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ABSTRACT: 
 
Thermal building textures can be used for detection of damaged and weak spots in the building structure. These textures can be 
extracted from airborne infrared (IR) image sequences by projecting the 3D building model into the images. However, the direct geo-
referencing is often not sufficiently accurate and the projected 3D model does not match the structures in the image. Thus we present 
a technique with the main goal to find the best fit between the existing 3D building model and the IR image sequence. For this 
purpose we developed a hierarchical approach consisting of two working stages. In the first stage we correct exterior orientation via 
line based matching. In the adjustment we consider both uncertainties: the ones of the model and the ones of the image. In the second 
stage we match each edge separately in its closest surrounding. Thanks to this approach a better fit between the 3D building model 
and the IR image was found. The originally unmodeled roof overlap was reconstructed. 
 
 

1. INTRODUCTION 

1.1 Motivation 

Thermal inspections of buildings contribute to detection of 
damaged and weak spots in the building structure. 3D spatial 
reference of the captured images facilitates data interpretation of 
the data, especially for large area inspection using images taken 
from a flying platform. Thanks to multi aspect oblique view 
images roofs and walls are captured. Combining infrared (IR) 
images with 3D building models via texture mapping the spatial 
reference is achieved. For this purpose the existing 3D building 
models are projected into the infrared images and the building 
textures are extracted. For the projection the exterior and 
interior orientation parameters of the camera need to be known. 
These parameters can be determined directly from the 
navigation device and camera system calibration (camera 
calibration, bore-sight and lever-arm calibration). 
Unfortunately, the direct geo-referencing is often not accurate 
enough and the model does not match the structures in the 
image. To refine the registration a model-to-image matching 
should be carried out.  
 
1.2 Related Work 

In literature the matching problem is frequently discussed and 
many methods for solving the problem are presented. Some 
authors propose line matching based on slope and proximity 
(Frueh et al. 2004) or based on minimizing the disagreement 
between projected features and features detected in the image 
(Hsu et al., 2000). A drawback of these methods is relatively 
high computational effort. Alternative methods which use 
vanishing points can be applied for rough orientation (Ding & 
Zakhor, 2008; Foerstner 2010 b), which leads to faster results. 
However, in these methods so called “Manhattan scenes” are 
assumed, it means many horizontal and vertical lines have to be 
detected in the image. Other authors propose relational 
matching (Vosselman 1992; Eugster & Nebiker, 2009) which 

considers relations between features and compares the relations 
in the image and in the 3D building models. 
 
Most works on texture mapping and model-to-image matching 
consider the applied 3D building models as error-free. The 
uncertainty of the 3D building models was taken into account 
by few authors only. Sester & Foerstner (1989) used uncertain 
models stored in a parameterized form to localize the known 
roofs of the buildings. In contrast to this paper we propose a 
method to match a wireframe 3D building models with an IR 
image sequence. We use a line parameterization proposed by 
Roberts (1988), Schenk (2004), Meierhold et al. (2008) and 
define the uncertainty for both: image lines and model lines. 
Then we introduce a second step, which is similar to the 
recognition approach proposed by Lowe (1991) and adapted by 
Vosselman (1998) to align semi-automatically 3D building 
models to images. In contrast to these both researches and to 
Sester & Foerstner (1989), we don’t change the parameters of 
the model, but first recalculate the camera position to find the 
one, with the best model-to-image fit. Not till then we refine the 
position in the image for each model line allowing small 
changes of the geometry in the projected model, but not 
changing the 3D geometry of the building models. 
 

2. METHOD OVERVIEW 

The main goal of this work is to find the best fit between the 
existing 3D building model and IR image sequence. For this we 
propose a method for model-to-image matching consisting of 
two working stages.  
 
We consider both uncertainties: the ones of the 3D building 
models and the ones of the image. The uncertainty of the 
building models is related to the inaccuracy of creation and 
generalization. The uncertainty of the image is result of errors in 
the geometry of the image caused by uncertain distortions and 
rolling shutter effect. Rolling shutter effect occurs in these IR 
cameras, for which each line is acquired in different time.  
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The camera position and orientation are assumed to be only 
approximately known. It is related to the platform vibrations. In 
case of UAVs or helicopters this effect is especially strong and 
can lead to a systematic error which is difficult to model in the 
calibration process.  
 
