalculated in every iteration of the minimization of the objective function. If

(6.11) is used instead of (6.10), this is called “strict” Gauss-Helmert model in the rare literature

about the topic and was shown to equal common Total Least Squares solutions [Neitzel & Petrovic,

2008], [Neitzel, 2010].

The afore-mentioned objective function is in both cases defined as

Ω = ν̂TQ−1bb ν̂ − 2k̂T (Bν̂ + w) , (6.12)
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where Qbb is the cofactor matrix of the observations that can be derived from their covariance

matrix and is used for the weighting of the observations. If Qbb is the unity matrix, an unweighted

least squares solution is found. k̂ is the vector of correlates and calculated by

k̂ = −
(
BQbbB

T
)−1

w. (6.13)

If (6.12) is minimized with respect to ν̂ and k̂, this finally leads to the least squares estimator for

the vector of corrections:

ν̂ = QbbB
T k̂. (6.14)

If f (ν̂) is fulfilled to a satisfying precision (e.g. 10−6), the iteration can be aborted and the final

solution is found. Otherwise, ν0 = ν̂ is used for the next iteration and a new set-up of (6.8) and

(6.11).

With the estimated vector of corrections ν̂, the adjusted observation vector

b̂ = b + ν̂ (6.15)

can be derived easily. The main benefit of the strict formulation of the Gauss-Helmert model is

that the conditional equations will be fullfilled to almost arbitrary precision after the adjustment.

Implementation of a step size parameter

If the conditional equations (6.9) are fulfilled, the solution of the objective function (6.12) is given

by

Ωmin = ν̂TQ−1ν̂ = −kT ŵ (6.16)

Obviously the solution depends on the vector of contradictions. From experience, however, with

the applied mathematical model and the described optimization, chances are high that the solution

is oscillating. Therefore, the utilization of a suitable step size parameter is proposed: ν0 in (6.11)

is replaced by αv0 constrained to α ≥ 0. The objective function to determine the optimal step

size parameter α for updating the contradictions in every iteration is given by

‖w‖22 → min. (6.17)

This objective enables to construct a solution in which the norm of the iteratively updated con-

tradiction vector is a monotonically decreasing sequence in the number of iterations. Objective

(6.17) is a simple one-dimensional optimization problem with the analytical solution

α =
fTp

pTp
(6.18)

where p = Bν0 given that the Jacobian B and the conditional equations f are evaluated at ν0
and assumed to be independent of ν and therefore constant during one iteration. The latter is

only fulfilled if B and f are linear in ν but in practice this procedure works very well leading to

a solution in only a few iterations. The reason for the introduction of the step size parameter α

constraining the iterative updates is that the linear system (6.11) shows a significant sensitivity

according to small perturbations in B and ν. As stated in [Golub & Van Loan, 1996, pp. 80 ff.]

the condition number κ (B) = λmax/λmin, where λ are the singular values of B, is a measure for

this kind of sensitivity. It indicates the amount of amplification of w for a small perturbation

of ν. In our case it is especially the derivation of the Doppler equation with respect to the

azimuth (time) pixel spacing dt which introduces significant imbalances in the singular values of

the Jacobian matrix (cf. Fig. 6.2) leading to κ (B)� 106.
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Observation Unit Order of magnitude Standard deviation
Sensor parameters

Sensor starting position, s0 = [s0X , s0Y , s0Z ]
T

m 106 0.1

Sensor velocity , v = [vX , vY , vZ ]
T m

s 101 0.02
Starting time, t0 s 10−3 0
Azimuth pixel spacing (time), dt s 10−4 0
Near range, R0 m 103 0.02
Range pixel spacing (distance), dR m 10−1 0

Ground control point measurements

GCP position in WGS84, p = [pX , pY , pZ ]
T

m 106 0.03
GCP image measurements, r, c pixel 104 0.5

Table 6.1: Observation Types in radargrammetric calibration

Covariance matrix of observations

As mentioned before, it is possible to accomplish a weighted least squares solution using the

cofactor matrix Qbb derived from the covariance matrix Cbb of the observations by

Qbb =
1

σ20
Cbb. (6.19)

A priori, the so-called variance factor σ20 is usually set to 1. Its actual value is estimated after

the adjustment. In general, a weighting of the observations can always be considered reasonable,

especially if they are very heterogeneous in their nature. In the functional model employed for this

study, observations of different units and different orders of magnitude are combined, e.g. pixel

coordinates, world coordinates, time measurements, and velocities (see Table 6.1). Furthermore,

the stochastical model can also be used to exclude certain observations from the least squares

adjustment if they are to be considered constant and their variance is set to 0 (or rather a small

number ε > 0 for computational reasons).

Posterior statistical evaluation

Based on variance-covariance propagation, it is possible to deduce the covariance matrix of the

corrections and the adjusted observations after the parameter estimation. The covariance matrix

of the corrections is found to be

Cν̂ν̂ = σ̂20 · QbbB
T
(
BQbbB

T
)−1

BQbb, (6.20)

the covariance matrix of the adjusted observations to be

Cb̂b̂ = σ̂20 ·

(
Qbb −QbbB

T
(
BQbbB

T
)−1

BQbb

)
(6.21)

with the posterior variance factor

σ̂20 =
ν̂TQ−1bb ν̂

r
. (6.22)

r is defined as the redundancy of the equation system, which equals the number of conditional

equations for the Gauss-Helmert model without unknowns. It has to be noted that the variance

factor also contains an assertion about the a priori stochastical model that has been employed

by the relation given already in (6.19): Using (6.22), the “true” covariance matrix of original

observations can be calculated by

Ĉbb = σ̂20 · Qbb. (6.23)
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Figure 6.3: Significance of the individual parameters used in the radargrammetric calibration: Median
t-values for the unweighted (a) separate and (b) joint calibration of 5 datasets acquired from different
viewing angles. The black error bars indicate the standard deviations of the t-values.

This means: The closer σ̂20 is to 1, the better were the stochastic assumptions about the original

observations.

Based on (6.20) and (6.21) the relation between corrections and the respective standard devi-

ations can be described by the so-called t-value

t =

∣∣∣∣ ν̂σν̂
∣∣∣∣ , (6.24)

for every parameter with the standard deviation having been extracted from the covariance matrix

of corrections. The higher the t-value is, the more significant is the corresponding correction.

Using this evaluation strategy and additional prior knowledge on SAR processing standards,

the experiments in [Schmitt et al., 2013c] came to the conclusion that t0, dt and dR should be

considered as constant parameters, whose values should not be adjusted in the registration process

(cf. Fig. 6.3). The suggested weights for the remaining parameters can be found in Table 6.1.

After the simultaneous calibration of data acquired from multiple aspect angles via a common

ground control point, all aspects are registered by their adjusted flight navigation parameters. If

these updated parameters are then used during geocoding procedures, all data will be fused in

the same reference system showing only minimal residual errors, if any.

6.2 Fusion Based on Interferometric Forward Geocoding

The most conventional approach to generate 3D point clouds from InSAR data is by interfer-

ometric geocoding of single-baseline data. This is done by solving the non-linear interferomet-

ric range-Doppler equations (IRDE) that directly relate the InSAR measurements to geocoded

three-dimensional object points [Hellwich & Ebner, 2000]. In case of a linear flight track and

zero-Doppler processed data, the IRDE can simply be written as:

R = ‖p− sM (t) ‖ (6.25)

vM (p− sM (t)) = 0 (6.26)

φ = −2π

λ
(‖p− sM (t) ‖ − ‖p− sSl (t) ‖) (6.27)

R is the slant range distance between the object point p = [pX , pY , pZ ]T and the master antenna

position sM (t) = [sMX (t) , sMY (t) , sMZ (t)]T at time t. vM = [vMX , vMY , vMZ ]T denotes the
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velocity of the master antenna, which is assumed to be constant. sSl (t) symbolizes the slave

antenna position analogue to sM (t), while φ denotes the absolute interferometric phase and λ the

wavelength of the radar system.

If (6.25)-(6.27) are solved for the unknown object coordinates p for each pixel in the inter-

ferogram, the result is an irregular 3D point cloud that suffers from both layover, which causes

the so-called front-porch effect [Burkhart et al., 1996; Thiele et al., 2007b], as well as shadowing

in the form of interferometric phase values that contain only noise, leading to random 3D points.

Furthermore, the phase-unwrapping operation, which is needed in order to extract the absolute

phase φ from the wrapped phase values of the complex interferogram is still a difficult, error-prone

task [Ghiglia & Pritt, 1998].

Besides this IRDE-solution, another approach for this task is to first carry out phase-to-

height conversion in slant range geometry, before the resulting height data are transformed from

the slant range plane to a geodetic reference frame [Small et al., 1996]. This can also be applied

for TomoSAR point clouds as generated by the method described in Section 5.3.1. In this case,

equation (6.27) is replaced by

p2X + p2Y
(a+ h)2

+
p2Z

(b+ h)2
− 1 = 0, (6.28)

where a and b are the semi-major and semi-minor axes of the reference Earth ellipsoid, respectively,

and h is the previously reconstructed height [Schwäbisch, 1998]. Again this system of three

equations can be solved for p = [pX , pY , pZ ]T using an iterative optimization algorithm.

If registered (cf. Section 6.1) multi-baseline or multi-aspect data are available, several separate

point clouds can be generated based on this proceeding, all of which are geocoded to the same

common reference system. Due to the irregular structure of these point clouds and their rather

noisy nature, however, a beneficial fusion of possible redundant measurements of the same real-

world object points is usually not considered.

Point Cloud Fusion by Voxelization

After having geocoded point clouds resulting from interferometric or tomographic height recon-

struction to a common world coordinate system, it can be desirable to fuse the individual point

clouds. Reasons for that desire might be e.g. the need to reduce the number of points (e.g. due

to memory requirements) or the goal to fuse redundantly reconstructed points belonging to the

same scene feature in order to receive a more robust 3D result. Another motivation might be the

wish to store the point cloud in a regular raster instead of an unstructured point list.

In the framework of this thesis, all these goals are achieved by a voxelization of the point cloud

using a combination of a k-d tree and a range query based on the Chebyshev distance. A k-d tree

is a multidimensional binary search tree, which serves as a space-partitioning data structure for

storage of information to be retrieved by associative searches in a k-dimensional space [Bentley,

1975]: If data is represented as a k-d tree, then each data point is stored as a node in the tree.

