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ABSTRACT: 
This paper presents a generic scheme to analyze urban traffic via vehicle motion indication from airborne laser scanning (ALS) data. 
The scheme comprises two main steps performed progressively － vehicle extraction and motion status classification. The step for 
vehicle extraction is intended to detect and delineate single vehicle instances as accurate and complete as possible, while the step for 
motion status classification takes advantage of shape artefacts defined for moving vehicle model, to classify the extracted vehicle 
point sets based on parameterized boundary features, which are sufficiently good to describe the vehicle shape. To accomplish the 
tasks, a hybrid strategy integrating context-guided method with 3-d segmentation based approach is applied for vehicle extraction. 
Then, a binary classification method using Lie group based distance is adopted to determine the vehicle motion status. However, the 
vehicle velocity cannot be derived at this stage due to unknown true size of vehicle. We illustrate the vehicle motion indication 
scheme by two examples of real data and summarize the performance by accessing the results with respect to reference data 
manually acquired, through which the feasibility and high potential of airborne LiDAR for urban traffic analysis are verified. 
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1. INTRODUCTION 

Transportation represents a major segment of the economic 
activities of modern societies and has been keeping increase 
worldwide which leads to adverse impact on our environment 
and society, so that the increase of transport safety and 
efficiency, as well as the reduction of air and noise pollution are 
the main task to solve in the future (Rosenbaum et al., 2008). 
The automatic extraction, characterization and monitoring of 
traffic using remote sensing platforms is an emerging field of 
research. Approaches for vehicle detection and monitoring rely 
not only on airborne video but on nearly the whole range of 
available sensors; for instance, optical aerial and satellite 
sensors, infrared cameras, SAR systems and airborne LiDAR 
(Hinz et al., 2008). The principal argument for the utilization of 
such sensors is that they complement stationary data collectors 
such as induction loops and video cameras mounted on bridges 
or traffic lights, in the sense that they deliver not only local data 
but also observe the traffic situation over a larger region of the 
road network. Finally, the measurements derived from the 
various sensors could be fused through the assimilation of 
traffic flow models. The broad variety of approaches can be 
found, for instance, in compilations by  Stilla et al., (2005) and  
Hinz et al., (2006). 
 
Nowadays, airborne optical cameras are widely in use for these 
tasks(Reinartz et al., 2006). Yet satellite sensors have also 
entered into the resolution range (0.5-2m) required for vehicle 
extraction. Sub-metric resolution is even available for SAR data 
since the successful launch of TerraSAR-X. The big advantage 
of these sensors is the spatial coverage. Thanks to their 
relatively short acquisition time and long revisit period, satellite 
systems can mainly contribute to the collection of statistical 
traffic data for validating specific traffic models. Typical 
approaches for vehicle detection in optical satellite images are 
described by Jin and Davis, (2007) and Sharma et al., (2006), 
and in spaceborne SAR images by Meyer et al., (2006) and 
Runge et al., (2007). For monitoring major public events, 
mobile and flexible systems which are able to gather data about 
traffic density and average speed are desirable. Systems based 

on medium or large format cameras mounted on airborne 
platforms meet the demands of flexibility and mobility. With 
them, large areas can be covered (up to several km2 per frame) 
while keeping the spatial resolution high enough to image 
sufficient detail. A variety of approaches for automatic tracking 
and velocity calculation from airborne cameras have been 
developed over the last few decades. These approaches make 
use of substructures of vehicles such as the roof and windscreen, 
for matching a wire-frame model to the image data (Zhao and 
Nevatia, 2003).   
 
Despite that LiDAR has a clear edge over optical imagery in 
terms of operational conditions, there have been so far few 
works conducted in relation to traffic analysis from laser 
scanners. On the one hand it is an active sensor that can work 
day and night; on the other hand it is range senor that can 
capture 3d explicit description of scene and penetrate 
volumetric occlusions to some extent. Toth and Grejner-
Brzezinska, (2006) has presented an integrated airborne system 
of digital camera and LiDAR for road corridor mapping and 
dynamical information acquisition. They addressed a 
comprehensive working chain for near real-time extracting 
vehicles motion based on fusing the images with LiDAR data. 
Another example of applying ALS data for traffic-related 
analysis can be found in Yarlagadda et al., (2008), where the 
vehicle category is determined by 3-d shape-based 
classification. 
 
