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ABSTRACT 
 
In this paper we present a pedestrian navigation algorithm 
based on a Kalman filter that exploits relative position 
measurements provided by a step detection algorithm.  
In the development of pedestrian navigation systems we 
face certain challenges. In particular, GPS is often 
temporarily unavailable, especially in urban application 
scenarios. In addition, the sensor equipment has to be 
comfortably wearable by humans and is therefore 
constrained concerning its weight. For a broad application 
the cost of the overall sensor system is also a major 
concern. A common approach to meet these requirements 
is to exploit a low-cost IMU built with MEMS-
technologies and additional sensors like a barometric 
altimeter and a magnetometer in order to estimate the 
position of the pedestrian when GPS is not available. 
Because the measurements from MEMS-IMUs are 
corrupted by substantial noise and biases, a direct 
integration of sensor readings provides a suitable position 
and orientation estimate only for a very limited period of 
time, typically a few seconds. One approach to alleviate 
these problems is to apply a technique called pedestrian 
dead reckoning where the orientation estimate is used to 
determine the direction of a step. The position estimate is 

obtained afterwards by concatenating the estimates of 
relative movement resulting from each step. In this two-
step approach to pedestrian navigation there is no estimate 
of the joint distribution over position and orientation 
available. Therefore the correlations between them cannot 
be exploited during the estimation process. This 
aggravates sensor fusion in the case that additional 
measurements from exteroceptive sensors or GPS 
measurements become available. 
Therefore we propose to use a technique known as  
“stochastic cloning” to enable a direct integration of the 
relative position measurements arising from detected 
steps in a Kalman filter whose state vector comprises all 
relevant state variables. The main advantage of this 
approach is a correct treatment of the uncertainties arising 
from the delta measurements thus enabling accurate 
weighting of the state variables during sensor fusion with 
exteroceptive sensors or GPS. 
 
INTRODUCTION 
 
Pedestrian Navigation is a field of intensive study for 
many years now. One possible application is to support 
mission control for security forces or first responders. For 
this purpose a reliable estimate of the position of staff 
members is needed even under difficult conditions. In 
urban areas multipath effects and occlusions due to high 
buildings regularly impede the usage of GPS or related 
satellite navigation technologies. Similarly satellite 
navigation is not available for indoor applications. 
Furthermore a pedestrian navigation system used for 
instance by first responders should not rely on special 
infrastructure like fiducial markers which had to be 
deployed in advance of an emergency. A navigation 
system that is supposed to support its users to orient 
themselves in previously unknown environments should 
also be capable of recording a map of the explored area. 
This in turn necessitates the use of exteroceptive sensors, 
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which provide information about the environment, like 
cameras or laser scanner. 
An overview of algorithms commonly applied to this 
simultaneous localization and mapping (SLAM) problem 
is given in [1]. These algorithms typically combine 
measurements from exteroceptive sensors with robot 
odometry information using Bayesian filtering techniques. 
However, a direct adaptation of these techniques to the 
problem of pedestrian navigation is difficult due to the 
highly dynamic motion of pedestrians. Since robot motion 
is typically restricted to a plane, three parameters are 
usually sufficient to describe position and orientation of a 
robot. Wheel encoders yield accurate estimates of robot 
motion between consecutive measurements of the 
environment.  
One way to deal with the high dynamics of human motion 
is to use a parameterization that takes into account all six 
degrees of freedom for position and orientation and to 
exploit measurements from accelerometers and 
gyroscopes to calculate estimates of relative motion 
between exteroceptive sensor measurements. Veth and 
Raquet choose this approach for their SLAM system [2]. 
They combine inertial measurements with measurements 
from a monocular camera using an EKF. The problem of 
scale drift in monocular slam is addressed by initializing 
new features using a stereo rig or a terrain model. The 
advantage of this approach is that it does not require a 
domain specific motion model and can thus be employed 
for aircraft navigation as well as indoor navigation of 
pedestrians or mobile robots. However it would be highly 
beneficial if the scale information was determined reliably 
by the IMU’s accelerometers measurements. This might 
be accomplished by exploiting the length information 
inherent in human steps. 
Several pedestrian dead reckoning systems have been 
developed which combine a torso mounted IMU with a 
magnetometer by simply concatenating displacement 
estimates calculated from the estimated step length and 
compass heading, cf. [9],[10]. Step detection algorithms 
are generally based on acceleration measurements and a 
step model. One of the most advanced models was 
introduced by Kim et al. [9]. For most of the scenarios the 
accuracy of torso mounted systems is better than 5% of 
the traveled distance and the main source of error is the 
magnetic disturbance. 
Robertson et al. have proposed a localization and 
mapping system for pedestrians that relies solely on 
measurements of a foot mounted IMU, which is used to 
detect steps and position displacements using zeros 
velocity updates [3]. The path is represented by transition 
probabilities between hexagonal cells, which constitute a 
subdivision of the ground plane. 
A system combining measurements from a 2D-laser 
scanner with inertial measurements was presented by 
Ascher et al. [4]. Whenever a step is detected, a new 
position estimate is calculated by adding a vector that 
describes the motion due to the step to the position of the 