Every non-leaf node implicitly generates a splitting hyperplane that divides the space into two

parts (i.e. half-spaces). Points to the left of this hyperplane are then represented by the left

subtree of that node, and points on the right are represented by the right subtree. Since every

node in the tree is associated with one of the k dimensions the hyperplane is chosen perpendicular

to that dimension’s axis. Each split can be denoted using the dimension number and split value,

whereas the splits are arranged in order to balance the tree, i.e. its maximum depth is kept as

small as possible. If points are queried, the k-d tree search first locates the respective point in its

appropriate node and then searches nearby leaves in the tree until it can guarantee that the correct
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Figure 6.4: Voxelization of an irregular point cloud: A regular voxel space is created, which is imposed on
the 3D point cloud. The red voxels symbolize voxels that contain at least one 3D point.

point has been found. Due to their efficient storage structure, k-d trees are particularly useful for

multi-dimensional search operations such as range searches or nearest neighbor searches. Besides,

an abundance of ready-to-use implementations in different programming languages is available

online, many of them open source.

For the task of voxelizing unstructured 3D point clouds, first a regular point cloud describing

the centers of the voxel space has to be created. These voxel centers are stored in a k-d tree of

dimension k = 3. Then, the irregularly sampled InSAR or TomoSAR point cloud is used with

this k-d tree in order to apply a range search based on the Chebyshev distance. This distance

metric is defined for two points p = [p1, . . . , pn]T and q = [q1, . . . , qn]T as

lim
k→∞

(
n∑
i=1

|pi − qi|k
) 1

k

= max
i∈{1;...;n}

(|pi − qi|) . (6.29)

This means, it defines the distance between p and q as the greatest of their differences along

any coordinate dimension. For three-dimensional vectors and a Chebyshev distance of d
2 , this

corresponds to a cube with an edge length of d. Therefore, the distance query results in a list of

voxels and the corresponding points from the unstructured point cloud contained in that voxel

(see Fig. 6.4). With this information, two potential strategies become possible:

1) Simply activate each voxel containing at least a certain minimum number of points (e.g.

one). This results in a thinned out regularly spaced point cloud, since each returned point

has to equal one of the voxel centers.

2) Calculate the mean or median value of all points contained in each voxel. Also in this case

a thinned out point cloud is returned, however, not regularly gridded.

Both strategies can straight-forwardly be used to fuse different point clouds from different

sources. Especially for the fusion of InSAR and TomoSAR point clouds reconstructed from

different aspects, a certain redundance can be expected in scene parts that were acquired by more
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than one flight. Therefore, a possible extension of the two basic voxelization strategies for multi-

aspect data is proposed: In this case, it is additionally ensured that only voxels are considered that

contain points from at least a minimum number of aspects (e.g. two). Although this proceeding

is not advisable in the the case of two opposing aspects, as the correspondingly opposing shadow

areas would be lost, it provides a promising solution for full multi-aspect configurations that

ensure the scene was illuminated from at least four complementary viewing directions.

6.3 Fusion Based on Interferometric Backward Geocoding

As already investigated by Schwäbisch [1998] and Eineder [2003], the geocoding of interferometric

SAR data can also be carried out starting from a pre-defined surface grid in the reference world

coordinate system and some prior knowledge about the height extension of the investigated scene.

Using this information, for each grid cell a number of height hypotheses p̃Z ∈ [hmin;hmax] can be

defined following a step size fitting to the expected height resolution of the SAR interferometer.

Each hypothetical 3D point p̃ = [pX , pY , p̃Z ]T that is created this way is then projected into the

SAR image by directly solving the inverted Doppler equation

t =
(p̃− sM (t0)) vM

‖vM‖2
, (6.30)

for the azimuth time t, and straight-forward calculation of the respective range and phase values

by (6.25) and (6.27). In this context, sM (t0) denotes the 3D position of the master antenna

during acquisition of the first azimuth bin.

Then, the observed interferometric phase corresponding to the (t, R) SAR image coordinate

is measured in the pre-processed interferogram, so that the phase error between the ideal (i.e.

simulated) and the measured phase can be calculated by

∆φ (p̃) = ‖φsim (p̃)− φmeas‖. (6.31)

Finally, the height hypothesis with the minimum phase error ∆φ (p̃) is chosen as height estimate

of the respective grid element:

p̂Z = arg min
pZ∈[hmin;hmax]

∆φ (p̃) . (6.32)

In [Schmitt & Stilla, 2011], this backward geocoding procedure was extended to be applied

for the fusion of InSAR data acquired from multiple aspect angles. This is accomplished by

weighting the phase error with the corresponding squared coherence magnitude |γ| as a measure

for the quality of the interferometric phase observation and yields the weighted phase error

∆φw (p̃) =

∑Q
q=1 |γq|2 ·∆φq (p̃)∑Q

q=1 |γq|2
. (6.33)

It has to be noted that this is a very general framework, which means that the q = 1 . . . Q phase

values and coherence magnitudes can address both multiple aspects as well as multiple baselines

within each single aspect at the same time. In any case, the final height estimate is chosen by

p̂Z = arg min
pZ∈[hmin;hmax]

∆φw (p̃) . (6.34)

in analogy to (6.32).
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Although a fusion of multi-aspect InSAR data by this method already leads to a significant

reduction of surface model parts affected by radar shadowing [Schmitt et al., 2011], still some

patches can be expected to remain impinged by this effect. This leads to surface grid cells in

which the estimated height values are pure noise. Therefore, it is advisable to detect these

unreliable height estimations and exclude them from the resulting point cloud. A reconstructed

height p̂Z is considered a reliable estimate if the combined coherence magnitude of the single

interferometric phase measurements exceeds a certain threshold:

1

Q

Q∑
q=1

|γq| > ε (6.35)

The value of ε depends on the number of phase measurements Q and a trade-off between the

resulting point density and point reliability.

6.4 Multi-Aspect Multi-Baseline SAR Interferometry

The backward geocoding based 3D reconstruction from InSAR data can also be cast in the

framework of maximum-likelihood estimation. In [Schmitt & Stilla, 2014c], the basic idea, which

was first proposed by Eineder & Adam [2005], was enhanced to a more general formulation based

on the joint likelihood function of both multi-baseline and multi-aspect data that is also able to

take correlations between several images acquired from the same aspect into account. This is

especially necessary if the available data consists of single-pass multi-baseline InSAR stacks as

they are frequently delivered by airborne sensors. In this case, a neglection of correlation between

the observations of the different antennas is an invalid simplification [Meglio et al., 2006]. Apart

from that, also this approach is based on the statistical assumptions described in Section 4.1.

Besides the height reconstruction algorithm, a quality measure that can be used for the dismissal

of unreliable height estimations in analogy to (6.35) was derived. Since the method enables the

simultaneous fusion of arbitrary kinds of multi-aspect and multi-baseline InSAR data, it is called

MAMBInSAR (multi-aspect multi-baseline SAR interferometry) in the following.

6.4.1 Estimation Procedure

The estimation procedure is illustrated in Fig. 6.5: Analogue to the proceeding described in

Section 6.3, the starting situation is a pre-defined surface grid in a world coordinate system.

Again, a column of height hypotheses is run through for each grid element, and by means of the

backward geocoding equations (6.25) and (6.30) each hypothesized grid point p̃ is projected into

one of the available SAR stacks, such that the corresponding sample covariance matrix Ĉ can be

obtained by bilinear interpolation of the sample covariance matrices of the neighboring pixels. In

addition to that, in analogy to the TomoSAR procedure described in Section 5.3.1, a complex

observation vector z̃ = [z̃1, . . . , z̃N ]T is simulated for every height hypothesis p̃Z by

z̃n = exp (jϕsim,n) , (6.36)

where

ϕsim,n = −2π

λ
(‖p̃− sM‖+ ‖p̃− sSl,n‖) , (6.37)

and n = 1 . . . N indexes the slave antennas while the master antenna sM = sSl,1 is assumed to

double-act as both emitter and receiver.

Also in this case, the sample covariance matrix must be normalized to achieve the sample

coherence matrix described in (5.20), which does not contain any information about the backscat-

tering intensities anymore.
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Figure 6.5: Flowchart of the proposed maximum-likelihood estimation procedure exploiting both multi-
aspect as well as multi-baseline data. As an example, the case of Q = 2 aspects with stacks of N = 4
images per aspect is shown.

Eventually, this leads again to the likelihood function

L
(
Γ̂; z̃ (p̃)

)
=

1

πN det
(
Γ̂
) exp

(
−z̃H (p̃) Γ̂−1z̃ (p̃)

)
, (6.38)

which only exploits complex coherence information. While this likelihood function resembles the

one described in Section 6.4.1 (5.19), their main difference is the way z̃ is created: For ML-

TomoSAR, the model signal vector contains a mixture of several hypothetical scatterers, whereas

the backward-geocoding-based nature of MAMBInSAR, which is centered around a data fusion

in object space, allows to consider only a single scatterer hypothesis per surface grid element. In

addition, in the TomoSAR inversion algorithm always the same coherence matrix is used during

the optimization as only one certain resolution cell is processed at a time. In contrast to that, the

utilized coherence matrix may change during the MAMBInSAR optimization due to the iterative

projection of object space height hypotheses into the SAR image data, which usually leads to

different image positions and thus different covariance matrices changing for each height iteration

step.

Anyway, again (6.38) is evaluated by a simple grid seach – albeit always one-dimensional in

this case – for all height hypotheses p̃Z ∈ [hmin;hmax], such that the maximum-likelihood estimate

of the desired height in a grid cell is found as

p̂Z = arg max
pZ∈[hmin;hmax]

L
(
Γ̂; z̃ (p̃)

)
. (6.39)

This estimator can be applied to an arbitrary configuration of multi-baseline data. If individual

baselines are to be neglected in the estimation, simply the respective columns and rows of z̃ and Γ̂

can be eliminated, while N in (6.38) has to be reduced correspondingly. In this context, it should

be mentioned that Corsini et al. [1999] and Ashok & Wilkinson [2001] have already shown that a

combined evaluation of InSAR data from multiple baselines significantly extends the unambiguous

height interval of the SAR interferometer (see Fig. 6.6). In addition to that, redundant phase
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Figure 6.6: Likelihood functions of the MAMBInSAR maximum-likelihood estimator based on (a) two, (b)
three, and (c) four receiving antennas for a simulated scatterer located at a height of 100 m. Depending on
the height search interval, the utilization of more than two antennas (i.e. more than one baseline) greatly
helps to reduce phase ambiguities.

measurements help to reduce phase noise that is usually propagated to the reconstructed height

values.

