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Discriminative Learning of Conditional Random Fields 
Applied to the Classification of Urban Settlement Types 
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Abstract: Dieser Artikel zeigt die ersten Experiments zur Klassifikation von Urban Structure 
Types (USTs) unter Verwendung von hochaufgelösten, satellitebasierten InSAR Daten und 
Conditional Random Fields (CRFs). Es wurde eine Prozedur entwicklet um die Parameter 
des CRFs diskriminativ zu lernen und zu testen. Die Klassifikation dieses Modells sowie zwei 
weiterer Verfahren werden mittels einer handsegmentierten Karte verglichen. Obwohl das 
Lernenverfahren konvergiert hat, sind die Genauigkeiten der Klassificationergebnisse nicht 
zufriedenstellend. Methoden zur Verbesserung der Genauigkeit werden aufgezeigt und sollen 
in Zukunft bewertet werden. 

1 Introduction and Goals 

Information about the spatial distribution of different types of settlements found in cities is 
important for several urban planning actions as well as for modelling the spatial behaviour of 
different urban phenomena (e.g. energy balance and urban climate, population estimation, traffic 
behaviour etc.). In Germany, these types of urban settlements are often categorized under the 
concept of Urban Structure Types (USTs) (PAULEIT AND DUHME, 2000; HEIDEN ET AL., 2012). 
USTs are categorized considering aspects like the geometry, density and spatial configuration of 
buildings, their social usages (e.g. residential, industrial etc.), as well as their environmental 
properties (e.g. presence and type of vegetation and water bodies). According to HEIDEN ET AL. 
(2012), mostly cost-and-time-intensive approaches, such as field surveys or manual interpretation 
of aerial photographs, have been used to create or update USTs inventories. Until now, remote 
sensing research explicitly focused on the automatic classification of USTs have exclusively 
used multispectral (WURM ET AL., 2009; BANZHAF AND HÖFER, 2008) or hyperspectral 
(HELDENS, 2010; HEIDEN ET AL., 2012) data. Motivated by that, we aim to assess the feasibility 
of mapping USTs based on the classification of high-resolution spaceborne InSAR data. 
Assuming that contextual information is important for predicting the most probable type of urban 
settlement, we propose the use of undirected Probabilistic Graphical Models (PGM), more 
specifically of Conditional Random Fields (CRFs), to attain this goal.  
CRFs enable the contextual relations between the classes of neighboring image segments and 
their attributes to be statistically modeled. Besides eliminating the necessity of manually defining 
hundreds of parameters and the subjectivity that it involves, automatic learning of the parameters 
of PGMs give rise to more accurate models (KOLLER AND FRIEDMAN, 2009). From the 
methodological point of view, the goals of this work are hence twofold: (1) to evaluate the 
performance of automatically learned CRFs regarding the classification of USTs using InSAR 
data and (2) to compare the performance of the CRFs model with other standard classification 
approaches, namely Nearest-Neighbors and Maximum-Likelihood. 
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2 USTs Classes and Utilized Data 

Given that this USTs official map considers fifty classes, most of which are correlated to each 
other and cannot be distinguished based solely on remote sensing data, we grouped similar 
classes into more general ones. We ended up in this way with eight final classes. These are: 
Green Areas (Grünflächen), Railroad (Gleisanlagen), Detached and Semi-detached Houses 
(Hausbebauung), Perimeter Block Development (Blockrandbebauung), Block Development 
(Blockbebauung), High-rise Buildings (Geschoßbaukomplexe). 
To test the performance of the learned CRFs model on the classification of these USTs, we 
utilized an interferometric pair of images from the city of Munich (Germany) obtained by the 
TerraSAR-X satellite operating at Spotlight mode. The images were acquired on May 2011 with 
a ground sampling distance of approximately 1.1 meters in azimuth and 5.8 meters in slant range. 
A Digital Elevation Model created through interferometry and also the coherence image were 
used afterwards for the calculation of image attributes. 
In order to test our classifications, we used the official USTs map (Flächennutzung – 
Strukturkartierung) from the city of Munich for the year of 2011 (MÜNCHEN, 2014).  

3 Methods  

In this section we describe the methodological steps performed in this work. These comprise the 
partition of the scene into image objects, the selection of samples from each USTs class, the 
structuring and learning of the CRFs model, as well as its application on the interferometric 
TerraSAR-X data from Munich. 