In the first stage we correct exterior orientation. For this 
purpose we match the building model with the lines extracted in 
the image. In this stage very short model lines are not taken into 
consideration. Also highly detailed structures with lines lying 
close to each other are generalized or omitted. Therefore in this 
stage a lower level of abstraction is considered. 
 
We assume roofs to be more reliable, because they are easier to 
detect than the ground edges. The radiometric properties of the 
ground (sidewalks and streets) in thermal IR are similar to the 
properties of the walls, thus edges between them appear blurred. 
Besides, in this paper we work with building models which are 
created using nadir view aerial imagery. In this case the roofs 
and building height are reconstructed, but the exact position of 
the walls (roof overlap) is often not modeled.  
 
In contrast to Avbelj et al., 2010 we don’t use the intersection 
points but apply a line based matching using least squares 
method to recalculate the camera position, which improves the 
fit between the model and the structure in the image. 
 
In the second stage we search for the best fit in the surrounding 
of the projected edge. We allow small changes in the geometry 
of the projected faces, and use knowledge about the creation 
method of the model. Regarding the unmodeled roof overlap, 
small inward movements of the wall edges should be allowed. 
We store our model as sets of points. Basically, in this stage we 
also apply line matching; however, we don’t extract linear 
structures in the image, but instead calculate the gradient image 
and use all grey value gradients surrounding the projected edges 
to find the best fit. Small changes in the geometry of the face 
are allowed in 2D image plane only and are used for best texture 
extraction. The 3D geometry of the model lines is kept 
unchanged in both stages. 
 
3. LINE BASED MATCHING OF THE ENTIRE MODEL 

3.1 Line Parameterization 

3.1.1 In 3D: Typically a line in 3D is described by a 
direction vector v and a point P. For this description any point P 
belonging to the line can be used, which leads to ambiguities. 
To solve these problem Roberts (1988) introduced a line 
representation which is unique and unambiguous. This line 
representation was discussed, varied and applied in 
photogrammetric context by Schenk (2004).   
 
This line representation is based on two orientation parameters 
(α, θ) and two positional parameters (Xs, Ys). The azimuth α and 
zenith θ can be deduced from the spherical coordinates of vector 
v. Xs, Ys are coordinates of the intersection point with the plane 
X’Y’, where X’Y’Z’ is the rotated original coordinate system 
XYZ, so that the Z’-axis is parallel to the line. All required 
equations to calculate these parameters are given by Schenk 
(2004) and Meierhold et al. (2008). Each point of the line can be 
expressed as  
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where tR is a real parameter.  
 
As we can see, using (1) all lines, also the vertical and 
horizontal ones, are defined. This parameterization uses the 
number of parameters which is equal to the degree of freedom 
of a 3D line. We use this representation of lines to express the 
edges of the 3D building model. 
 
3.1.2 In 2D: Similarly, we should search for a 2D line 
representation which uses the minimal number of parameters 
and is defined for all cases. For this purpose the representation 
with angle γ and distance p can be used: 
 
 
 0sincos  pyx   (2) 

 
 
where p is the shortest distance from the line to the origin of the 
coordinate system;  γ is the direction angle of the normal vector 
to the line. 
 
3.2 Correspondences 

In this stage of the research we apply a simple assignment based 
on the angle difference between the lines and the distance 
(Fig.1). We build a buffer around each projected line segment of 
the model and accept the image features which are entire within 
the buffer. Only these line segments can be accepted which 
differ from the projected building line with angle smaller then a 
threshold. This simple search for correspondences is applicable 
for our case, because we assume to know the exterior 
orientation of the camera from the GPS/INS path precise 
enough. This algorithm results in multiple correspondences for 
each edge. We apply Markov Random Fields to select the 
optimal correspondence for each edge. 
 