In this paper, a generic scheme to discover the vehicle motion 
solely from airborne LiDAR data is presented. It is based on 
two-step strategy, which firstly extracts single vehicles with 
contextual model of traffic objects and 3d-segmentation based 
classification (3-d object-based classification), and secondly 
classifies vehicle entities in view of motion status based on 
shape analysis. 

2. VEHICLE EXTRACTION 

In this step, we need to at first extract various vehicle categories 
as complete and accurate as possible, but not considering the 
difference among them in terms of dynamical status. To 
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accomplish this task, we proposed a hybrid strategy that 
integrates context-guided progressive method with 3-d 
segmentation based classification. Experiments demonstrated 
that the assimilation of these two approaches (Fig. 1) can make 
our vehicle extraction from LiDAR data of urban areas more 
competent and robust, even against complex scenes. 

 
Figure 1. Integrated scheme for vehicle extraction. 
 
2.1 Context-guided extraction 

This extraction strategy comprises knowledge about how and 
when certain parts of the vehicle and context model of traffic 
related objects in urban areas are optimally exploited, thereby 
forming the basic control mechanism of the extraction process. 
In contrast to other common approaches dealing with LiDAR 
data analysis, it neither uses the reflected intensity for 
extraction nor combines multiple data sources acquired 
simultaneously. The philosophy is to exploit geometric 
information of ALS data as much as possible primarily based 
on such context-relation that vehicles are generally placed upon 
the ground surface. Moreover, the approach on the one side can 
be viewed as a processing strategy progressively reducing 
“region of interest”. It is subdivided into four steps: ground 
level separation, geo-tiling and filling, vehicle-top detection and 
selection, segmentation, which are respectively elaborated in 
detail in Yao et al., (2008)a. An exemplary result on one co-
registered dataset is shown in Fig.2. 

 
Figure 2. Vehicle extraction result as white outlined contours 
for test data I using context-guilded method. 

2.2 3D segmentation based classification 

Since many vehicles in modern cities might travel on the 
elevated roads such as flyover or bridge, the context relation 
abided by the method in section 2.1 does not always hold. 

Therefore, we introduced a 3D object-based classification 
strategy for extracting semantic objects directly from LiDAR 
point cloud of urban areas. It could either extract two object 
classes – vehicle and elevated road simultaneously or only 
elevated road, where vehicle can further be detected considering 
elevated road here as ground. The ALS data is firstly subjected 
to the segmentation process using nonparametric clustering tool 
– mean shift (MS). The obtained results are usually not able to 
give a significative description of distinct natural and man-made 
objects in complex scenes, even though MS does a genuine 
clustering directly on 3D point cloud to discover various 
geometric modes in it. Hence, the initial resulted point segments 
have to be handled under the global optimization criterions to 
generate more consistent subsets of laser data. For it, a modified 
normalized-cuts (Ncuts) is applied with the sense of perceptual 
grouping. Finally, based on derived features of spatially 
separated point clusters that potentially correspond to semantic 
object entities, classification is performed to evaluate them to 
extract the flyover and vehicle (Yao et al., 2009). Applying this 
approach to a one-path dataset yielded Fig.3. 

 
Figure 3. Vehicle (green) and flyover extraction results for test 
data II using 3D segentation based classification. 
 

3. VEHICLE MOTION INDICATION 

For extracted vehicles resulted from last step, the parameterized 
model for point sets of single vehicles can then be produced by 
shape analysis. From the parameterized features of vehicle 
shape, the across-track vehicle motion (-component) is able to 
be indicated unambiguously based on the moving vehicle model 
in ALS data, whereas the along track motion cannot be implied 
without prior knowledge about individual vehicle sizes. In this 
section, the vehicle motion status is attempted to be inferred up 
to the across-track direction without derive the velocity.   
 