3.1 Image Segmentation and Sample Selection 
Since individual pixels are not expressive analysis units for the classification of USTs, we 
decided to approach this problem by a region-based approach. In order to create image-regions 
from our InSAR scene, we applied a grid-based segmentation approach in which the scene was 
divided into grid-cells (Figure 1, a). Following, we collected 38 grid-cells as samples from each 
of the considered USTs classes (Figure 1, b). Considering that each of these samples have 
exactly four neighbours, the total number of samples collected was of 152. These samples were 
exported with the image attributes Mean Coherence, Mean Intensity, Standard Deviation of 
DEM pixels and Relative Area of High Intensity Objects. For the calculation of this last feature, 
we applied a threshold over the intensity image in order to select the pixels with intensity higher 
than this threshold. The relative area of these groups of pixels was then calculated for each of the 
grid-cells.  These features were intuitively chosen assuming that: (1) Mean Coherence is a good 
feature for distinguishing Green Areas and Detached and Semi-detached Houses from other 
USTs where vegetation is less present; (2) Perimeter Block Development and Block 
Development are USTs with higher Mean Intensity and Relative Area of High Intensity Objects 
and yet they have among them different values for these features (i.e. Block Development has 
higher values than Perimeter Block Development) and (3) that Standard Deviation of DEM 
pixels is a good feature for detecting High-rise Buildings. The neighbouring segments of each 
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sample containing these image attributes and their reference USTs classes was also exported and 
associated to its corresponding samples.  
 

 

Figure 1 – Grid-based segmentation (a) and the samples used for the training of the CRFs 
model. 

3.2 Reference Map Creation 
In order to evaluate the USTs classifications, we manually created a reference map. Firstly, the 
study area (Figure 2, a) was segmented using the algorithm from BAATZ AND SHÄPE (2000) and 
the segments were manually classified based on the interpretation of optical data and on the 
official USTs map from Munich produced in 2011 (Figure 2, b). Then, the study area was grid-
segmented and the grid-cells were automatically classified based on the criterion of the reference 
map’s class inside the grid with larger relative area (Figure 2, c). Lastly, the grid-cells sampled 
for the learning of the CRFs model were removed from the grid-based reference map so that the 
final reference didn’t contain any bias (Figure 2, d).  

3.3 CRFs Model’s Structure Definition and Other Pre-Learning Steps 
Before learning the parameters of the CRFs model, we defined its structure, i.e. the factors 
involving the observed variables (the image attributes) and the unobserved variables (the 
unknown classes of the image segments). The structure of our CRFs model is comprised of third-
order factors (i.e. factors containing three variables), where, according to the definition of CRFs, 
at least one of these variables must be an unobserved one. Figure 3 shows the structure of the 
model, as well as the image attributes they involve. This structure was defined manually. 
After choosing the observed variables and defining the structure of the model, we discretized all 
the observed attributes into four bins with the intention of reducing the number of parameters to 
be learned and therefore the number of necessary samples for learning them. 
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Figure 2 – The study area (a), the manually created reference map (b), the grid-based reference 
map (c) and the final reference map (d). 

 

 
Figure 3 – Structure of the CRFs model (a) and its corresponding factorization (b). The different 

factors are also shown on (a) with different colours. 

3.4 Learning of the CRFs Model Parameters 
The joint distribution of the variables of an undirected PGM is modelled by the structure (i.e. the 
factorization) and the parameters of the model. The parameters k of an undirected PGM are 
positive real numbers associated to each possible combination of assignments of the variables x 
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from each of the factors of the model. Here, we note this association between an assignment 
combination and its parameter as fk(x). A simple approach for learning the parameters of 
undirected PGMs is the maximization of the Maximum Log-Likelihood function. The Maximum 
Log-Likelihood objective function has the form: 
 
(1) 
 
where M is the number of samples, m is a single sample from the training data set and Z is the 
partition function, which makes it a valid probabilistic distribution. This function is a convex 
one, which means it has no local optima. However, it also has no closed-form solution. Hence, 
any of its global optima has to be found through an iterative optimization process (like Gradient 
Descent, for example). The gradients of this objective function are the differences between the 
empirical probabilities of the assignments (calculated directly from the sample data set) and their 
estimated probabilities given a parameter setθ . Formally, we want that for each assignment fk(x) 
these differences (i.e. the gradients) equal to zero: 
 

(2) 
 
The first term of this expression is the empirical probability of an assignment and the second 
term is its marginal probability. In order to estimate the second term, inference has to be 
performed over the model considering the current parameter setθ . Initially it is usually a random 
parameter set. Many approximate and exact inference algorithms are proposed on the literature 
(FREY AND JOJIC, 2005, JÖRG ET AL., 2013), whereas on real world problems exact inference is 
hardly tractable.  
Being a specific case of undirected PGMs, the parameters of CRFs are more properly learned in 
the discriminative way. In this setting, our training set consists of pairs 1{( [ ], [ ])}M

mD y m x m ==   
specifying assignments to Y (unobserved variables) and X (observed variables). Here we want to 
optimize the likelihood of each y[m] given the corresponding x[m]. This is a sum of convex log-
likelihood functions, i.e. one for each data sample, with a region of global optima, i.e. redundant 
optimal parameterizations. The gradients in the discriminative training case have the form: 
 