system at the beginning of that step. The new position 
estimate is used thereafter to update a filter which 
estimates the pose of a torso-mounted IMU and a map of 
orthogonal line segments extracted from the laser scans. 
This setup enables tight integration of the torso-mounted 
IMU with exteroceptive sensors, but it does not fully 
reflect the relative nature of the measurements. 
A theoretically sound technique to process relative pose 
measurements within a Kalman filter was introduced by 
Roumeliotis and Burdick for the case of a robot moving in 
a plane with three DOF [5]. The general idea is to 
augment the Kalman filter state with the robot’s pose at 
the beginning of the relative movement. Hence this 
technique is called “stochastic cloning” by the authors. 
Whenever a relative pose measurement is made, it can be 
expressed in terms of the current pose and the previous 
pose in the measurement equation for the Kalman filter. 
The authors provide Monte Carlo simulation results 
indicating that their approach outperforms simple 
concatenation of relative pose measurements. The 
approach was later extended to 6 DOF relative pose 
measurements [6]. 
 
MULTI-SENSOR FUSION FOR PEDESTRIAN 
NAVIGATION 
 
An overview of the concept for combining the 
information of multiple sensors in the context of 
pedestrian navigation employed in this work is given in 
Fig. 1. The high frequency of inertial measurements from 
accelerometers and gyroscopes precludes their usage as 
ordinary measurements to update the state of the extended 
Kalman filter, which is used to estimate position and 
orientation of the sensor system. Instead, they are directly 
processed by the strapdown algorithm, which propagates 
the current state estimate in time and calculates an 
estimate of its uncertainty in form of a covariance matrix. 
Whenever a new measurement from one of the additional 
sensors arrives, an EKF measurement update is performed 
to correct the errors in the current state estimate. The 
correlations expressed by the off-diagonal terms of the 
covariance matrix describe how distinct state entries are 
related. They afford the estimation of parameters which 
cannot be directly measured but may nonetheless have a 
strong influence on the estimated state, e.g. the biases 
which corrupt IMU measurements. Thus the correlations 
provide valuable information which cannot be exploited if 
the estimation of orientation and position are separated. 
Magnetometers permit the estimation of the yaw-angle, 
which defines the heading of the pedestrian. In this work 
the complete normalized measured magnetic field vector 
is used to update the filter. Since the magnetic field is 
sensitive to ferromagnetic materials in the proximity a 
large measurement uncertainty is assumed when updating 
the filter. In addition, the deviation from the expected 
norm of the magnetic field can be used to detect ample 
measurement errors. 
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A barometric altimeter is employed to measure the height 
of the sensor system with respect to the initial position 
and GPS measurements are incorporated if available. 
The filter state vector may be augmented with a map 
containing the positions of landmarks observed by 
exteroceptive sensors. The resulting SLAM system 
provides the user with a map of the explored environment. 
The following sections describe how relative position 
measurements provided by a step detection algorithm can 
be integrated in this filter setup. 
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Fig. 1:  Overview of the multi-sensor fusion 

concept for pedestrian navigation 
presented in this work. 