The core of this work, however, is the interferometric data fusion with respect not only to

multi-baseline, but also to multi-aspect datasets; Fig. 6.5 examplarily shows a case were Q = 2

aspects, each consisting of N = 4 images are utilized. For this purpose, the proposed framework

can easily be extended: If multi-baseline stacks acquired from Q viewing directions are available,

their joint likelihood function is found to be

L
(
Γ̂1, . . . , Γ̂Q; z̃1 (p̃) , . . . , z̃Q (p̃)

)
=

Q∏
q=1

L
(
Γ̂q; z̃q (p̃)

)
, (6.40)

as the acquisitions from the different viewing angles are considered as independent variables [Koch,

2007]. The maximum-likelihood estimator for a full multi-aspect multi-baseline InSAR dataset is

then:

p̂Z = arg max
pZ∈[hmin;hmax]

L
(
Γ̂1, . . . , Γ̂Q; z̃1 (p̃) , . . . , z̃Q (p̃)

)
. (6.41)

This estimator allows a maximum of flexibility and can be applied to any kind of interferometric

SAR data, no matter how many baselines per aspect or how many aspects are available. Beyond

that, a densely populated probabilistic volume model (PVM) bearing resemblance to the work

of Restrepo et al. [2012] is achieved as an interesting intermediate result (i.e. before application

of (6.41)). An examplary slice through such a PVM is shown in Fig. 6.7: High likelihood values

around surfaces can be seen just like low values for the shadowed street canyons. Furthermore,

the vertical “smearing” of the likelihoods at the facade parts of the large isolated building in the

left half of the PVM slice could provide another promising investigation topic in the future.

6.4.2 Reliability Measure

In analogy to the standard backward geocoding technique, the exclusion of unreliable height

estimates for surface grid cells that are affected by radar shadowing in all available datasets, is

a necessary post-processing step. Since the likelihood values are not limited to a fixed interval,

they cannot be employed as a universal reliability measure with a constant threshold for the entire

scene of interest. Therefore, a more suitable measure following [Zandona Schneider & Fernandes,
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Figure 6.7: Slice through the probabilistic volume model created by the multi-aspect multi-baseline ML
estimator. The likelihoods are shown in a logarithmic scale, and the white graph depicts the LiDAR
reference data.

2002] is proposed, which exploits the concept of entropy between several SAR images: First of

all, the entropy of a resolution cell among N co-registered SAR images is defined to be

H = −
N∑
n=1

λ̄n logN
(
λ̄n
)
, (6.42)

where the normalized eigenvalues λ̄n are given by

λ̄n =
λn∑N
n=1 λn

. (6.43)

λn, n = 1 . . . N denotes the eigenvalues of the complex covariance matrix of the respective stack

pixel. As Zandona Schneider & Fernandes [2002] have shown, a value with a behavior comparable

to the coherence magnitude can then be calculated by

ζ = 1−H. (6.44)
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If the height estimate is generated from multiple aspects, ζq needs to be calculated for each pixel

of each aspect q separately. A global threshold can now be applied to exclude estimates which

are considered as unreliable:

1

Q

Q∑
q=1

ζq < ε. (6.45)

The main advantage of this reliability measure is that it is directly comparable to the mean

coherence as employed in (6.35).

The maximum-likelihood estimation framework proposed in this Section allows for a statisti-

cally sound exploitation of arbitrary amounts of available InSAR data. In combination with the

derived reliability measure, urban topography can be reconstructed comprehensively without the

need to collect multi-temporal stacks or to just focus on point scattering.
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7 Utilized Test System and Data

The potential of the methods developed in the context of this thesis is investigated based on ex-

perimental data acquired on a flight campaign of the airborne millimeterwave SAR MEMPHIS in

May 2011. The sensor is descriped in Section 7.1, and the special characteristics of millimeterwave

SAR data are discussed in Section 7.2. The descriptions were originally published in [Schmitt

et al., 2013b].

7.1 Sensor Description

MEMPHIS (Millimeterwave Experimental Multifrequency Polarimetric High-resolution Interfero-

metric System) was developed by the Fraunhofer Institute for High Frequency Physics and Radar

Technology FHR in 1998 and was first described by Schimpf et al. [2002]. The radar system

uses two front-ends of identical architecture, and operates at 35 GHz and 94 GHz (Ka-band and

W-band), respectively. The primary frequencies of 25 GHz and 85 GHz are generated by succes-

sive multiplication and filtering of the reference frequency of 100 MHz. For both subsystems the

waveform is modulated onto an auxiliary signal at 9.4 GHz, which is upconverted into the respec-

tive frequency band together with the primary signal. Depending on the application, the sensor

can either be used with polarimetric monopulse feeds or an interferometric set of four receiving

antennas. The elevation-azimuth asymmetry of the beam that is necessary for SAR applications

is achieved by aspheric lenses in front of the feed horns. Being an experimental, modular and

removable system, MEMPHIS is typically mounted on a C-160 Transall airplane of the German

Armed Forces (see Fig. 7.1). Due to various possible antenna shapes and configurations, data

can be acquired in many different SAR modes: single-pass multi-baseline cross-track interferom-

etry with four receiving antennas, dual-pol circular or linear polarimetry and even monopulse for

moving target indication (MTI). The corresponding system parameters are shown in Table 7.1.

More information about the raw data processing can be found in [Magnard et al., 2012].

Sensor MEMPHIS
Carrier frequency 35 GHz (Ka-band)
Wavelength 8.55 mm
Nominal depression angle 25◦

Resolution
azimuth 10.2 cm
range 16.7 cm

Pixel spacing
azimuth 5.1 cm
range 16.7 cm

Available baselines 5.5 cm, 11 cm, 16.5 cm, 22 cm, 27.5 cm
Approximate ambiguity heights 225 m, 112 m, 75 m, 56 m, 45 m

Table 7.1: MEMPHIS sensor parameters used during the 2011 measurement campaign.
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Figure 7.1: The MEMPHIS sensor mounted in the paratrooper door of a C-160 Transall aircraft of the
German Armed Forces.

7.2 Characteristics of Millimeterwave SAR

Due to the fact that typical wavelengths of millimeterwave frequencies differ from more common

radar remote sensing bands (e.g. L, C, X) in about one order of magnitude, several peculiarities

have to be considered; some of them can be exploited advantageously. The main advantages of

millimeterwave systems certainly are two-fold: First of all, they allow for a significant miniatur-

ization of the hardware, thus enabling the use on unmanned aerial vehicles (UAVs) and other

small-scale carrier platforms [Palm et al., 2013, 2014]. Second, very high resolutions may be

achieved with comparably short synthetic apertures. One of the advantages resulting from a

short synthetic aperture is that images of vegetation will be better focused, because blurring

caused by movements of leaves and branches etc. is reduced.

Additional peculiarities of millimeterwaves in comparison to conventional microwave regions

occur in the fields of atmospheric propagation and surface roughness and are explained in the

following. A more detailed summary of millimeterwave specifics can be found in [Essen, 2010].

7.2.1 Propagation through the Atmosphere

For millimeterwave radar applications, mainly the transmission windows around 35 GHz and

94 GHz are employed, although high propagation losses prohibit long range applications (>10

km). The millimeterwave region is nevertheless an interesting alternative to the more common

X-band due to considerably different propagation properties [Skolnik, 1980], which are caused by

resonance absorption at these frequencies related to energy levels of vibration and rotation states

of molecules in the atmosphere, e.g. water vapor or oxygen.

In remote sensing, the propagation through snow, fog, haze or clouds is one of the most

important reasons why SAR sensors are used. While in optical remote sensing the drop size

within fog and clouds is in an order of magnitude where interactions with the electromagnetic

radiation of the visible spectrum is most likely, these effects are of much minor importance for

millimeterwaves. As long as the density of droplets is not too high, and as long as the liquid

water content of snow is not excessively high, millimeterwave signals are able to penetrate most

weather phenomena. Only hydrometeors with high density of large drop sizes in the order of the

electromagnetic wavelength can severely influence the propagation of the signal and thus prevent

the desired imaging of the Earth surface [Danklmayer & Chandra, 2009]. This is caused by the fact
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Ka-band X-band L-band
(λ = 0.86 cm) (λ = 3.2 cm) (λ = 23.5 cm)

Smooth < 0.05 < 0.18 < 1.33
Intermediate 0.05 . . . 0.28 0.18 . . . 1.03 1.33 . . . 7.55
Rough > 0.28 > 1.03 > 7.55

Table 7.2: Definition of radar roughness categories. The RMS surface variations [cm] at a local incidence
angle of 45◦ are shown (after [Lillesand et al., 2004]).

that the drops act as antennas in this case, absorbing the energy of the resonant electromagnetic

wave.

For the case of smoke first experiments show a low attenuation for millimeterwaves, due to the

small particle size of smoke in comparison to e.g. sand or dust. In these latter cases, experimental

results can be used for an estimation of the expected propagation loss. These attributes make

millimeterwaves almost just as interesting for any kind of mapping or reconnaissance mission

during disaster scenarios, be it floodings (mostly in concurrence with clouds and rainfall), dust

storms or fires.

It has to be mentioned however, that even within the millimeterwave domain differences

between the different frequencies appear. For example, in W-band the attenuation significantly

increases with high temperatures and humidity; it therefore is often used in weather radars [Liebe,

1985]. For that reason, the choice of the band eventually depends on the mission goal.

7.2.2 Surface Roughness Properties

In the millimeterwave region, the wavelength is naturally very short in comparison with classical

radar bands, i.e. the relating phase reacts very sensitive on movements of objects or the radar

itself. While this might seem disadvantageous for a signal processing based imaging system that

relies on the evaluation of the phase of the backscattered signal, it can be utilized beneficially

instead. The reason is the specific scattering mechanism, which is dominated by a compara-

bly much rougher surface (factor of 10 in comparison to X-band), making millimeterwave SAR

more robust against uncontrolled movements of the carrier aircraft. In general, the roughness of

surfaces causes diffuse scattering, whereas smooth surfaces result in specular reflections. At mil-

limeterwave frequencies, most surfaces appear rough, and diffuse scattering dominates the images

(see Table 7.2). Diffuse scattering leads to coherent averaging, an effect similar to multilook pro-

cessing. Therefore, the inherent speckle effect within scenes of homogeneous surface structure is

lower at millimeterwave frequencies than at X-band for an equal amount of multilook processing.

Besides this primary advantage of higher roughness sensitivity, another one is the larger extent of

rough appearing surfaces in often rather smooth urban environments. This provides a convenient

benefit to the analysis of backscattering characteristics, which is often based on the assumption of

Gaussian scattering. Since this assumption only holds for so-called distributed scatterers and not

for frequently occurring point scatterers, millimeterwaves are favourable over longer wavelengths,

where tendentially surfaces appear less rough and therefore more point scattering behaviors or

specular reflections are observed.

7.3 Measurement Campaign and Test Area

The study area for the experiments in this thesis is located in the Maxvorstadt district in the

city of Munich, Germany. It is centered around the TUM main campus (target coordinates:

48◦08′56′′ N, 11◦34′02′′ E) and shows mainly dense building blocks, but also some larger buildings
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Figure 7.2: Optical image of the test area composed from four orthophotos provided by the Bavarian
Administration for Surveying (LVG).

surrounded by patches of concrete or lawn, respectively, and many urban trees. An optical image

of the area is displayed in Fig. 7.2, one logarithmically scaled amplitude image for each aspect is

shown in Fig. 7.3.