(3)                                                        
 
Whereas in the generative training regiment each gradient step required only a single execution 
of inference, training a model in the discriminative way is more cumbersome because we have to 
execute inference for every data sample conditioned on x[m]. On the other hand, the inference is 
executed on a considerably simpler model, since conditioning the model on the evidence X can 
only reduce the computational costs.  
The inference and optimization algorithms we utilized where respectively the Sum-Product 
Loopy Belief Propagation (SP-LBP) (MURPHY ET AL. 1999; KOLLER AND FRIEDMAN, 2009) and 
the Gradient Descent (GD) algorithms. Figure 4 shows the result of such a procedure for 
learning the parameters of a CRFs model later applied for the classification of USTs. 
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Figure 4 – Optimization result of the parameter learning procedure using SP-LBP and GD. The 
cost function is the sum of the absolute gradients of all data samples.  

4 Results 

Once the structure of the CRFs model was defined and all of its parameters were automatically 
learned, we could expand the model’s structure to the whole scene and reduce all factors to the 
evidence, i.e. the values of the image attributes considered as the observed variables. Following, 
inference was performed in order to obtain the most probable classification (also known as the 
most probable assignment, or MAP) of the scene. The inference method used for that was the 
Max-Sum Loopy Belief Propagation (KOLLER AND FRIEDMAN, 2009). We also performed 
classifications with the Nearest-Neighbours and Maximum-Likelihood classifiers trained with 
the same sample set used for training the CRFs model. These classifications are shown on 
Figure 5. Table 1 shows the overall accuracy and the Kappa index of accuracy (KIA) of these 
three classifications. It is noticeable from Table 1 that the accuracy indexes from all 
classifications are very low. On the other hand, Figure 5 shows that there is to some extent a 
certain visual correlation between the reference map and the classifications, especially regarding 
the one obtained with the CRFs model. Although arguably a qualitative analysis of the 
classifications concludes that the one obtained with the CRFs model is the best, this method 
achieved the worst KIA and an overall accuracy lower than the one obtained with the Nearest-
Neighbour method. 

 Overall Accuracy Kappa Index of Accuracy 
Nearest-Neighbours 0.397 0.215 
Maximum Likelihood 0.374 0.191 
Conditional Random Fields 0.376 0.167 
Table 1 – Overall accuracy and Kappa index of the three performed classifications. 
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Figure 5 – Classifications performed with the Nearest-Neighbours (b) and Maximum-Likelihood 
(c) classifiers and the classification obtained with our learned CRFs model (d). The reference 

map used for the quantitative evaluation of these classifications is shown in (a). 
 
The reason for these not promising results is most probably the low number of samples collected 
for training the classifiers, which contrast to the high geometrical and spectral complexity of the 
USTs classes. Also, the grid-based segmentation is not the best regiment for such a classification 
task, given that the grid-cells are not meaningful analysis units. On future work we plan on 
creating such meaningful analysis units through a segmentation procedure applied with adequate 
parameters. Also, an extensive exploratory analysis of image attributes has to be undertaken so 
that the ultimate CRFs model contains more expressive image attributes. We expect that these 
measures will increase the accuracy of future classification tests and express the advantages of 
using undirected PGMs for classifying USTs based on InSAR data. 

5 Conclusions  

This paper shows the first experiments on the classification of USTs using high-resolution space-
borne InSAR data and CRFs. A procedure for learning in a discriminative way the parameters of 
a manually defined CRFs model was implemented and tested. Since classifications performed 
with two other standard classifiers also did not obtain good accuracy indexes, we assume that the 
negative results obtained with our learned CRFs model are not because of the approach itself or 
the CRFs model specifically. Actually our results show that, given our sample set and the 
considered image attributes, none of the approaches can be properly applied for the problem at 
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hand. We assume that the complexity of USTs demands special care in the choice of image 
attributes and in the generation of image objects through the segmentation process. Equally 
important though is the selection of a large and representative set of samples. It is possible that if 
more expressive image attributes related to meaningful image segments are considered and if the 
sample set is large and representative enough, CRFs model learned in the procedure shown here 
will deliver more accurate results regarding the classification of USTs. This also applies for the 
other two standard classifiers.  
Finally, we suggest trying the option of defining the CRFs parameters based on statistical 
models. Also other classification algorithms like Random Forest or Support Vector Machine can 
be tried in other to, based on performance comparison, evaluate the adequacy of using learned 
CRFs for classifiying USTs on InSAR data. 
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