 
Figure 1.  The principle of the correspondence search  

 
3.3 Least Squares Adjustment 

The mapping of the 3D coordinates into the image is given by 
the collinearity equations. The collinearity equations can be 
combined with (1) and from the line representation  
  
 
 nmxyl :  (3) 
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the parameters m and n can be calculated. Detailed equations 
needed to express m and n in terms of camera pose parameters 
are given by Meierhold et al. (2008). The authors mention also 
the problem of vertical image lines and propose to change the 
line representation to:  
 
 
 '': nymxl  . (4) 

 
 
The problem in case of adjustment is that some lines can change 
from non-vertical to vertical lines within the iterations and the 
Jacobian matrix has to be re-designed. To avoid this problem 
we use (2) and express γ and p in terms of camera orientation 
parameters (5) and use them as observations. 
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For the adjustment we use the least square method with the 
model: 
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where b is the observation vector for n- correspondences; f is 
vector of functions given by (5);    is vector of corrections;   
is vector of estimated unknowns;  is vector of approximated 
values for unknowns. 
 
Additionally we extend the observations with the 3D line 
parameters and with camera interior orientation, so that we can 
apply the uncertainty of the 3D building model: 
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where α1,…,Ysn are the 3D line parameters; c camera constant; 
x0, y0 image coordinates of the principal point.  
 
 

3.4 Stochastic model 

3.4.1 Propagation of uncertainty: Propagation of 
uncertainty (error propagation) is in statistics a method for 
calculation of the variables’ uncertainties. The variables’ 
uncertainties are calculated as a consequence of the uncertainty 
of parameters, which are used for the calculation of these 
variables. Assuming that x is the observation vector and y is 
vector of functions yi(xj), we can write after linearization 
 
 
 tAxy   (8) 

 
 
in which A is a Jacobian matrix. The covariance matrix Cxx of 
the observation vector is also given. Then the covariance of the 
functions yi can be expressed as: 
 
 

 
T

xxyy AACC 
. (9) 

 
 
Uncertainty of the 3D building model: The uncertainty of the 
3D building models is a consequence of the extraction method 
and generalization. In case of the 3D models extracted from 
aerial imagery the accuracy of the 3D coordinates of the corners 
can be assumed to be in range of few decimetres. However the 
roofs are extracted more accurately. We use σxy=0.5 [m] and 
σz=0.7 [m] for roof points and σxy=1.0 [m] and σz=1.4 [m] for 
wall points. 
 
Using the model introduced in Section 3.2 the error propagation 
is conducted. For this purpose we use the equations given 
presented in Section 3.3 and create the vector of functions y 
(from eq. 8) and the covariance matrix Cyy (from eq. 9) can be 
calculated. 
 
The derivatives of vertical 3D lines are undefined and cause 
errors in the Cyy matrix. We solve this problem searching the 
lines which are not vertical and have similar length and adopt 
their accuracy for a vertical line. Besides, the error propagation 
method using line representation proposed in this paper is very 
sensitive to the distance of the 3D model to the origin of the 
coordinate system. It means that using the full world 
coordinates in the national coordinates systems we will get huge 
variances. It is necessary to work in local coordinate systems. 
 
3.4.2 Image features uncertainty: The image features are 
uncertain as well. Here the geometric uncertainty is also 
calculated as presented in Section 3.3.1 as result of the 
uncertainty of 2D coordinates.  
 
 

4. LOCAL EDGE MATCHING 

After the first working stage in which we estimated the exterior 
orientation of the camera, the projected 3D building model is 
placed on the adjusted position in the image. To refine the fit in 
the second stage we apply a local matching for each edge 
independently. For this purpose we first calculate the gradient 
image and project the model into the gradient image. Around 
each edge’s we build a buffer which includes the pixels of the 
edge surrounding. The size of the buffer has to be adjusted to 
the allowed movements, in our case it will be few pixels wide. 
To compromise the unmodeled roof overlap we apply Bayesian 
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updating by setting the wall edges to be likely to move in 
inwards. 
 
We use the gradient values within the buffer to find the edge 
with the sub-pixel accuracy. To reduce the computation time we 
do not take all pixels of the buffer but build intervals and take 
the points lying on the perpendicular line between the intervals 
(see Fig. 2). We again apply least square method to fit the line. 
As observations we set the pixel coordinates within the buffer. 
The gradient values are used as weights. The small gradients 
below a threshold are set to 0, so that they do not influence the 
result. 
 

 
 
Figure 2.  Gradient image, the projected line (cyan) and buffer 

points (red). The coordinates of the buffer points and 
the gradient value of their nearest neighbors are 
taken for adjustment. 

