Internal Evaluation of Registration Results for Radiographic Images

Boris Peter Seiby'*, Georgios Sakas’, Stefan Walter', Wolf-Dieter Groch’, Uwe Stilla*

! Medcom GmbH, Rundeturmstr. 12, 64283 Darmstadi, Germany
? Fraunhofer IGD, Cognitive Computing and Medical Imaging, 64283 Darmstadi, Germany
* University of Applied Sciences, Fachbereich Informatik, 64295 Darmstadt, Germany
* Technische Universitaet Muenchen, Photogrammetry and Remote Sensing, Germany

Abstract

This work focuses on internal gray level based
evaluation of image registration results. The
motivation is fto provide an approach for self-
diagnosis in the scope of a patiemt alignment system
based on rigid registration of real and reconstructed
X-ray images. As an automatic system should provide
expressive indicators for the correctness of the
outcome, we propose a method to estimate the
probability for the resuliing transformations to lie
within a predefined window of acceptable values.
Based purely on image gray values, the approach is
independent from previous knowledge about the
images. By registration of corresponding fragments of
both images we generate redundancy and define the
probability density of the resulting transformations.
The proposed method is tested comparing digital
reconstructed radiographs (DRRs) to X-ray images.
By introducing geometric and radiomeiric deviations
we show that a reliable self-diagnosis is possible.

1. Introduction

Algorithms for image registration have been a
matter of intensive research over the past few years
and are used in a large range of applications. In many
cases, if images from different sources are to be
registered, feature based algorithms can hardly be used
to find the transformation between the images.
Therefore gray level based approaches as Mutual
Information (MI) are widely spread. Their advantage is
that they do not depend on detection of corresponding
image features and are applicable to a variety of image
modalitiecs. A major drawback is that the image
similarity measure maximized by registration depends
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on image properties | 1| and a reliable evaluation of the
quality of the result is not possible by means of the
similarity measure.

The motivation for our approach is an application
resided in image guided radiotherapy (IGRT). Particle
beam therapy allows accurate application of the
radiation dose onto the diseased tissue with accuracy
less than 1.0 mm and efforts accurate patient alignment
[2]. Image guided approaches allow automatic
alignment of patients by comparison of digital
radiographs (DRs) and DRRs. The DRRs are
reconstructed from CT data and rigid registration of
DRRs with DRs gives the alignment error of the
patient in image space, which can be back-projected
into 3D space to realign the patient [3, 4]. However, an
automatic system should provide the user with
meaningful values indicating the reliability and
accuracy of the obtained results. This can be referred
to as self~diagnosis [5].

The crucial factor for the alignment process is the
automatic image registration part. Thus, we focus on
the registration result and propose a general approach
for internal evaluation of multi-modal image
registration, which could also be deployed in the scope
of other registration applications.

2. Related Work

Many suggestions have been made for external
evaluation of registrations. E.g. in [6] a method is
proposed to evaluate different image registration
methods based on previously known displacements.
Unfortunately these methods are not applicable here,
as they assume that the real misalignment of the
imaged object is known in advance — thus it is an
external evaluation.



There are also a couple of publications dedicated to
the problem of internal evaluation of image matching
or interpretation results. In [7] a self-diagnosis method
is proposed for detection of roads in aerial images.
Assuming, that if some content of corresponding
images can be interpreted, it should certainly be
possible to find a transformation to match these. The
proposed method is based on an underlying model
combining simple image features to objects of higher
order. It is possible to define semantic and geometric
properties that hold with all images. This approach is
hardly applicable for medical images gained from
different sources, for different body parts and varying
viewing angles, especially in our case where X-ray
images arc uscd. not showing a solid surface of an
object but the line integral of rays.

The work of [8] focuses on a neural network
technique to analyze the registration quality for rigid
registration using stochastic moments of the image
histograms. However, neural networks come with
significant drawbacks. They must be trained with
respective input data. In case of the proposed method,
only DRs of the head and neck area were used.
Another problem of neural nets is, that it is hard to
derive meaningful values from the results, e.g. if the
net assigns some quality value to a registration, the
major questions remain: How accurate was the
registration, and with what probability?

In our approach we produce redundant image
registration results and interpret these statistically to
derive the probability with which the registration result
lies in a predefined window of tolerated error.

3. Methods

There are two possibilities to perform an internal
evaluation: a) by using additional information, not
involved in the registration process or b) by using
redundant information. In our case we are not provided
with any additional information but the image data
itself. Thus we use redundant registration results for
the evaluation.

The approach can be described in three parts. First
two registered images are subdivided into single
fragments, which are registered independently. Then
the relative histograms are built from the resulting
transformations and outliers are suppressed. In the last
step, the histograms are combined to a single n-
dimensional probability density function (pdf) where n
denotes the number of histograms or degrees of
freedom, given from the registration. From the pdf the
probability to fall in the range of a tolerated
displacement is computed.
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Figure 1. Images of a head phantom a) DR; b)
DRR; c) DR overlaid with contours from DRR,
displaced by 4.0 mm; d) 8x8 fragments for
registration; e) Displacement along image X-
axis for single fragments after registration

3.1. Registration of fragmented images

First the registered images are divided into 8x8
pairs of rectangular fragments. We use this number
dependent on the DRR image resolution of 512x512
pixels, assuming that a total number of 64x64 pixels in
one fragment should be enough to perform a
registration (Fig. la-d).