The measurement campaign was carried out in May 2011 in cooperation with the Remote

Sensing Laboratories of the University of Zurich and the Fraunhofer Institute for High Frequency

Physics and Radar Technology. As illustrated in Fig. 7.4, the test scene was illuminated from

a full multi-aspect configuration consisting of five orthogonal and anti-parallel flight tracks (cf.

Table 7.3). The goal of this campaign was to create an exemplary dataset of airborne multi-aspect

multi-baseline InSAR data using a millimeterwave sensor in order to promote the development

of advanced processing strategies necessary for urban area analysis. Detailed information about

the sensor setup and the raw data processing can be found in [Schmitt et al., 2013b]: Since

the precision of the navigation data provided by the aircraft is not sufficient for high-precision

SAR processing, the system was complemented with a differential GPS system composed of a

GPS L1/L2 antenna (Aero Antenna AT2775-41) coupled to a receiver running at 20 Hz sampling

rate (Trimble R7) and a precise INS working at 500 Hz sampling rate (iNAV-RQH from the

company IMAR). The GPS, INS and SAR systems were synchronised through event markers and

secondary markers with the GPS time. The realization of time synchronisation for the IMU was

carried out by the pulse per second (PPS) signal and NMEA information of the GPS receiver. The

navigation solution of the GPS and IMU data was then processed with the commercial software

Inertial Explorer using dGPS data from reference base stations. The navigation data were finally

smoothed with a Kalman filter to avoid small variations in the millimeter range, which would

introduce artefacts in the focused SAR data. The lever arms between the dGPS antenna, the

INS and the SAR antennas fixed in operating position were measured using terrestrial surveying

methods with a few centimeters accuracy.
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Track 14

Track 15 Track 16

Track 17 Track 18

Figure 7.3: Logarithmically scaled amplitude images of the MASAR data (displayed in slant range geom-
etry, pixels approximately squared) acquired during the MEMPHIS campaign in 2011. The images show
the area around Technische Universität Müchen and Alte Pinakothek in Munich, Germany. The different
viewing directions are indicated by the arrow in the upper left corner.

Heading angle Flying altitude Off-nadir angle
Track 14 340◦ 768 m 60◦

Track 15 70◦ 714 m 65◦

Track 16 250◦ 709 m 65◦

Track 17 160◦ 714 m 65◦

Track 18 340◦ 712 m 65◦

Table 7.3: MEMPHIS MASAR campaign 2011 flight track configuration.

For the SAR raw data focusing a stepped-frequency approach is employed: In high-resolution

mode, MEMPHIS successively transmits 8 chirps of 200 MHz bandwidth with a 100 MHz fre-

quency shift between each other, thus building together a 900 MHz full bandwidth, resulting in a

range resolution of about 16.7 cm. As described in [Magnard et al., 2012], the raw data from each

chirp are first focused in range using a chirp replica with the conventional matched filtering tech-

nique. The full bandwidth is then reconstructed in the frequency domain through an algorithm

based on [Lord, 2000] and [Wilkinson et al., 1998]. The azimuth compression is performed with

the Extended Omega-K algorithm [Reigber et al., 2006], resulting in a zero-Doppler slant range

geometry. During the focusing one of the most critical steps for reaching high focusing quality and

geolocation accuracy is the motion compensation, which is carried out in a two-step procedure

[Schmitt et al., 2013b]. It depends on a precise knowledge of the reference surface and works best

for objects located at this reference surface. The more the objects are above or below this surface

or the larger the difference between the real and the linearized flight path is, the larger will the

geolocation errors and the focusing degradation be. In the context of urban area reconstruction,

however, often a precise digital surface model is not available. Since it is furthermore the original

goal of this thesis to enable a reconstruction of urban surface models from InSAR data in the

first place, the data have been processed using only a coarse digital terrain model, which does not
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Figure 7.4: Flight track configuration and overlapping image strips of the 2011 MEMPHIS MASAR cam-
paign (optical image of downtown Munich©2012 Google).

include any information about above-surface elements such as trees, buildings or other man-made

structures.

The result of this pre-processing are multi-baseline InSAR stacks consisting of four co-registered

SLC SAR images corresponding to a linearized flight path with constant aircraft velocity. These

data serve as input for the experiments conducted in the frame of this thesis.

7.4 LiDAR Reference Data

In order to evaluate the 2.5D height maps and 3D point clouds that are reconstructed from the

MEMPHIS data by utilization of the ML-TomoSAR approach (Chapter 5) or the MAMBInSAR

framework (Chapter 6), a reliable reference dataset is needed. In this thesis, a point cloud

derived from helicopter-borne forward-looking LiDAR measurements has been used. This LiDAR

point cloud was provided by Dr. Marcus Hebel of Fraunhofer Institute of Optronics, System

Technologies and Image Exploitation. Its acquisition and preparation is described in [Hebel, 2012]:

As explained in [Hebel & Stilla, 2007], the point cloud is the result of a fusion of four individual

multi-aspect point clouds, leading to a comprehensive 3D dataset of the scene, including also

building facades. The corresponding parameters are summarized in Table 7.4.
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LiDAR Reference Data
Date of acquisition 02.09.2009
Aspects 4
Number of points 4,400,000
Point density 5.2 pts/m2

Table 7.4: Parameters of the LiDAR reference data.

Figure 7.5: Enhanced multi-aspect LiDAR point cloud used as reference dataset.

Since, however, also multi-aspect LiDAR data does not provide complete coverage of the entire

city surface, the reference data were further densified by carrying out the following post-processing

steps:

1) Reduce 3D point cloud to a 2.5D height map by imposing a spatial grid on the scene and

choosing the maximum point height within an imaginary column established above each

grid cell.

2) Fill in holes in the resulting DEM with the median value of the 3× 3-neighborhood of each

empty grid cell in a region-growing manner.

3) Fuse the original 3D point cloud with the resulting, extended 2.5D point cloud.

In this context, it is important to note that depending on the desired evaluation task, step 3

is optional; e.g. in Section 8.3 only the enhanced 2.5D height map resulting from step 2 is used

as reference.

Figure 7.5 shows an image of the enhanced LiDAR point cloud. Although it was processed

using high-precision inertial navigation data and dGPS measurements, the sensor positions still

contain residual errors of about 1-20 cm, which propagates into the resulting point cloud.
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8 Experimental Results

In this chapter, the experimental results achieved in order to validate the methodical developments

in the context of this thesis are presented. In the first section, the results proving the efficiency

of the proposed adaptive covariance matrix estimation procedures are shown. The second section

contains experiments concerning the ML-TomoSAR inversion algorithm, while the third section

discusses the results achieved by employing the MAMBInSAR framework. Section 8.4 discusses

the benefit of multi-aspect data fusion, before finally Section 8.5 compares MAMBInSAR results

to 3D reconstruction data generated by a fusion of multi-aspect TomoSAR point clouds.

8.1 Efficiency of the Adaptive Covariance Matrix Estimators

For the evaluation of the adaptive covariance matrix estimation techniques described in this

thesis, experiments on both simulated and real test data were carried out. In order to get an

impression about both filtering efficiency and adaptivity, the amplitude map of the stack’s master

image as well as the interferogram corresponding to the longest available baseline combination are

extracted from the covariance matrices of all pixels in the stack. In this way, evaluation methods

known from the field of conventional image denoising can be employed for evaluation. The tests

which utilize simulated data aim at the determination of the theoretical filtering efficiency with

respect to the overall noise level and the number of images in the stack. Besides, a comparison

to state-of-the-art InSAR filters both under laboratory and real life conditions is to be realized.

8.1.1 Competing Approaches for Comparison

If image filters are developed (and basically, adaptive InSAR covariance matrix estimation is an

image filtering problem), it is a good idea to evaluate their capabilities with respect to competitive

methods. For this task, three specifically chosen state-of-the-art interferometric multilooking pro-

cedures for (multi-baseline) InSAR data have been chosen for comparison to the filters developed

in this thesis:

• Boxcar multilooking

Boxcar filtering is the common reference procedure that has efficiently been used for low-

and medium-resolution SAR and InSAR data for decades [Hanssen, 2001]. Its application

to multi-baseline stacks is straight-forward. For the experiments in this thesis, a 15 × 15

window was employed.

• DespecKS

Being the first adaptive multilooking approach specifically designed for stacks of multi-

baseline SAR imagery, this method can be considered a direct benchmark [Ferretti et al.,

2011]. However, its filtering capacities break down for stacks smaller than about 8 acqui-

sitions [Stephens, 1970], since it is based on a goodness-of-fit test evaluating the statistical
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similarity between the amplitude values of two neighboring stack pixels. Also for DespecKS,

a 15× 15 window was used.

• NL-InSAR

Although NL-InSAR was designed for conventional InSAR pairs only∗, it can be consid-

ered the most efficient adaptive multilooking algorithm at the moment [Deledalle et al.,

2011]. The MATLAB implementation provided at http://www.math.u-bordeaux1.fr/

~cdeledal/nlinsar is therefore used for comparison. Please note that, although NL-InSAR

is not meant to be a window-based algorithm (instead, all pixels are supposed to be consid-

ered in a nonlocal manner), in the provided implementation, a 21× 21 window is used due

to computational reasons.

8.1.2 Theoretical Investigations Based on Simulated InSAR Data

As already described in Section 4.3.3, the simulated data is created based on an optical image

and according to the multiplicative speckle noise model as discussed in [Richards, 2009]. The

original noise level of the real and imaginary parts is assumed equal, which results in a Rayleigh

distributed amplitude value and a Gaussian distributed interferometric phase, whereas the phase

of the individual signals is uniformly distributed. In addition to this multiplicative “noise” (i.e.

speckle), the signal is augmented with Gaussian distributed thermal noise as it would occur during

the sensing process. Both speckle and thermal noise are then summarized to describe the overall

noise level mentioned in the following evaluations.

First, the theoretical estimation efficiency was investigated by monte carlo experiments on the

covariance matrices of simulated InSAR data pairs. For the probabilistic similarity determination

approach the optimal parameter settings as determined in Section 4.3.3 (εPDF = 10−10, ν = 3)

were used.

The mean normalized bias

‖Ĉ−C0‖F /N (8.1)

of the estimated covariance matrices Ĉ to the true covariance matrices C0 with respect to a

growing noise level is shown in Fig. 8.1. In this context, ‖ · ‖F denotes the Frobenius norm

‖A‖F :=

√√√√ m∑
i=1

n∑
j=1

|aij |2, (8.2)

where m and n are the number of rows and columns of A = [aij ] and N is the number of images

in the stack.

While the bias reduction of of both PCA-TV and probabilistic similarity determination is

close the bias reduction offered by NL-InSAR, Boxcar filtering and DespecKS show a comparably

lower efficiency. This is caused by the lack of adaptivity in the Boxcar case, and the fact that

DespecKS requires large sample numbers for the goodness-of-fit testing.