3.1 Vehicle Parametrization 

Generally, the laser data provide us a straightforward 3D 
parameterization, as vehicle forms change more vertically than 
horizontally. To refine the 3D vehicle envelope model (Yao et 
al., 2008b), however, is difficult, because the laser point density 
acquired under common configurations is usually not sufficient 
to model the vertical profile of a vehicle. The situation is even 
more degraded by motion artifacts, because the large relative 
velocity of the sensor to object results in fewer laser points, 
making vehicle appears like a blob. Consequently, it is not easy 
to analytically model the vertical vehicle profiles from ALS 
data, which would be a simple task for much denser terrestrial 
laser data. 
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Yarlagadda et al., (2008) has applied a spoke model to vehicle 
database in a parking lot scanned by airborne LiDAR for 3D 
classification task of vehicle category. The point cloud of single 
vehicle is fitted with multiple connected planes being similar to 
spokes, which are used to describe the vehicle shape via two 
controlling parameters for each spoke, namely the orientation 
and radius of it. For the purpose of our task, it is desirable that 
the original vehicle form and motion artifacts are able to be 
captured by a unified geometric model. Due to flexibility and 
efficiency, the spoke model for vehicle point sets is selected 
here as general framework for vehicle shape parametrization. 
Being subject to minor modifications towards the analysis 
objective, the spoke model could consistently encode geometric 
information used for robust classification of vehicle motion.  
 
Based on the moving vehicle model, which is focused on the 2-
d deformation of vehicle form, the 3D spoke model of vehicles 
can be projected onto 2-d plane to deriving the shape 
parameters, thereby avoiding unnecessary complexities. Instead, 
the angle of shear and radius of projected 2-d point sets have to 
be estimated as controlling parameters of modified spoke model 
for vehicle parametrization. Due to the limited point sampling 
rate of ALS data, the number of spokes in the model is flexible 
to be determined depending on the point density or vehicle 
category, despite that the vehicles in our test data are frequently 
modeled with only one spoke. 
 
To obtain the geometric features of extracted vehicles, the 
shape analysis is to be performed on the projected point sets of 
the spoke model. The whole procedure mainly consists of two 
steps: boundary tracking and parallelogram fitting. 
 
A modified convex-hull algorithm (Jarvis, 1977) is used to 
determine the boundary of a set of points, namely the spoke 
model of extracted vehicles. The modification is to constrain 
the searching space of a convex hull formation to a 
neighborhood. The study showed that the approach can yield 
satisfactory results if the point distribution is consistent 
throughout the dataset. Such condition could be fulfilled, as 
only one-path ALS data are considered for moving object. The 
boundary tracing method for a point set B using a modified 
convex hull analysis starts also with a randomly selected 
boundary point P. Then, we use the convex hull algorithm to 
find the next boundary point kP within the neighborhood of P, 

which is defined as rectangle with two dimensions 
corresponding to the point spacing in along and across-track 
directions of ALS data. Finally, the approach will proceed to 
the newly selected boundary point and repeat the step 
mentioned above until the point P is selected as kP  again, as 

depicted in the left column of Fig.4. 
 
Since the sampling irregularity and randomness are generally 
assumed to be present in the LiDAR data, the traced boundary 
cannot be directly used as shape description for single vehicle 
instances, based on which the shape analysis is performed to 
parameterize the vehicle point sets. Consequently, a boundary 
regularization process aided by analytic fitting operations is to 
be introduced for tackling these problems. It is noticed that 
most vehicles have mutually parallel directions. We can find 
these directions from the boundary points and fit parametric 
lines. 
The first step in regularization is to extract the points that lie on 
identical line segments. This is done by sequentially following 
the boundary points and locating positions where the slopes of 
two consecutive edges are significantly different. Points on 

these edges are grouped to one line segment. Therefore, a set of 
line segments  1 2,  ,  ...,  , 4nl l l n  from which four longest line 

segment  1 2 3 4,  ,  ,  L L L L are selected. Each of the selected line 

segments is modeled by equation 1 0i iA x B y   . Based on the 

slope i i iM A B  , line segments are sorted into different groups, 

each of which contains line segments being parallel within a 
given tolerance. As we know from the defined vehicle models 
(Yao et al., 2008b), the vehicle point sets generally appear as a 
parallelogram and have only two groups of line segments, i.e. 
vertical and horizontal. 
 
The next step is to determine the least squares fitting to these 
line segments, with the constraints that the lines segments are 
parallel to each other within one group, namely parallelogram 
fitting. The solution consists of sets of parameters required to 
describe four line segments, which are formed as following line 
equations:  

1 0i iA x B y           i =1,2,3,4;  j = j(i) =1,2,3,… im  

with the condition: 1 3

2 4

M M

M M




 1L ( 2L ) and 3L ( 4L ) are 

opposite sides. 
 
where im is the number of points on the line segment i. 