STEP DETECTION 
 
A crucial factor for many pedestrian navigation systems is 
the robustness of step detection. We propose the use of 
acceleration data in down and forward direction. The step 
events are located by searching for local minima in the 
acceleration signal under a given threshold during a 
defined time window. With this algorithm, steps can be 
detected by a probability of 98-99% but still errors occur 
in the following cases: 

- First step of a walk after stand still yields to low 
acceleration peaks which are hard to detect  

- Stairs: the acceleration peaks are smaller due to 
lower velocities at the end of the step on the next 
stair 

- Slow walks 
Consequently the step detection is extended to an 
adaptive, two-staged threshold which is demonstrated in 
Fig. 2.  
Two thresholds are used: A step is detected if an already 
detected negative down acceleration peak is under the 
lower threshold. If it’s between the two thresholds, the 

forward acceleration peak also needs to be higher than a 
defined value to confirm a step.  
The thresholds are adapted to the energy (signal variance) 
of the acceleration signal during the last foot step. Finally 
the time window between 2 steps must be higher than a 
minimal step time length. If this is not the case, the down 
acceleration minimum with the more significant peak will 
be detected as a step. 
With this adaptive, two-staged threshold our step 
detection is robust in any situation of a pedestrian walk. 

 
Fig. 2:  Adaptive two-staged threshold for 

acceleration peaks in down direction and 
additional adaptive threshold for forward 
direction. 

STATE PARAMETERIZATION 
 
In this work we have adopted the error space formulation 
of the EKF used for GPS-INS integration by Wendel [7]. 
The EKF is employed to estimate the deviation between 
the parameter estimates and their true values. When used 
for GPS-INS integration, the state vector typically 
comprises position, velocity, orientation and the IMU’s 
biases. 
The step detection algorithm described in the previous 
section is employed to detect the completion of a step. We 
assume that the step length is almost constant and the 
direction of movement is coincident with the forward 
direction at the beginning of the step as shown in Fig. 3. 
Thus, the detection of a step contains information about 
the displacement of the pedestrian and the attached sensor 
system in the horizontal plane. In order to process these 
displacement measurements the state vector of the 
aforementioned Kalman filter is extended with the 
position of the pedestrian at the beginning of a step. 
Therefore the state vector is given by: 
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Where y summarizes the parameters describing the IMU’s 
motion and pc is the cloned position of the sensor system 
at the beginning of the current step in the horizontal 
plane. Position p and velocity v of the IMU are given in 
coordinates of the navigation frame {n}, whose z- and x-
axis are aligned with the direction of local gravity and the 

north direction respectively. The quaternion n
bqq   

describes the rotation between the IMU’s coordinate 
frame {b} and the navigation frame. It is presumed, that 
the navigation frame is constant over time. Furthermore, 
ba and bg contain the biases which corrupt the IMU’s 
acceleration and angular velocity measurements. 
In the following, a preceding Δ is used to denote the 
errors in the state estimates: 
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Where Δxt is the error state that is actually estimated by 
the filter. The Rodrigues vector ΔΨ describes the 
incremental rotation between the true orientation and its 
estimate. 
In the following it will be helpful to consider the 
subsequent partitioning of the state vector which 
highlights the position in the horizontal plane and its 
cloned counterpart: 
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Here, p  is the current position in the horizontal plane 

and pc is the position at the beginning of the last step.  
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Fig. 3:  Definition of the displacement estimate in 

the horizontal plane. 