In order to prove the efficiency also for larger stacks with more than two images, additional

tests have been carried out on simulated stacks of different size, using a constant noise level. The

corresponding plot is shown in Fig. 8.2. Note that in this case, NL-InSAR is not included due to its

restriction to the two-image case. Again, PCA-TV and probabilistic similarity determination show

a comparably high efficiency (i.e. strong bias reduction), whereas Boxcar filtering and DespecKS

are again limited by non-adaptivity and reliance on large sample numbers, respectively.

∗Only during finalization of this thesis a pre-print was published describing an extension of the NL-InSAR
principle to multi-dimensional SAR data [Deledalle et al., 2013].

http://www.math.u-bordeaux1.fr/~cdeledal/nlinsar
http://www.math.u-bordeaux1.fr/~cdeledal/nlinsar
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Figure 8.1: Filtering efficency comparison with respect to noise standard deviation. The normalized bias
between estimated and true covariance matrix averaged over all pixels is plotted. The number of images
in the stack was set to N = 2.
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Figure 8.2: Filtering efficiency comparison at a constant noise level, and with respect to growing stack
size. Again, the normalized bias between estimated and true covariance matrix averaged over all pixels is
plotted.

Image-Based Evaluation

The remaining evaluations are carried out on the image data that can be composed if the corre-

sponding variables (i.e. the amplitude of the master image and the interferometric phase of the

longest baseline) are extracted for every pixel in the stack. Figure 8.3 shows the filtering efficiency

with respect to these image data of both the PCA-TV-based and the probabilistic covariance ma-

trix estimation algorithms for a co-registered pair of simulated interferometric SAR images with

respect to a growing noise level.

Again also an additional experiment has been carried out on simulated stacks of different sizes,

using a constant noise level. The resulting filtering efficiencies are displayed in Fig. 8.4.

Qualitative results of the experimental comparison to the competing approaches for simulated

InSAR image pairs are visualized in Fig. 8.5, quantitative results can be found in Fig. 8.6. The

results of Boxcar filtering, DespecKS and NL-InSAR are as expected: The Boxcar approach

provides high filtering efficiency, but completely blurs all image details. DespecKS is not able

to filter the data, since two samples per pixel are too few for statistical goodness-of-fit testing.

Eventually, NL-InSAR provides the benchmark result. Both the PCA-TV based filter and the

probabilistic filter provide strong filtering efficiency and detail preservation. However, the PCA-

TV result is disturbed by single dark spots and an unsatisfactory result for the interferometric

phase of letter 3, which is probably caused by the fact that two images do not allow for a sufficient
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Figure 8.3: Filtering efficiency of the proposed adaptive covariance matrix estimation algorithms with
respect to the noise standard deviation. The left column shows the results of the PCA-TV based procedure,
the right column shows the results of the probabilistic procedure. For this experiment, standard InSAR
image pairs have been simulated.

PCA-TV filter Probabilistic filter

2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

Number of images in stack

R
M

S
E

Amplitude

 

 

2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

R
M

S
E

 i
m

p
ro

v
e

m
e

n
t 

[%
]Noisy

Denoised

2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

Number of images in stack

R
M

S
E

Interferometric Phase

 

 

2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

R
M

S
E

 i
m

p
ro

v
e

m
e

n
t 

[%
]Noisy

Denoised

2 4 6 8 10 12 14 16
0

0.2

0.4

0.6

0.8

Number of images in stack

R
M

S
E

Amplitude

 

 

2 4 6 8 10 12 14 16
0

20

40

60

80

100

R
M

S
E

 i
m

p
ro

v
e

m
e

n
t 

[%
]Noisy

Denoised

2 4 6 8 10 12 14 16
0

0.2

0.4

0.6

Number of images in stack

R
M

S
E

Interferometric Phase

 

 

2 4 6 8 10 12 14 16
0

20

40

60

80

100

R
M

S
E

 i
m

p
ro

v
e

m
e

n
t 

[%
]Noisy

Denoised

2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

Number of images in stack

R
M

S
E

Amplitude

 

 

2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

R
M

S
E

 i
m

p
ro

v
e

m
e

n
t 

[%
]Noisy

Denoised

2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

Number of images in stack

R
M

S
E

Interferometric Phase

 

 

2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

R
M

S
E

 i
m

p
ro

v
e

m
e

n
t 

[%
]Noisy

Denoised

2 4 6 8 10 12 14 16
0

0.2

0.4

0.6

0.8

Number of images in stack

R
M

S
E

Amplitude

 

 

2 4 6 8 10 12 14 16
0

20

40

60

80

100

R
M

S
E

 i
m

p
ro

v
e

m
e

n
t 

[%
]Noisy

Denoised

2 4 6 8 10 12 14 16
0

0.2

0.4

0.6

Number of images in stack

R
M

S
E

Interferometric Phase

 

 

2 4 6 8 10 12 14 16
0

20

40

60

80

100

R
M

S
E

 i
m

p
ro

v
e

m
e

n
t 

[%
]Noisy

Denoised

Figure 8.4: Filtering efficiency of the proposed adaptive covariance matrix estimation algorithms with
respect to a growing number of images per stack. The left column shows the results of the PCA-TV based
procedure, the right column shows the results of the probabilistic procedure. In this experiment, the noise
level was kept constant.

separation between signal and noise components. In contrast, the probabilistic approach leads to

a result comparable to NL-InSAR in quality.

For stacks consisting of four simulated multi-baseline images, the results are shown in Figs. 8.7

and 8.8, respectively. Note that NL-InSAR is not part of the experiment anymore since it is

restricted to conventional InSAR image pairs. Apart from that, the results lead to an impression

similar to the previously investigated two-image case: While Boxcar filtering blurs the results,

DespecKS still suffers from the low number of images. The PCA-TV result shows fewer dark spot

outliers, and the probabilistic filter still creates the best results considering the desired trade-off

between filtering efficiency and detail preservation.
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Figure 8.5: Filtering results for a simulated InSAR pair. The boxes around numbers 1, 2, 3 are enlarged
for better interpretability.
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Figure 8.6: Quantitative comparison of filtering results on a simulated InSAR pair. (a) Amplitude and (b)
interferometric phase data. For the evaluation of the phase, shadow regions have been excluded.

8.1.3 Practical Results on Real Multi-Baseline InSAR Data

In spite of all simulated test results, in the end, the quality of a filter can only be evaluated based

on real data experiments. Since the expectation value, i.e. a noise-free “ground truth” of the
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Figure 8.7: Filtering results for a simulated multi-baseline stack with 4 images. The boxes around numbers
1, 2, 3 are enlarged for better interpretability.
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Figure 8.8: Quantitative comparison of filtering results on a simulated stack consisting of 4 images. (a)
Amplitude and (b) interferometric phase data. For the evaluation of the phase, shadow regions have been
excluded.

real SAR imagery is not known, it is necessary to provide alternative measures to the RMSE

for assessing the efficiency of the filters. In this context, efficiency is defined as a combination of

variance reduction and mean preservation, which are commonly estimated on homogeneous image

patches. Unfortunately, these estimates tend to be biased in certain cases, such that this thesis

refers to the speckle suppression index (SSI) and the speckle suppression and mean preservation
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Figure 8.9: Quantitative comparison of filtering results for a 4-image MEMPHIS stack. (a) Amplitude and
(b) interferometric phase data.

index (SMPI) as proposed by Shamsoddini & Trinder [2010] in order to get a more reliable

evaluation. The SSI is calculated by

SSI =
σf
µf

·

µ0
σ0
, (8.3)

where µ0, µf , σ0 and σf denote the means and the standard deviations of the original and the

filtered images, respectively. If the filter is efficient in speckle reduction, the SSI is usually less

than one.

However, also the SSI tends to be unreliable if the filter overestimates the mean value. There-

fore, the more sophisticated SMPI, which is calculated by

SMPI = (1 + |µ0 − µf |) ·

σf
σ0

(8.4)

is used additionally. The lower the SMPI values are, the more efficient the filter performs. Fig-

ure 8.9 shows standard deviation (STD), SSI and SMPI for amplitude and phase data extracted

from the complex covariance matrices that were estimated for each pixel in the MEMPHIS test

data stack. Again, NL-InSAR was not considered because the stack consists of four co-registered

images. It can easily be observed that the real data results agree with the results achieved with

simulated data: Both the PCA-TV filter and the probabilistic filter achieve a filtering efficiency

comparable to the optimal Boxcar method. The relatively bad result for DespecKS is again

caused by the low number of images in the stack, providing only four samples per pixel for the

goodness-of-fit test.

In addition to the filtering efficiency, a core requirement for the proposed covariance matrix

estimation algorithms is their adaptivity: In order to ensure local stationarity for the estimation of

the covariance matrix of a pixel in an interferometric SAR stack, all sample pixels must belong to

the same statistical distribution. Therefore, adaptive sample selection is needed. Unfortunately,

this adaptivity can hardly be evaluated quantitatively. Due to this reason, a visual comparison of

both amplitude and phase images was chosen for the assessment. In this way, the adaptivity of

the proposed filtering method can be analyzed by its capability to preserve fine image details such

as edges or strong point scatterers. Figure 8.10 shows the comparison for the different filtering

approaches. As expected, it can be seen that the Boxcar approach completely blurs the image

and destroys fine details, which proofs the lack of adaptivity. DespecKS, the PCA-TV based and

the probabilistic filter all preserve the exemplarily chosen facade scatterers in a satisfying manner.

Looking at the phase images, however, it becomes obvious that the PCA-TV approach tends to

stronger filtering and less detail preservation in comparison to the probabilistic filter.

Finally, a very important task for interferometric SAR applications or change detection efforts

is the estimation of the coherence between the individual acquisitions. As shown in Section 4.1,

also this measure can easily be extracted from the complex covariance matrix of each pixel. In
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Figure 8.10: Filtering results for a multi-baseline stack with 4 images, acquired by the airborne MEMPHIS
sensor. The interferometric phase data of the longest baseline is shown.
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Figure 8.11: Coherence maps estimated for the longest baseline of the real test dataset.
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Figure 8.12: Mean and standard deviation of the coherence magnitudes within a small homogeneous
window on the lawn area in the real test dataset.

order to prove the effect of the proposed adaptive estimation procedures on coherence estimation,

the results for the longest baseline available in the real test dataset are again compared to the

coherence maps extracted by state-of-the-art methods (see Fig. 8.11). The mean and standard

deviations of the coherence magnitudes within the same homogeneous window already used for

amplitude and phase evaluation are displayed in Fig. 8.12. It can be seen that PCA-TV and

the probabilistic filter achieve almost the same coherence quality as the Boxcar filter, while still

preserving fine-structured details in the data.