However, there are no specific constraints on the line segments 
belonging to different groups.  
 
Once the spoke model of vehicle point sets is constructed and 
parameterized (Fig.4, right column), two controlling parameters 
can be derived, which measure the accordance of 2-d point sets 
to parallelogram (non-rectangularity) and dimension scale, 
respectively. The angle of shear SA of parameterized vehicle 

point set: 

2 1

1 2

arctan
1SA

M M

M M


 
     

, 

The extent E of parameterized vehicle point set: 

1 2 sin SAE L L     

where 2M , 1M are slopes of line segments belonging to two 

groups respectively and indicates the length of corresponding 

line segment. 

2L

1L

SA

Figure 4. Two examples for vehicle parametrization: boundary 
tracing, shape regulation (parallelogram fitting). Top row: 
moving vehicle; bottom row: vehicle of ambiguous movement 
with abnormal laser reflections. Green points marks the borders 
of extracted vehicle, red lines indicate the non-parallel sides of 
a fitted vehicle shape. 
 
Two basic cases have to be distinguished in view of vehicle 
movement, based on the geometric features derived above for 
each extracted vehicle. However, they occasionally emerge 
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other than as parallelogram (Fig.4, bottom row), but e.g. 
trapezoid, common quadrilaterals, etc, due to unstable sampling 
characteristics of LiDAR or clutter objects in urban areas.  It is 
difficult to decide whether it is actually a moving vehicle part 
or a point set of stationary vehicle with missing parts. Generally, 
these vehicle point sets confuse the shape analysis and deliverer 
only ambiguous geometric features that cannot be adopted for 
robust classification. Therefore, this category of vehicle point 
sets have to be identified and then excluded from candidates 
delivered to movement classification, which means that they 
could be only attributed to uncertain motion status at the 
moment. Those point sets are also undergone the same shape 
analysis process and can be found when the parallelogram 
fitting fails.  
 
3.2 Movement classification  

As indicated in section 3.1, the point sets of extracted vehicle 
can generally be denoted by spoke model with two parameters, 
whose configuration is formulated as  

1

 .

 . 

k

U

X

U

 
 
   
  
 

,  
 i
SA

i

i

U
E

 
  
 

 

where k denotes the number of spokes in the model. As inspired 
by the works of Fletcher et al., (2003) and Yarlagadda et al., 
(2008), the 3D vehicle shape variability is nonlinear and 
represented as a transformation space. Thus the similarity 
between vehicle instances can be measured by group distance 
metric. It has been also confirmed that Lie group PCA can 
better describe the variability of data that is inherently nonlinear 
and statistics on linear models may benefit from the addition of 
nonlinear information. Since our task is intended to classify the 
vehicle motion based on the shape features of vehicle point sets, 
the classification framework for distinguishing generic vehicle 
category can be easily adapted to motion analysis. 
 
Consequently, a new vehicle configuration Y can be obtained 
by a transformation of X written in matrix form: Y=T(X) where 

1   .   0

 .     .    .

 0    .   k

M

T

M

 
   
 
 

, 
0

0
i

i ai

R
M

e

 
  
 

, iR denotes the 2-d 

rotation acting on the angle of shear SA . aie denotes the scale 

acting on the extent E. By varying T, different vehicle shape 
(motion status) can be represented as transformations of X. 
based on elaborations in Rossmann (2002), iM  is a Cartesian 

product of the scale and angle value groups   SO(2), which 
are the Lie group of 1-d real value and the Lie group of 2-d 
rotation, respectively. Since the Cartesian product of Lie group 
elements is a Lie group and T is the Cartesian product of 
transformation matrices M acting on the individual spokes, T 
forms a Lie group. The group T is a transformation group that 
acts on shape parameters M. However, any vehicle shape X may 
be represented in T as the transformation of a fixed identity 
atom. 
 