TIME UPDATE 
 
During the time update, the state estimate and the 
covariance of the error state are propagated through the 
process model using the measurements of the IMU. New 
IMU measurements are corrected with current bias 
estimates and subsequently integrated. Angular rate 
measurements are integrated by multiplying the 
quaternion corresponding to the current orientation 
estimate with the incremental rotation quaternion formed 
with the angular rate measurements. For the integration of 
the position estimate, the acceleration measurements are 
first transformed to the navigation frame with the current 
orientation estimate. Then the gravitational acceleration is 
subtracted and the resulting acceleration estimate with 
respect to the fix navigation frame is used to calculate 
new estimates for velocity and position. 
The part Δy of the error state vector, which contains the 
errors in the parameter vector without the cloned position, 
is propagated according to a first order differential 
equation: 
 

nyy yy GF   

 
Matrix Fy in the above equation is determined by the 
physical model which underlies the integration of the 
IMU’s measurements. Noise terms and their effects on the 
error state are modeled by vector n and Matrix Gy. Here, 
uncorrelated, white noise is assumed. 
From matrix Fy the discrete time transition matrix Φy is 
computed for each IMU measurement: 
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Where τ stands for the constant time between two 
consecutive IMU measurements. Typically, there are 
several IMU measurements between consecutive 
measurements from exteroceptive sensors or step length 
updates. Therefore, the transition matrix between filter 
updates is obtained by multiplying the individual 
transition matrices corresponding to intermediate IMU 
measurements: 
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Consequently, Ay,t is the discrete time transition matrix 
between measurements at time t and t+k for the reduced 
error state. 
The term “stochastic cloning” stems from the 
manipulation of the filter state whenever a displacement 
has been processed. On this occasion, the estimate of the 

position in the horizontal plane is copied from p  to pc 

and the covariance matrix of the complete error state 
vector is adapted accordingly: 
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In the course of the cloning procedure, the current 

orientation quaternion is copied to the quaternion n
c,bq , 

which describes the orientation of the sensor system at the 
beginning of the new step. However, the cloned 
orientation is not part of the filter state and therefore does 
neither appear in the state vector nor in the covariance 
matrix. 
The cloned position is static: It does not change in time. 
Thus the discrete time transition equation between filter 
updates at time t and t+k is given by: 
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The covariance matrix of the augmented state is 
propagated according to the following equation: 
 

t,x
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t,t,kt, QAPAP   xxxxxx  

 
Where Qx,t is the covariance matrix of the process noise 
vector wx,t. 
 
MEASUREMENT UPDATE 
 
Each time the completion of a step is detected, a step 
length update is performed. In the coordinates of the 
sensor coordinate system at the beginning of the step, 
when the position estimate has been cloned, an estimate 
of the displacement vector can be calculated: 
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Here, α is the step length and bd is the calculated 
displacement measurement in the coordinates of {b}. The 
corresponding measurement equation expresses the 
displacement vector in terms of the position in the 
navigation frame np1 at the beginning and the position np2 
at the end of a step: 
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Where C(q) denotes the rotation matrix associated with 
quaternion q and v is the measurement noise with 
covariance matrix R. In the above equation, the relative 
position estimate depends on the orientation of the sensor 
system belonging to the cloned part of the state. Since this 
orientation estimate is not part of the filter state it is 

presumed to be constant and is used to calculate a 
displacement estimate in the coordinates of {n} in the 
horizontal plane that can be directly applied as a 
displacement measurement, hence facilitating the 
formulation of the measurement equation. For this 
purpose, the direction of the step w.r.t. frame {n} is 

extracted from )(C n
c,bq  , projected on the horizontal 

plane, and finally normalized so that its length in the 
horizontal plane matches the step length. With the 

resulting two-dimensional relative position estimate dn  

the measurement equation becomes: 
 

vppd   c
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Thus the measurement matrix H corresponding to the 
state partitioning (*) is given by: 
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The measurement covariance matrix R describes 
deviations between the calculated relative position 
measurement and the true motion due to variations in gait 
and further unmodeled effects. The experiments presented 
in the next section were conducted with an assumed 
standard deviation of 5 cm in walking direction and 25 cm 
in lateral direction. 
Finally, the derived displacement measurement and the 
corresponding measurement matrix H are employed to 
perform an EKF update. 
Note that the approach in this paper differs from the 
stochastic cloning technique introduced in [5] in two 
points: (1) This work is restricted to relative position 
measurements in the horizontal plane. In particular, the 
orientation of the system at the beginning of a step is 
neglected. (2) The  condition that the relative position 
measurement should not alter the previous position in the 
cloned part of the state vector is not enforced. 
 