8.1.4 Discussion

From both the results of the simulated data and real data experiments, several insights can be

acquired: It is obvious that most of the filtering methods provide advantages and disadvantages
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at the same time. While Boxcar filtering generally shows a very high filtering efficiency, which can

be considered as a benchmark for homogeneous areas, it naturally destroys fine details and is not

adaptive in any way. NL-InSAR is probably the most adaptive and efficient filter known at the

moment, but it is not able to process multi-baseline InSAR stacks with more than two images. In

analogy to that, DespecKS is a very promising approach for stack filtering, but requires a rather

high number of acquisitions to make the goodness-of-fit testing work.

Both PCA-TV filtering and the probabilistically motivated approach for adaptive covariance

matrix estimation close the gap between NL-InSAR and DespecKS, providing promising tech-

niques for small-sized stacks with about 3 to 5 images. However, the PCA-TV results are weaker

in the two-image case; this is caused by the nature of the method, which is based on a compres-

sion of signal components in the first principal component. In contrast, the probabilistic approach

provides high filtering efficiency and strong detail preservation for independent stack sizes while

still being optimally suitable for small-stack-cases. Again the reason lies in the filter principle,

which is centered around the multi-dimensional probability density function of each pixel, mak-

ing the general design independent of the number of samples per pixel. Apart from that, the

two necessary parameters (ν for the robust initial covariance matrix estimation and εpdf for the

probability density thresholding) can be set globally, making the algorithm a powerful and still

easy-to-use automatic tool for different data configurations. However, the main drawback of the

method must not be neglected: Since it is based on a sliding window operation and a three-stage

covariance matrix estimation process, it is computationally more expensive than PCA-TV.

8.2 Maximum-Likelihood TomoSAR Results

The utilization of MEMPHIS data for the evaluation of the proposed TomoSAR algorithm implies

two important attributes: First, MEMPHIS is a good example of a single-pass multi-baseline

system with a very limited overall baseline ∆B = 27.5 cm and just four receiving antennas. From

a TomoSAR point of view, this means a critically short elevation aperture with an additionally

critically low number of samples per resolution cell. Therefore, this experiment can also be seen

as a study exploring the limits of SAR tomography with respect to potential future mission

design. The second point is the employment of millimeterwave SAR, which is supposed to follow

the Gaussian scattering assumption even in urban areas due to the high sensitivity to surface

roughness as already explained in Section 7.2. The height resolution of the utilized interferometric

configuration of the MEMPHIS sensor can be approximated by

ρh =
λR sin (θ)

∆B
≈ 42 m (8.5)

with its mean off-nadir angle θ = 60◦ at a slant range distance of R = 1545 m. The elevation-to-

height conversion factor sin (θ) is needed in order to receive heights above the reference surface

instead of just elevations. Therefore, the utilization of super-resolution techniques would be nec-

essary if classical spectral estimation algorithms were meant to separate scattering contributions

that differ less than 42 m in height – a common occurence in urban areas. Since, however, the

method proposed in this thesis is not based on spectral estimation methods for array signal pro-

cessing, the height resolution is only limited by the question how good the model signal values fit

the measured coherence matrix and by the discretization of the search space. (cf. Section 5.3.1).

For all experiments in this section, the height search interval was chosen as [hmin;hmax] =

[−5 m; 45 m], with a spacing of ∆h = 0.5 m. After covariance matrix estimation for every

stack pixel, additionally a pre-summing in azimuth direction was carried out in order to achive

approximately square slant range pixels.
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8.2.1 Experiments on Simulated Data

In order to evaluate the proposed ML-TomoSAR method, a comparison with the long-known

Capon beamformer [Capon, 1969] and the Weighted Signal Subspace Fitting (WSSF) approach

was chosen. WSSF was first presented by Viberg et al. [1991] and transfered to the TomoSAR

context by Huang et al. [2012]. Although the Capon algorithm looks quite similar to the TomoSAR

approach developed in this thesis, the main differences are that the non-normalized complex

covariance matrix is used and only a one-dimensional objective function is is evaluated in the

maxima detection:

ĥ = arg max
h∈[hmin;hmax]

1

zH (h) Ĉ−1z (h)
. (8.6)

In contrast, ML-TomoSAR and WSSF are quite similar in their philosophy: Just like Capon,

both are multi-looking-based, i.e. they rely on covariance matrix estimates for every resolution

cell, and they make use of a multi-dimensional grid search for the optimization step. For WSSF,

the estimator is derived as

ĥ = arg max
h∈[hmin;hmax]

trace
(
PA
⊥Ês

(
Λ̂s − σ̂2nIK

)
ÊH
s

)2
Λ̂−1s , (8.7)

where

PA
⊥ =

(
IN −A

(
AHA

)−1
AH

)
(8.8)

represents the orthogonal projector on the null space of AH , and A is set up as described in

(5.26). Ês is the matrix containing the K eigenvectors defining the signal subspace, while Λ̂s is a

diagonal matrix containing the corresponding eigenvalues. σ̂2n is an estimate of the noise variance.

For a first theoretical comparison, experiments based on simulated resolution cells, utilizing

the MEMPHIS system parameters, were carried out. Each resolution cell was simulated to contain

two Gaussian scatterers with equal backscattering power. While the height of one scatterer was

fixed to ground level (h1 = 0 m), the second scatterer was assigned a growing height. For every

incrementation of h2, 100 monte carlo simulations were carried out at an SNR of 10 dB. The

results of this experiment can be seen in Fig. 8.13. In order to emphasize the core methodology

proposed in this thesis, the analyses have been carried out both with automatic model order

selection as described in Section 5.2 and with a fixed model order of K̂ = 2.

8.2.2 Experiments on Real Data

For the real-data experiments, a cut-out from aspect 14 has been chosen as test data. Figure 8.14

displays the test area located in the heart of the museum district of the city of Munich, Germany,

as well as a corresponding SAR intensity image. An analysis of the signal-to-noise ratio of the SLC

observations resulted in an estimated median SNR of about 4 dB for non-shadow pixels, whereas

potential layover resolution cells can show an SNR of 10 dB and up. The strong range sidelobes

occuring in some parts of the SAR image are caused by saturation effects at the A/D converter

of the sensor. As a pre-processing step, the phase data were calibrated using the deterministic

signal of the corner reflector in the bottom left part of the scene. After flat earth correction, the

covariance matrices of the complex multi-baseline observations were estimated by the PCA-TV

method proposed in this thesis.

The model order map needed as prior knowledge for the TomoSAR algorithm was estimated

by the EDC2 method described in Section 5.2 (see Fig. 8.15). Although the sidelobes cause some

wrong model order estimates, it can be seen that most parts of the scene correctly contain just

one scattering contribution. As expected, two scatterers are found mainly on the facade of the
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Figure 8.13: Scatterer height reconstruction results for simulated data at an SNR of 10 dB. Left column:
model order (MO) fixed to K̂ = 2, right column: automatic model order selection (MOS)



8.2. Maximum-Likelihood TomoSAR Results 91

(a) (b)

Figure 8.14: Test scene for the real data TomoSAR experiments: (a) Oblique view aerial image©Google
2013, (b) despeckled intensity image, where the red line indicates an azimuth bin, which is used for further
analysis.

 

Number of Scatterers:  0  1  2  3 
 

Figure 8.15: Model order map created by application of the EDC2 criterion.

large building in the scene center. Of all resolution cells containing scatterers, 23% were found

to contain double scatterers, whereas the share of triple scatterers is only at about 0.5% and can

therefore be neglected. The final tomographic result for the entire test scene is shown in Fig. 8.16.

Note especially how the cars on the road are clearly separated from the low reflectivity asphalt in

the 3D tomogram, while not really being distinguishable in the pure height data. For a detailed

comparison of the proposed ML-TomoSAR approach and WSSF as a benchmark, Fig. 8.17 shows

the two-dimensional tomographic slice for the azimuth bin marked in Fig. 8.14 (b).

8.2.3 Discussion

The results of both the simulated and real data experiments show the feasability of maximum-

likelihood based SAR tomographic reconstruction. From the simulation analysis illustrated in
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(a)

(b)

Figure 8.16: Tomographic processing result by the proposed maximum-likelihood approach: (a) Height
colored scatterer point cloud, (b) sparse 3D tomogram showing the logarithmically scaled amplitudes of
each scatterer.
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Figure 8.17: Comparison of WSSF and ML-based TomoSAR results in the slant range-height plane for the
azimuth bin marked in Fig. 8.14 (b).

Fig. 8.13 and the real data comparison shown in Fig. 8.17 it can be seen that the ML-TomoSAR

results are quite similar to the WSSF results, whereas the layover separation capability even

exceeds the one of WSSF for very closely spaced scatterers: While both methods are limited by the

resolution of the a priori model order selection step (approx. 10 m), the reconstruction accuracy

of WSSF would break down for a height difference smaller than 5 m. In contrast, ML tomography

would enable a separate reconstruction of two scatterers even for height differences below 5 m,

although with increasing bias. In exchange, WSSF allows a seemingly perfect reconstruction of

the scatterers with sufficient height difference, whereas ML tomography shows slightly biased

height values. The main advantage of ML-TomoSAR therefore is that its computational cost is

lower than for WSSF since less matrix operations are involved. In comparison to these multi-

dimensional optimization methods, Capon’s super-resolution capability is significantly worse.

A reflection of the real data results also shows the high potential of the proposed method.

Again, it becomes visible that the pre-processing step of model order selection is a critical part

of the procedure: Looking at Fig. 8.15, one can see that only very few pixels are found to contain

three scatterers, although one might expect more mixtures of roof, facade and ground. Figure 8.18

shows a plot of the double scatterer differences of the test scene reconstruction. Since the Rayleigh

resolution limit is at about 42 m, it proves the super-resolving capabilities of ML-TomoSAR also

for real SAR data. Obviously, the majority of the double scatterers show a height difference

of about 5 m to 10 m, which fits the considerations of Zhu & Bamler [2012], who state that

most of them are rather closely spaced. The outlying peak of the plot at 0 m to 1 m is caused

by the combination of an a priori model order selection and the two-dimensional grid search

based optimization: In these cases, the MOS step over-estimates the number of scatterers in the

respective resolution cell, while the ML-estimator finds both to be at very close heights below

the actual resolution limit of the model order selection step. Figure 8.19 shows a plot containing

the results of another simulation: This time, the resolution cell was supposed to contain only one

scatterer at h = 15 m, but the model order was wrongly set to K̂ = 2. It can be seen that, with

growing SNR, the two reconstructed scatterers are found closer to each other, while their mean

value is always at the correct height. Therefore, an over-estimation of the number of scatterers is

not necessarily problematic from a methodological point of view, since a threshold could be used to

fuse two close pseudo-scatterers. In the presented case, e.g. a height difference of ∆h = 5 m would

be well suited. In contrast, an under-estimation of the model order usually leads to a wrongly

determined 3D scatterer. Due to the high computational cost of multi-dimensional grid search

optimization, a GPU-based, parallelized implementation of the algorithm would be advisable. In
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Figure 8.18: Histogram of the height differences between the detected double scatterers in the real data
test case. The Rayleigh resolution limit is at about 42 m.