 
5. EXPERIMENTAL RESULTS 

For our experiments we used a test dataset acquired in a densely 
built city area in centre of Munich, Germany. The thermal 
images were taken with IR camera AIM 640 QLW FLIR with a 
frame rate 25 images per second, which was mounted on a 
platform carried by helicopter. The flying height was 
approximately 400 m above ground level. The camera was 
forward looking with an oblique view of approximately 45°. 
The size of the chip is 640 x 512 pixels. The helicopter flew 
over the test area four times, recording four strips of IR image 
sequences. Each strip consists of almost 130 frames of size 640 
x 512 pixels. 
 
The 3D building model was created semi-automatically from 
aerial images using commercial software for 3D building 
reconstruction from aerial images.  
 
For direct geo-referencing we use data acquired by an Applanix 
POS AV 510 GPS/INS system with a 200 Hz frequency for INS 
and 1 Hz for GPS. GPS coordinates are used to correct the INS 
drift within the Kalman filter procedure. The recorded 
coordinates are referred to the center of the navigation device. 
The misalignment of the camera and GPS/INS coordinate 
systems is determined within an extended bundle adjustment 
and the exterior orientation parameters are estimated and used 
for model projection (Kolecki et al., 2010).  
 
In Fig. 3 model projection after the calibration (in yellow and 
green) together with extracted image lines (in blue and red) is 
presented. In Fig. 3 model edges with found correspondences 
are highlighted in green and image lines which correspond to 
the model lines are highlighted in red. The width of the buffer is 
set to 20 pixels and the angle threshold to 10˚.  

 

 
 

Figure 3. Extracted line segments (blue) and projected 3D 
building model (yellow) before matching. The 
model lines with correspondences are marked in 
green; in red – the extracted line segments with 
correspondences. The lines were extracted using 
Sobel filter. 

 
Each model edge has got multiple correspondences. From these 
correspondences we select the most appropriate using Markov 
Random Fields (MRF) (Fig.4). 
 

 
 

Figure 4.  Correspondence selected using MRF. 
 
In Fig. 5 the projected model before (green) and after projection 
(red) are displayed. 
 

 
 

Figure 5. Projected model before adjustment (green) and after 
adjustment (red). 
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The results show improvement in position of the projected 
model. The estimated exterior orientation parameters where 
calculated with standard deviation in range of 3-5m and ca. 0.5˚. 
This positional accuracy is not very high, however we should 
consider that the IR image have lower resolution than VIS 
images and one pixel inaccuracy in the line extraction can cause 
an error of larger than 1m in 3D world coordinate system. 
 
In the second stage we matched the model edges locally. Hence 
small roof overlaps could be corrected and therefore more 
precise texture mapping was achieved (see Fig. 6). The main 
advantage of this method is that the objects seen in the textures 
can be precise geo-referenced in the wall coordinate system. 
The wall coordinate system can be transformed into the world 
coordinate system. However for objects seen in thermal images 
(e.g. heat leakages) in case of building inspection is more 
important to identify them relatively to the building and not 
independently in 3D world coordinates. 
 
 

  
 a) b) 
 
Figure 6. Local matching: a) initial position; b) position after 

local matching 
 

6. DISCUSSION AND FUTURE WORK 

Innovation of the presented technique consists in finding the 
best fit of the whole 3D building model in the first step and then 
allowing small changes in the face geometry in the second step. 
Most authors extracting textures do not consider the 3D model 
uncertainty, which is crucial for precise texture extraction. The 
3D building models were extracted with uncertainty and 
generalized thus they cannot be assumed to be ground truth. 
 
The IR image also cannot be considered as ground truth, 
because of the image distortions. In particular the rolling shutter 
effect makes the camera calibration difficult. However the roof 
overlap was not modeled at all. Hence, in the future a method 
for updating the 3D building models with the roof overlap can 
be developed and applied.   
 
In the future the problem with undefined uncertainty for vertical 
lines should be solved. For this purpose another line 
representation should be chosen. Singularities free 
representation can be ensured in projective space (Meidow et 
al., 2009; Foerstner, 2010 b) and what be our focus for further 
research.  
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