MONTE CARLO SIMULATION 
 
A number of monte carlo simulations were run on a 
simulated trajectory. The simulations provide a way to 
investigate the behavior of the filter and to evaluate the 
performance of the proposed method with regard to 
alternative techniques by comparing the estimated 
trajectories with the ground truth. During each monte 
carlo run three position estimates were calculated 
separately with the following techniques: (1) the 
stochastic cloning approach (SC SLU) described in this 
work (2) pseudo position measurements (PP SLU) to 
update the Kalman filter (3) pedestrian dead reckoning 
(PDR). For the pseudo position measurements, an 
estimate of the current position in the horizontal plane is 
calculated from the orientation estimate at the beginning 
of the step in the same fashion as the calculation of the 
displacement measurement shown in Fig. 3. During the 
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pseudo position measurement update, the measurement 
covariance matrix used for displacement measurements in 
the SC SLU is adapted by adding a multiple of the trace 
of the estimated position’s covariance matrix to all of its 
diagonal entries. The resulting covariance matrix is used 
as measurement covariance matrix in the pseudo position 
filter update thereby taking into account the growing 
position estimate error during pseudo position updates. 
Fig. 4 presents the error with associated 3 covariance 
bounds for the three approaches averaged over 100 monte 
carlo runs. The outcome of one particular test run is 
shown in Fig. 5. 
While the stochastic cloning approach yields results 
which are comparable to pedestrian dead reckoning, it 
significantly outperforms pseudo position updates. More 
importantly, the error is within the 3-bounds of the 
estimated covariance most of the time. As one would 
expect when employing relative position measurements, 
the uncertainty of position increases monotonically. In 
contrast the estimated uncertainty even declines when 
employing pseudo position measurements, although the 
uncertainty of the position estimate is considered during 
the update. Note, that the pedestrian dead reckoning 
approach does not provide a measure of uncertainty of the 
position estimate at all. 
The next section describes how the ground truth trajectory 
used for the evaluation was generated. After that, results 
for real data will be discussed. 
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Fig. 4: Error and 3-bounds for different 

pedestrian navigation approaches 
averaged over 100 monte carlo runs with 
the simulated trajectory also shown in 
Fig. 5. 

 
Two C2 splines are employed to define reference 
trajectories. One spline determines the viewing direction 
while the other spline describes the position of the IMU. 
The acceleration measurements are generated from the 

second derivative of this spline. Angular velocity 
measurements are derived from the differential rotation 
between two sampling points. Before each monte carlo 
run artificial white noise and random biases are 
individually added to the acceleration and angular rate 
measurements. Biases are constant during monte carlo 
runs. The variance of the artificial noise was identified by 
measurements with the real IMU used for the experiments 
which are described in the next section. In addition 
barometric altimeter and magnetometer measurements are 
generated. In order to simulate the sinusoidal up and 
down movement that is typical for human steps the spline 
control points were accordingly shifted in the vertical 
direction. Also deviations from gait pattern are simulated 
by adding noise to the spline control points. The resulting 
trajectory offers a rough approximation of human motion. 
However it is sufficient for the step detection algorithm 
described earlier in this paper to detect all simulated steps 
in the artificial trajectory. Therefore the same algorithm 
can be used to evaluate real as well as simulated 
trajectories. 
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Fig. 5:  Outcome of one monte carlo run for 

different pedestrian navigation 
algorithms. 
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REAL DATA EXPERIMENT: GPS INTEGRATION 
 