Figure 8.19: Experimental result of a simulation of a single scatterer at h = 15 m and an overestimated
model order of K̂ = 2. It can be seen that the mean height of the two wrongly reconstructed pseudo-
scatterers always equals the desired correct height of the actual scatterer, whereas the height difference
between the two pseudo-scatterers gets smaller with growing SNR.

this case, it would be possible to systematically employ a larger number of scatterers than actually

estimated. In combination with a thresholding operation that fuses two closely spaced scatterer

estimates to a single scatterer, a significantly enhanced comprehensiveness and quality could be

expected.

8.3 Multi-Aspect Multi-Baseline Interferometry Results

For the experiments described in this section, the height search interval for the MAMBInSAR

estimator was defined to be [hmin;hmax] = [h0 − 10 m;h0 + 50 m], where h0 = 560.7 m is the
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reference terrain height above the WGS84 ellipsoid. The height spacing ∆h was 5 cm, the spacing

of a surface grid element was 50 cm × 50 cm. After the reconstruction of one height value for every

grid element was completed, unreliable height estimates have been discarded using the threshold

ε = 0.35. Afterwards, the resulting 2.5D height grid was 3× 3 median filtered.

8.3.1 Reconstruction Result

The MAMBInSAR reconstruction result can be seen in Fig. 8.20; the reconstruction accuracy is

summarized and compared to the conventional backward geocoding based InSAR data fusion in

Table 8.1. An overall improvement of the reconstruction quality can be confirmed. Especially the

evaluation over all occupied grid elements, gives better results for the MAMBInSAR method than

for non-statistical InSAR data fusion. Figure 8.21 displays the corresponding height error map. In

this illustration, several phenomena can be noticed at first glance: First of all, most of the ground

areas, which are not affected by shadowing from all radar viewing angles, are well reconstructed

– as are most of the roof areas. Second, in spite of the full multi-aspect data availability, street

canyons as well as backyards are still mostly discarded. Third, the largest errors occur at the

building edges. The particular areas marked by the letters A, B, C, and D will be discussed in

further detail in Section 8.3.2.
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(a)

(b)

Figure 8.20: Result of the MAMBInSAR reconstruction. (a) 2.5D surface model displayed as a point
cloud. (b) Point cloud overlayed onto a textured height model of the city for better visual comparison of
experimental result and reference data. The patches marked by A, B, C, and D are discussed in further
detail.
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Global accuracy

Accuracy on
homogeneous lawn
area
(A)

Accuracy on
homogeneous roof
area
(D)

Backward geocoding based
multi-aspect InSAR fusion

3.48 m 0.79 m 1.15 m

Multi-aspect multi-baseline SAR
interferometry

2.97 m 0.81 m 1.09 m

Table 8.1: Accuracy assessment of the maximum-likelihood based MAMBInSAR approach developed in this
thesis in comparison to non-statistical multi-aspect InSAR data fusion by backward geocoding. The mean
absolute deviation was calculated for all occupied grid elements (global accuracy) and for homogeneous
patches on the lawn area (A) as well as the roof area (D), respectively.

Figure 8.21: Height errors in [m] of the maximum-likelihood based MAMBInSAR reconstruction.
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8.3.2 Discussion

Comments on the overall accuracy

As can be seen from the accuracies of the lawn (A) as well as the roof area (D) listed in Table 8.1,

a height reconstruction in complex urban environments based on multi-aspect multi-baseline SAR

data leads to decent accuracies for objects of different kinds. For comparison: the mean height

error of non-urban DEMs reconstructed from single-pass TanDEM-X imagery using sophisticated

operational processing strategies is stated to be 2.76 m by Rossi et al. [2012]. Still, the global

mean absolute difference gives the impression that the overall reconstruction accuracy is rather

bad. In this regard, several important factors have to be discussed:

First of all, MEMPHIS is an experimental system, where the focusing and calibration of the

raw SAR data is still under investigation [Magnard et al., 2012]. Although the necessary motion

compensation has been further improved and a phase correction depending on the depression

angle has been added for upcoming campaigns [C. Magnard, personal communication, June 10,

2013], the processing would benefit from a precisely known a priori digital height model (DHM)

of the scene, which is supposed not to be available in the context of this investigation. Even

more important, however, is the fact that both the reconstructed data as well as the LiDAR

derived reference data might show slight georeferencing errors leading to height errors at the

edges of buildings or other elevated structures (cf. Fig. 8.24). In addition to that, layover pixels

may cause the multi-aspect likelihood profiles to blur (cf. Section 6.4.1), also adding to these

deviations from the reference data. Last but not least, some of the comparably large errors

seem to be connected to certain roof materials: Fig. 8.23 for example shows a zoom into the

area denoted by C where unreliable measurements (and therefore discarded heights) and large

reconstruction errors appear next to each other. It is assumed that this effect is interrelated with

the utilized wavelength and the electromagnetic properties of the imaged surfaces. Apart from

the possibilities to optimize the data by exploitation of different radar wavelengths, this problem

is inherent to this sensor technology. Therefore, a posteriori measures for outlier elimination and

height interpolation have to be applied if DSMs are to be derived operationally.

Detail Discussion

For a detailed discussion of the advantages and shortcomings of the proposed reconstruction

procedure, we refer to the areas labeled A, B, C, and D in Figs. 8.20 and 8.21:

A Topographically flat area covered by lawn

Generally, lawn appears highly coherent in single-pass InSAR data leading to a comprehen-

sive reconstruction. However, a certain variance of the reconstructed height values leads to

a number of underestimated heights, wherefore only few points are displayed on the lawn

in Fig. 8.20 (b).

B Urban Trees

Although a comparison of reconstruction results and reference data acquired at different

points in time is always questionable for vegetation, the tree structures seem to be perfectly

recovered (Fig. 8.22). Basically, this application is a good example for showing the main

advantages of airborne single-pass millimeterwave SAR interferometry in comparison to

more conventional spaceborne repeat-pass X-band SAR [Schmitt et al., 2013a].

C Metallic roof structures

In this case, a curved metallic roof structure is shown, which was not reconstructed prop-

erly at all (see Fig. 8.23): Either the height values have been discarded by the reliability
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(a)

(b)

Figure 8.22: Detailed illustration of the trees marked with B in Figs. 8.20 and 8.21, showing that the tree
shapes and heights have been perfectly reconstructed. (a) 2.5D point cloud overlayed onto the texturized
reference data. (b) Profile corresponding to the white line. The reference LiDAR points are colored red,
the MAMBInSAR reconstruction result is colored green.

thresholding or – where their coherence has exceeded the threshold – they show a severe

under- or overestimation. This is a shortage inherent to the wavelength domain employed

in radar remote sensing and is assumed to get even worse for longer wavelengths.

D Concrete roof structures

In contrast to some metallic roofs such as the one marked by C, concrete roofs can be

reconstructed with better results. Not only are there no discarded height values caused by

non-reliable phase measurements; the mean absolute deviation is also comparable to the one

achieved over open lawn spaces (A). An enlarged 2D illustration of the reconstruction and

the corresponding error map can be seen in Fig. 8.24. It also shows the above-mentioned

errors at the building edges.
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(a) (b)

Figure 8.23: Detailed illustration of the building marked with C in Figs. 8.20 and 8.21. (a) Surface
points reconstructed for the Audimax building on TUM main campus. (b) Corresponding optical image
acquired during a follow-up flight campaign. Note how the curved metallic roof structures have not been
reconstructed well.

(a) (b)

(c) (d)

Figure 8.24: Detailed illustration of the flat, concrete-roofed building marked with D in Figs. 8.20 and 8.21.
(a) Optical image. (b) LiDAR reference data. (c) MAMBInSAR reconstruction result. (d) Error image
[m]. Many of the outliers appear at the edges of the buildings and are caused by mis-registration between
the reference data and the reconstructed data or blurring of the likelihood profiles by layover pixels.
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Summary

In summary, a look at the results shows that most parts of the scene can be reconstructed

with satisfying precision. Also, the improvements achieved by the statistically sound maximum-

likelihood estimation procedure in comparison to conventional backward geocoding based InSAR

data fusion become evident, especially if one considers the possibility to include additional prior

knowledge (e.g. available rough terrain models) in form of the corresponding probability density

functions in the estimation process. The mathematical extension is straight-forward and easy to

be implemented. In addition to that: Although the only post-processing applied to the results

presented in this paper is a 3 × 3 median filter, thanks to its regular nature in form of a 2.5D

height grid, the data could readily be enhanced by further filtering, outlier removal methods or

gap filling procedures in order to receive an accurate, comprehensive DSM.

8.4 Benefit of Multi-Aspect Data Fusion

8.4.1 Analysis of Different Aspect Combinations

The 2.5D nature of the multi-aspect multi-baseline SAR interferometry output allows a straight-

forward analysis of the benefit induced by multi-aspect data fusion, especially in combination

with the reliability threshold introduced in Section 6.4.2: If a grid element is discarded because it

shows a low reliability measure, for high-coherent single-pass data it can well be expected that this

is caused by radar shadowing. For the experiment in this section, only a single baseline (i.e. the

longest available one with an ambiguity height of 45 m) has been used in order to emphasize the

effect of multi-aspect SAR. Figure 8.25 shows the height maps reconstructed by different aspect

combinations. The resolution cells colored in gray have been found unreliable (ε = 0.35) and

can be considered affected by shadowing therefore. The dark brown pixels, which are frequently

found on the lawn patch shown in the zooms for the single-aspect case are caused by choosing the

wrong maximum from the ambiguous single-baseline likelihood function (cf. Fig. 6.6) and can be

detected due to their large height difference to the LiDAR ground truth.

Figure 8.26 contains bar plots showing the number of shadow pixels and the number of am-

biguous grid elements for the same aspect combinations. A more thorough analysis of the benefit

provided by multi-aspect as well as multi-baseline data can be found in [Schmitt et al., 2014b].

8.4.2 Discussion

From the analysis of different multi-aspect combinations, several insights can be drawn: First of

all, the number of shadowed grid elements leading to erroneous or discarded height values can

be significantly reduced by inclusion of complementary aspects. While orthogonal viewing angles

already show a certain amount of improvement, it is – as probably expected – better to employ

opposing views. The best results, however, can be achieved by a full multi-aspect configuration.