Each fragment pair contains a region of the
reference image (A = X-ray) and the floating image (B
= DRR). If the images are registered properly no
transformational offset can be found and the
transformation T, mapping one fragment to another, is
the identity matrix. The single regions are registered
using MI as similarity measure [1], computed by
equation 1, where H(A4) and H(B) denote the entropies
of the respective image-fragments and H(A4, TB) is the
joint entropy:

MI(A,B,T)= H(4)+ H(B)-H(AT=B) (1)

We register the images by minimization of the
negative MI. In our case the transformation 7" defines
three degrees of freedom (x-shift rr, y-shift n and
image plane rotation rz). This is because the final
evaluation result shall take these degrees of [reedom
into account. If e.g. an additional scaling between the
images has to be evaluated, one could simply add this
degree of freedom to the single registrations.

Minimization is done by a Downhill Simplex
(DHS) approach as described in [9]. To avoid getting



stuck in local minima of the MI function the DHS
optimizer is modified. When a minimum is found the
algorithm is repeated, starting from the optimized
transformation values with an enlarged simplex. This is
done until no smaller negative MI value can be found.
This approach can be considered a mixture of
Downhill Simplex and Simulated Annealing [9].

Finally the three transformation values for each
fragment are obtained. They may vary for each
fragment due to the different appearance of the images
(Fig. le). The single components of the fragment
transformations are stored as n-vectors £x,. v, and r=,.
Some fragments cannot be registered because they are
defined in image regions that do not overlap. So »
dcnotes the number of successful registrations with n <
Number of Fragments.

3.2. Relative Histograms of Transformations

For each degree of freedom from the registration, a
relative histogram (A, &, and h,.) is built, giving the
probability for the occurrence of a certain
transformation. The histogram bin size is 0.5 pixels for
the shifts. This is the expected rounding error when
computing the translations, as nearest neighbor
interpolation is used in the registration. For the
rotation histogram we use 0.1° bins.
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Figure 2. a) Relative histogram of the x-
translations, 4 mm image misalignment; b)
Qutliers removed and curve smoothed

If the images differ in their appearance, the
histograms can contain outliers with low probability
(see Fig. 2a). The median of the probabilities is used to
remove these. Large probabilities are preserved by
using the fraction of £ = (.25. For transformations
having a probability P(1) < P,eii. the probability is
set to P(r) = 0. The histogram is rescaled so that the
sum of probabilities is still /. Obviously erroneous
transformations resulting from improper registration of
the image fragments can be removed a priory by this
process.

To finally smooth the histograms the Parzen
Window technique is used [10]. The Parzen window
function is the pdf for normal distributed random
values. For each histogram entry a smoothed value is
estimated by equation 2:
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Where n is the number of single probabilities and
is set to the size of the histogram bin. The smoothed
result can be seen in figure 2b.

3.3. Evaluation of the Histograms

The last step is to combine the histograms to obtain
a single value that can be used as quality indicator for
the registration. Given the pdfs of the histograms the
expected value, the variance and the co-variances are
computed for each histogram and therewith for every
transformation type.

For the possible transformation types tx, ¢v and r=
we determine the 3 x 3 co-variance matrix and define a
multivariate pdf £ in three dimensions by
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Where n is the number of parameters to evaluate
(here 3), ¢ is a 3-vector containing three specific
transformations and  is the 3-vector of the expected
values. One can now define a range of accepted
parameters, e.g. TX = 0.5 mm, TY = 0.5 mm and RZ
= {).5°. From the pdf in equation 3 the probability for
which the registration result lies inside the given range
is determined by integration over the parameters #:
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We finally obtain the probability P as single value
indicating the quality of a registration result.

4. Results

For tests DR images acquired by Varian 4030R flat
panels with 2304x3200 pixels resolution and DRRs
with 512x512 resolution of two Alderson head
phantoms and a pelvis phantom are used. The CT data
for DRR reconstruction was recorded with 0.5 mm to
0.8 mm slice distance. Different types of errors were
introduced, as misalignment between images that can
be found by rigid registration, misalignment produced
by 3D rotation of the imaged object and different
degrees of salt and pepper noise. The probability was
computed for a result lying within 7X = 0.5 mm, TY



= 40.5 mm and RZ = +0.5°. Erroncous registrations
that can be found by rigid registration could be
identified in all cases. If a threshold at 40% probability
is used for acceptance of the registration results, no
false positives and negatives occur (Fig. 3a).
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Figure 3. Probabilities a) for erroneous x-
shifts; b) for rotations not detectable in 2D; c)
for correctly registered images with salt and
pepper noise; d) for images with significant
radiometric differences

Fig. 3b shows the results for different rotations of
the 3D object that cannot be found by 2D registration.
Considering results below 40% probability as not
accepted, we receive a certain amount of false
positives because the images change only slightly with
the 3D rotation (the rotation axis is parallel to the
image plane). However, if we tolerate larger
misalignments (e.g. 1.0°) we could also receive neither
false positives nor false negatives.

We also tested the dependency on different noise
levels in the floating image (Fig. 3c). The images were
correctly registered and should always lie at a high
probability. If results below 40% are rejected, we get
false negatives not before 80% noise, which shows that
the approach is very stable and still reliable at a high
degree of noise.

Using images with significant radiometric
variations coming from differences between the
physical X-ray imaging and the DRR rendering, the
results (see Fig. 3d) were comparable to those in Fig.
3a. In some cases when the images contained different
internal structures, the large histogram variance led to

low probabilities for the accepted misalignment of
=0.5 mm.

5. Conclusion

The proposed methods are suitable to provide a
quality indicator for registration results in general. Up
to a certain degree of noise or radiometric mismatch
they are very stable and provide a straightforward
possibility to classify registration results.

We suggest to use a Traffic-light type classification
[5]. e.g. at P > 70% (green - no false positives) and P
< 30% (red - no false negatives). In our case, using the
registration in the scope of a patient alignment system,
we prefer to directly present the probability to the user.
The system is operated by personal with a technical
background and the quality indicator in percent is a
meaningful and easy to interpret value,
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