Figures Fig. 6 and Fig. 7 demonstrate the performance of 
the different methods for pedestrian navigation on a 
mixed outdoor and indoor dataset. The trajectory starts on 
a public street, where a good quality GPS signal is 
available. However, the quality of the GPS-signal quickly 
declines in the proximity of the large office building, 
probably due to multipath effects. The true trajectory 
enters the building on the right side wing and then follows 
the hallway that is also shown in Fig. 6. This hallway is 
all straight except for one turn where the side wing meets 
the central aisle. During the walk through the building, 
the GPS signal is completely lost. It recovers when the 
trajectory leaves the building. However, it is disturbed so 
that the GPS measurements suggest a position inside the 
building while the true trajectory proceeds in front of the 
building to the right. At the end of the trajectory the 
quality of the GPS signal increases with the distance to 
the building therefore providing a good estimate of the 
position again. 
 

 
Fig. 6:  Performance of the SC SLU algorithm on 

a mixed outdoor and indoor dataset with 
and without GPS aiding. 

 
The SC SLU and the PP SLU were applied to this dataset 
both with and without updating the filter with GPS 
measurements. Obviously, the SC SLU approach benefits 
from GPS updates, as the estimated trajectory reflects the 
true trajectory well if both are combined. In contrast, 
when applying pseudo position updates, GPS updates 
seem to have a noticeable effect on the estimated 

trajectory for the first 70 m only. After that, the estimated 
trajectory quickly diverges from the true trajectory. 
In the case when GPS measurements are not exploited, 
the trajectory estimated by SC SLU is closest to the true 
trajectory but PDR also yields an acceptable estimate 
while PP SLU performs worst when compared to the GPS 
measurements. 
 

 
Fig. 7:  Performance of PP SLU and PDR on a 

mixed outdoor and indoor dataset with 
and without GPS aiding. Results obtained 
with SC SLU on the same dataset are 
shown in Fig. 6. 

 
REAL DATA EXPERIMENT: MONOCULAR SLAM 
INTEGRATION 
 
Fig. 8 demonstrates the applicability of the proposed 
SC SLU in the context of vision based SLAM. Here, the 
SC SLU was integrated in the monocular SLAM system 
that was previously presented by the authors in [8]. It is a 
well-known fact, that monocular image sequences allow 
the reconstruction of the trajectory and landmark 
positions only up to a scale factor. Since the MEMS-IMU 
employed in this work are in our experience not sufficient 
to determine this scale factor reliably, it was decided to 
employ the step length updates to support the scale 
estimation. For the evaluation presented here, the 
initialization of new features by the SLAM algorithm was 
postponed until the 35th step, thereby allowing the filter to 
assume reliable bias and velocity estimates. 
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A comparison with the GPS trajectory shows that the 
overall scale is well met. However, as in the previously 
described experiment, the GPS signal was in parts 
disturbed in particular nearby the large office building to 
the left. This explains the fringes and loops which are 
present in the GPS trajectory plot. 
 

 
Fig. 8:  Result of the integration of the proposed 

SC SLU in a monocular SLAM system. 

 
CONCLUSIONS AND FUTURE WORK 
 
In this paper a method to process relative position 
measurements arising from a step detection algorithm 
within a Kalman filter was presented that builds on the 
stochastic cloning technique. Experiments with simulated 
as well real trajectories indicate that this approach is 
superior to pseudo position measurements. Its main 
advantage is a correct treatment of the uncertainties 
arising from the displacement measurements, therefore 
enabling the combination of step length updates with 
exteroceptive sensors in a SLAM system or with GPS. 
First results demonstrating the combination with a 
monocular SLAM system were presented. In this case the 
step updates provide a way to determine the scale which 
is not observable from a monocular image sequence 
alone. Future work will concentrate on improving the 
integration in the monocular SLAM system. 
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