It is found that while the combination of two complementary aspects (no matter if orthogonal or

from opposing viewing angles) already reduces the amount of shadow pixels for about 20%, a full

multi-aspect configuration consisting of four complementary aspects reduces the shadow effect for

almost 50%.
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Figure 8.25: Height reconstruction results for different combinations of multi-aspect single-baseline data:
(a) Single aspect 15 as a reference, (b) orthogonal aspects 15 and 17, (c) opposing aspects 15 and 16, (d)
aspects 15-17, (e) full multi-aspect configuration (15-18), (f) full multi-aspect configuration plus additional
aspect acquired from different altitude (14-18).
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Figure 8.26: Bar plots summarizing (a) the number of shadow-affected grid elements and (b) the number
of ambiguous height reconstruction values.
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A similar outcome is achieved concerning the ambiguously reconstructed grid cells. Even with

respect to this problem, multi-aspect InSAR data can help to reduce ambiguity effects: A full

multi-aspect configuration helps to reduce the ambiguities for about 50% – still using just a single

baseline per aspect. Another noticeable fact can be drawn from Fig. 8.26 (b): Due to the strongly

differing viewing angles, the fusion of two opposing aspects obviously does not lead to many

redundant observations of individual grid cells, wherefore the ambiguity reduction is the weakest

in this case. Interestingly, however, for both shadowing and ambiguity reduction the addition of

data from a track with the same viewing angle but a different height as an already used track,

does not bring any further improvements.
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Figure 8.27: Oblique-view optical image of the test subset (©Google 2013). Note the free-standing wall
in front of the main entrance of the State Museum of Egyptian Art.

8.5 Comparison of 3D-Reconstruction Results

The final experiment is intended to compare the reconstruction results of the MAMBInSAR

framework and the ML-TomoSAR algorithm. For this task, a subset of the TUM test area,

which is located around the State Museum of Egyptian Art in Munich, Germany, is investigated.

This is the same area that was already used for the TomoSAR experiments described in Section

8.2. Since the results are shown from a different perspective to enhance the visual impression,

another oblique-view optical image is shown in Fig. 8.27. In order to create a fair comparison,

both methods were applied to the same data, i.e. tracks 15-18. Since they were flown at a

lower altitude and therefore with a more shallow off-nadir angle than track 14 (which was used

in Section 8.2), the Rayleigh resolution converted to height is only about 46 m in this case, i.e.

almost 10% worse than before. In addition, the height search intervals ∆h were set to 0.5 m for

both approaches.

The point clouds derived by ML-tomography from the individual aspects are fused as described

in Section 6.2: First, they are geocoded to the UTM coordinate system. Afterwards, they are

fused using an imposed voxel space with voxels of 0.5 × 0.5 × 0.5 m3, and the constraint that

each voxel to be considered for further processing has to contain points from at least two different

aspects. For each of these voxels then the mean of all contained 3D points is returned. Since also

the MAMBInSAR reconstruction started from a pre-defined surface grid with a cell spacing of

0.5 m×0.5 m, this parameter set-up ensures a high degree of comparability and prevents a biased

analysis that might have been caused by different discretization of the data owed to different

computational costs.

8.5.1 Reconstruction Results

The reconstruction results for both methods are visualized in Fig. 8.28. For numerical evaluations,

the distance of each reconstructed 3D point to the 3D reference data has to be calculated. This

can be achieved in several ways: A first intuitive assessment is based on an assignement of each

point to its nearest neighbor in the LiDAR reference point cloud, which again can be realized by
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(a) (b)

Figure 8.28: Comparison of (a) MAMBInSAR and (b) MA-TomoSAR reconstruction results. The top row
shows the point clouds, the bottom row shows the LiDAR points used in the k-d tree evaluation, colored
by the errors their corresponding points showed.

a k-d tree search (cf. Section 6.2). Afterwards, the euclidian distance to this nearest neighbor is

calculated.

This, however, can lead to a rather pessimistic estimate of the accuracies if the point density

in the reference data is lower than in the reconstructed data (see 8.29). In this case, a point

belonging to the facade, for example, is not evaluated by its normal distance to the facade plane,

but by its (larger) distance to the nearest point on the facade. Therefore, a more sophisticated

accuracy assessment can be realized by selecting the three nearest neighbors of each point by the

k-d tree and calculating the point’s distance to the corresponding plane.

Unfortunately, also this evaluation strategy might lead to biased results, especially at building

edges, where semantically unrealistic planes might lead to favorable distances. Therefore, in a

third approach, the ten nearest neighbors of each reconstructed point are chosen and a least

squares plane is fitted to these points. The median distances of all points in the reconstruction

results for all three evaluations are summarized in Table 8.2.

8.5.2 Discussion

Looking at the reconstruction results of both the MAMBInSAR and the MA-TomoSAR ap-

proaches one can see that the MA-TomoSAR point cloud is both more accurate (with a median

error well below 1 m for all three evaluation strategies in comparison to more than 1 m) and more

comprehensive (with a point density of 8.6 pts/m2 in comparison to 3.7 pts/m2) than the MAM-
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MAMBInSAR MA-TomoSAR
point density 3.7 pts/m2 8.6 pts/m2

number of points ca. 128,000 a. 290,000

median distance
nearest point 1.44 m 0.76 m
nearest plane 1.02 m 0.49 m
nearest LS plane 1.32 m 0.64 m

Table 8.2: Numerical comparison of MAMBInSAR and MA-TomoSAR reconstruction results.

(a) (b)

Figure 8.29: Example illustration of different point densities in (a) the LiDAR reference data and (b) the
point cloud reconstructed by MA-TomoSAR.

BInSAR point cloud. This indicates two main insights: First, the TomoSAR reconstuction seems

to be more precise, which is also confirmed by Fig. 8.28, where the MAMBInSAR result shows

larger errors especially on the road and the scene parts that have been covered in the shadows

of the trees in at least some of the aspects. Second, the fact that TomoSAR enables a real 3D

reconstruction instead of just creating a 2.5D height map obviously greatly enhances the number

of reconstructed points. This is particularly impressive for the free-standing wall in front of the

main entrance of the State Museum of Egyptian Art, which is not visible in the MAMBInSAR

point cloud at all, but was nicely reconstructed by MA-TomoSAR.
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9 Conclusions and Perspectives

9.1 Summary and Conclusion

This dissertation has investigated the benefits and possibilities that arise from the utilization of

interferometric synthetic aperture radar data acquired from multiple viewing angles, and using

multiple receiving antennas. Within this context, special emphasis has been put on the potential

and limits of single-pass multi-baseline sensor configurations that offer the advantage of simulta-

neous acquisition of full InSAR stacks with highly coherent phase observations. In order to exploit

this kind of data as beneficially as possible for urban area reconstruction, three main methodical

contributions were described:

For most applications of multi-baseline SAR interferometry and its extensions, the complex

covariance matrices of all the pixels (i.e. resolution cells) in the stack of coregistered SAR images

have to be estimated. This, however, is a non-trivial task especially in heterogeneous urban areas,

where the local stationarity of the necessary samples cannot be presupposed. In this thesis, two

approaches for spatially adaptive covariance matrix estimation have been proposed and evaluated

with respect to their adaptiveness and filtering efficiency.

A second contribution is the description of a maximum-likelihood-based algorithm for SAR

tomography. This procedure is a necessary tool for the separation of scatterers layovered in a

single resolution cell due to the side-looking SAR imaging geometry. Using this method, it has

been demonstrated that SAR tomography is possible with single-pass data providing only a short

overall baseline (i.e. elevation aperture) and a limited number of observations per individual pixel.

Finally, driven by considerations of how to fuse InSAR data acquired from multiple view-

ing angles, another maximum-likelihood-based estimation framework for the simultaneous fusion

of multi-aspect and multi-baseline InSAR data was developed. With this formulation, interfer-

ometric SAR observations of almost arbitrarily configured campaigns can be fused exploiting

potential redundancies beneficially. In addition, a voxel-space-based fusion of 3D point clouds

reconstructed from multi-aspect InSAR or TomoSAR was proposed. It has been shown that both

MA-Tomography and the MAMBInSAR framework lead to comparable results with the main

difference that TomoSAR enables the reconstruction of real 3D point clouds including facade in-

formation, whereas MAMBInSAR only creates 2.5D height maps due to its backward-geocoding-

based nature. Using these processing strategies, comprehensive urban surface models can be

created with accuracies below 1 m. Although 3D reconstruction by optical stereogrammetry or

airborne laserscanning still provides more accurate results, this thesis was able to prove that ur-

ban areas can also well be analyzed three-dimensionally by single-pass synthetic aperture radar

interferometry, which provides a valuable benefit if bad-weather conditions are faced, while data

acquisition is yet time-critical. This might well be the case during defense-related reconnaissance

missions or in disaster scenarios, where a quick assessment of the affected areas is necessary.

Although the presented work has focused on airborne SAR and although the future can never

be forecast with certainty, the findings of this thesis might also be of interest for future multi-
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satellite missions offering a flexibility in data acquisition that is currently available only to airborne

sensors.

9.2 Future Work

The experiments carried out for this thesis have revealed a number of potential future research

directions: Among the most interesting certainly is the sophistication of the maximum-likelihood

SAR tomography method: Since the algorithm is based on a multi-dimensional grid search, which

has to be carried out for each resolution cell separately, a GPU-based, parallelized implementation

could greatly reduce processing times. In addition, more research effort could be invested in a

priori model order selection techniques similar to the ones based on information theoretic criteria.

In the end, this model order selection step, which is a prerequisite not only for ML-TomoSAR

but also for competing approaches like weighted subspace fitting, is the critical bound in terms of

elevation (or height, respectively) resolution for these methods. Furthermore, it could be shown

in this thesis that ML-TomoSAR would potentially be able to deal with an overestimated number

of scatterers, if an additional thresholding step were employed, which would re-join two wrongly

estimated pseudo-scatterers. In combination with the before-mentioned efficient implementation,

this proceeding is expected to provide a robust solution for layover separation in urban areas even

for closely spaced scattering contributions.

Besides these potential amendments to the proposed TomoSAR algorithm, also an important

improvement to the MAMBInSAR framework can be identified: Here, one of the major drawbacks

is that layover is not explicitly modelled, but expected to be mitigated by building the joint

likelihood function of multi-baseline InSAR data from multiple aspects. An interesting approach

to solve this deficiency came to the author’s knowledge during finalization of this thesis: Fornaro

et al. [2013] propose a method based on principal component analysis for reducing the covariance

matrix of a resolution-cell containing layover to the dominant scattering contribution. Maybe this

could serve as a valuable pre-processing step leading to even clearer joint likelihood functions in

layover areas. Apart from that, a more thorough investigation of the potential provided by the

probabilistic volume model, that is implicitly created during MAMBInSAR application, could be

a valuable perspective for future research.

Last, but not least, it has to be mentioned that all methods described in this thesis rely on the

assumption of circularly-symmetric complex Gaussian scattering mechanisms, which is supposed

to be met quite well for millimeterwave SAR data. However, it could well be worthwhile to

investigate a generalized Gaussian distribution or the special cases of constant-plus-Gaussian or

Rician scattering, as these might frequently occur in very high resolution data of urban areas

especially for longer wavelengths [Davis et al., 2007].
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