A group is defined as a set of elements together with a binary 
operation (multiplication) satisfying the closure, associative, 
identity and the inverse axioms. A Lie group G is a group 
defined on differentiable manifold. The tangent space of group 

G at the identity e, eT , is called the Lie algebra g. The 

exponential map exp is a mapping from Lie algebra elements to 
Lie group elements. The inverse of the exponential map is 
called logarithmic map log. The Lie algebra element of T is 
obtained by performing component-wise log operation on each 
of the iM : 

 
1log( ) . 0

log( ) . . .

0 . log( )k

M

T

M

 
   
 
 

 (1) 

where
1 0 0 1

log( )
0 1 1 0i i iM  

   
    

   
. Equation (1) expresses 

the Lie algebra element of an individual spoke in terms of the 
generator matrices for scaling and 2-d rotation factors. 
 
The intrinsic mean   of a set of transformation matrices 1T , 

2T , …, nT of vehicle spoke models is defined as 

 2
1 2

1

arg min ( , )
n

k

d T T


   (2) 

where ( , )d   denotes Riemannian distance on G, and  
1

1 2 1 2( , ) log( )d T T T T where  is the Frobenius norm of the 

resulting algebra elements. The 1-parameter Lie algebra 
element of the spoke model of vehicle point sets is given by 

 

1
( ) . 0

( ) . . .

0 . ( )
n

v

v

v

A t

A t

A t

 
 

  
 
 

 (3) 

where ( ) log( )
iv iA t t M , denoting that the Lie algebra element 

is defined at a fixed ( , )i i  for each spoke, which represents 

the tangent to a geodesic curve parameterized by t. The 
parameter t in (3) sweeps out a 1-parameter sub-group, ( )vH t of 

the Lie group G of spoke transformations. For any g G , the 

distance between g and ( )vH t is defined as 

  ( , ) min ( ,exp ( ) ),   v vd g H d g A t t   (4) 

Analogous to the principle components of a vector space, there 
exist 1-parameter subgroups called the principle geodesic 
curves (Fletcher et al., 2003) which describe the essential 
variability of the data points lying on the manifold. The first 
principle geodesic curve for elements of a Lie group G is 
defined as the 1-parameter subgroup (1) ( )

v
H t , where 

 (1) 2 1

1

arg min ( , )
n

i v
i

v d g H



   (5) 

Let ,1ip be the projection of 1
ig on (1)v

H , and 

define (1) 1 1
,1i i ig p g  . The higher k-th principle geodesic curve 

can be determined recursively based on (5). 
 
The motion analysis can then be formulated as a binary 
classification problem using Lie distance metrics. The input to 
the Lie distance classifier comprises a set of labeled samples 

jT from two categories of vehicle status jC - moving vehicles 

and stationary ones. Yn denotes the number of training samples 

for each category.  The intrinsic mean j and the principal 

geodesics ( )nv
H  are computed for each vehicle class jC using 
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the samples ,  1m
j j YS S m n   . Once the principal geodesics are 

available for each jC , the classification of an unlabeled sample 

x can be performed by finding the category with the closest first 
principal geodesics to x. The corresponding motion status of a 
vehicle is found by  

 (1)

1

,
arg min log( ) ,    {1,2}

j v
j H x j    (6) 

Generally, it is claimed that the classification of vehicle status 
can successfully run based solely on the first principal 
geodesics of a movement category. Although there are 
significant variations in shape over one category, the first 
principal geodesics (1)v

H is assumed to summarize the essential 

shape features of vehicle point sets in terms of only 
distinguishing between binary motion statuses. 
 
3.3 Results 

We used the same vehicle datasets as derived in the section 2 to 
assess the proposed algorithm intended for classifying the 
motion status. Both of datasets are acquired over 

2300 400 m dense urban areas with averaged point density of 

about 1.4 pts/ 2m . The only one difference between them is that 
the first one used is co-registered from multiple strips rather 
than one-path. The classification results of vehicle motion status 
are presented in Fig.5. To access the performance of Lie group 
based classifier, minimum distance classifier was used to 
classify the same datasets based on the feature space spanned 
by vehicle parametrization. 
 
The test dataset each consists of more than 50 vehicles 
successfully detected by vehicle extraction process. A set of 5 
vehicle samples from each motion category is manually 
selected to train the classifier for vehicle motion status at first. 
It can be expected that poorly chosen training samples due to 
the strong shape variability in the category of moving vehicle 
could have a negative effect on classification performance. 
Therefore, the selection of training data for moving vehicle 
category should be carried out in such way that the fundamental 
shape information are expressed and generalized. Receiver 
Operating Characteristic (ROC) curves are generated by 
comparing classification results with reference data manually 
acquired by human interpretation and shown in Fig.6 for 
respective test datasets. 

 
(a) 

 
(b) 

Figure 5. Vehicles motion classification results for dataset I and 
II (top-view of vehicle point sets). Blue: moving; Red: 
stationary; Yellow: uncertain.  
 

 
 (a)                   (b) 

Figure 6. ROC curves for vehicle motion classification. (a) 
Dataset I; (b) Dataset II. 
 
3.4 Discussion 

Since we do not have real “ground truth” for vehicle motion 
which could be simultaneously captured along the scanning 
campaigns by an imaging sensor as described in  Toth and 
Grejner-Brzezinska, (2006),  the results are firstly assessed with 
respect to human examination abilities. Based on the context 
relations the vehicle movement could be roughly distinguished 
between moving vehicles and stationary ones. Note that the 
along-track motion cannot be resolved on principle if the true 
length is unknown, our evaluation are inherently biased by 
ambiguities introduced by the incorrect vehicle length. 
 
It can be found out from the results displayed above that most 
of detected moving vehicles appear in the heavily travelled 
roads such as flyovers and main streets of city and the vehicles 
classified as motionless are mostly found in the parking lots or 
along road margins. The yellow class indicates the vehicles of 
uncertain status which are all nearly placed very close to each 
other in a parking lot and are excluded from the motion 
classification step due to the shape irregularity. False alarms 
from motion classification by our approach usually appear for 
slowly moving vehicles which travelled not perpendicular to the 
flight direction or those moving ones that are shaped by 
anomaly sample points in ALS data due to vegetation occlusion 
or unstable reflection properties. As indicated in ROC curves, 
the Lie group based classifier outperforms the minimum 
distance classifier in both cases, as its ability to generalize 
various shapes from training data, even for worst-cases, is 
demonstrated. It can also be observed that the second test 
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dataset generally has better performance than the first one in 
terms of vehicle motion classification, which has shown that 
one-path LiDAR data could be more appropriate for our task 
than co-registered data of multiple strips, despite that the point 
density of combined dataset would be higher. Moreover, the 
superior performance may trace back to the applied extraction 
strategy of direct 3D segmentation on LiDAR point clouds 
other than 2D analysis approach.  
Once the motion status of extracted vehicles is determined, the 
velocity of moving vehicles can be inferred under the 
precondition that the true vehicle size is known. According to 
results presented here, it is easy to empirically give such 
performance summery that the vehicle motion indication as 
well as estimation from ALS data would fairly depend on 
certain factors, such as point density, distribution spacing 
between every two vehicles, relative motion direction to the 
flight direction, absolute velocity of vehicle, and vehicle size. 
The accurate impacts of single factors on motion analysis 
results have to be further obtained by quantitative analysis with 
great amount of test data  
 
Traffic analysis could quite benefit from some distinctive 
operational conditions of LiDAR sensor, in comparison to 
optical camera. It is an active sensor less weather dependent; 
for example, it can cope with haze, fog and volume-scattering 
objects to some extent, working night too. Furthermore, scene 
complexity poses an additional difficulty for the optical 
imagery: dense urban areas, long and strong shadows, 
occlusions, etc., can severely impair the vehicle extraction 
performance. 
 

4. CONCLUSION 

Overall, a progressive scheme consisting of the vehicle 
extraction step followed by motion status classification is 
presented in this work attempting to automatically characterize 
the traffic scenario in urban areas. Based on single vehicle 
instances extracted by an approach combining context 
exploitation with 3D segmentation, the binary motion status of 
them is determined by shape analysis and classification. As 
indicted by the results derived from real ALS data commonly 
used for city mapping and modeling, traffic analysis by airborne 
LiDAR offers great potential to support the short/mid-term 
acquisition of statistical traffic data for a given road network in 
urban areas in despite of higher false alarm rates. Nevertheless, 
numerous potential improvements of the schemes have to be 
developed in future, in order to deal with main obstacles to 
LiDAR traffic characterization, especially regarding velocity 
estimation, such as low point density, unknown vehicle size and 
unstable laser reflection properties of vehicle surface. 
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