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ABSTRACT: 
 
This paper highlights several approaches to segment and reconstruct trees from LIDAR data and compares the results acquired both 
from first/last pulse and full waveform data. In a first step, we set up a conventional watershed based segmentation procedure, which 
robustly interpolates the CHM from the LIDAR data and finds possible stem positions of the tallest trees in the segments calculated 
from the local maxima of the CHM. Secondly, we combine this segmentation approach with a special stem detection method. Stem 
positions in the segments of the watershed segmentation are detected by hierarchically clustering points below the crown base height 
and reconstructing the stems with a robust RANSAC-based adjustment of the stem points. Finally, we implement a new 3D 
segmentation of single trees using the normalized cut method. This tackles the problem of how to segment small trees below the 
CHM. Experiments were conducted in the Bavarian Forest National Park with conventional first/last pulse data and full waveform 
LIDAR data. The first/last pulse data were collected in a flight with the Falcon II system from TopoSys in a leaf-on situation at a 
point density of 10 points/m2. Full waveform data were captured with the Riegl LMS Q-560 system at a point density of 25 
points/m2 (leaf-off and leaf-on) and at a point density of 10 points/m2 (leaf-on). The study results prove that the new 3D 
segmentation approach is capable of detecting small trees in the lower forest layer. So far, this has been practically impossible when 
tree segmentation techniques based on the CHM were applied to LIDAR data. Compared to the standard watershed segmentation 
procedure, the combination of the stem detection method and the normalized cut segmentation leads to the best segmentation results 
and is superior in the best case by 12%. Moreover, the experiments show clearly that the usage of full waveform data is superior to 
first/last pulse data.  

 
 

                                                                 
*  Corresponding author.  

1. INTRODUCTION 

The development of new approaches to forest inventory 
utilising remote sensing data has been an important research 
issue in the past. Beside area based methods, techniques for 
single tree extraction from LIDAR data have been investigated 
for mapping forests at the tree level and for identifying 
important parameters, such as tree height, crown size, crown 
base height, and tree species. Most of the techniques reconstruct 
- at least locally - the canopy height model (CHM) using only 
the LIDAR points on the canopy surface and find tree positions 
from the local maxima. Methods presented by Hyyppä et al. 
(2001), Solberg et al. (2006), and Brandtberg (2007) represent 
such approaches. Typically, the detection rate of single trees is 
limited due to unavoidable smoothing effects in the interpolated 
surface. The main drawback is that trees and young 
regeneration in the middle and lower forest layer are invisible 
from the CHM surface and, hence, cannot be detected at all. 
Recent advances in LIDAR technology have generated new full 
waveform scanners that provide a higher spatial point density as 
well as additional information on the reflecting characteristics 

of the internal forest structure. Such scanners have been 
available for about three years and have been used in research 
by several groups. Wagner et al. (2006) focused on the 
calibration issue and the decomposition of full waveform data 
with a series of Gaussians. Also, Wagner et al. (2006) showed 
that different types of vegetation, such as trees and bushes can 
be separated using the cross section calculated from the 
waveforms. Jutzi and Stilla (2006) fit Gaussians to the surface 
response that is obtained by measurement of the individual 
emitted waveform and a corresponding deconvolution of the 
received waveform. Recently, Kirchhof et al. (2008) presented 
a method to improve the reconstruction of buildings partly 
occluded by vegetation by pre-segmenting reflections from the 
vegetation using the surface response. Reitberger et al. (2008a) 
also showed the decomposition of waveforms by fitting 
Gaussians to the waveform. Compared to conventional first/last 
pulse data, an increase in the point density by a factor of 3 
could be verified. The classification of coniferous and 
deciduous trees is successfully demonstrated using salient 
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features calculated from the pulse width and the intensity of the 
decomposed waveform.  

Obviously, full waveform data render possible new approaches 
to reconstruct and classify objects, such as trees. However, an 
important question that still needs to be resolved is: how much 
do full waveform data really improve forest inventory methods 
compared to conventional first/last pulse data? More precisely, 
it will be certainly interesting to find out whether new 
extraction methods for single trees can be developed that take 
advantage of full waveform data and improve the detection rate 
significantly. 
 
Thus, the objective of this paper is (i) to shortly highlight new 
segmentation methods that extract single trees using full 
waveform LIDAR data, (ii) to present the results of the methods 
when applied to first/last pulse data and full waveform data 
acquired in the same area in leaf-on and leaf-off situations at 
different point densities, and (iii) to compare the methods with 
respect to the success rate. 
 
The paper is divided into five sections. Section 2 highlights 
three different segmentation methods. Section 3 shows the 
results that were obtained from conventional first/last pulse data 
(TopoSys Falcon II) and full waveform data (Riegl LMS-Q560) 
acquired in the Bavarian Forest National Park. Finally, the 
results are discussed with conclusions in sections 4 and 5. 
 
 

2. METHODOLOGY 

2.1 Pre-processing of LIDAR data 

We assume a point cloud in a region of interest (ROI) 
represented by  LIDAR 
points that result from reflections of the laser beam at the 
positions . In the case of a full waveform scanner, 
waveform decomposition provides the pulse width Wi and the 
intensity Ii  as attributes (Jutzi and Stilla, 2005; Reitberger et al., 
2008a). In comparison, conventional LIDAR systems provide 
only the coordinates of the reflections and – in 
many cases – also the intensity. Since, in general, it is unknown 
how the intensity value is recorded in the conventional first/last 
pulse LIDAR systems, this parameter has not yet been 
considered of practical importance. The advantage of full 
waveform LIDAR data is that, basically, each reflection can be 
detected by the waveform decomposition. This is remarkable 
since conventional LIDAR systems – recording at most 5 
reflections – have a dead zone of about 3 m, which make these 
systems effectively blind after a single reflection. The 
calibration of the values Wi and Ii is achieved by using the pulse 
width  and the intensity 
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assuming a target size larger or equal to the footprint (Wagner 
et al., 2006). The factor n amounts theoretically to the value 2. 
In practice, however, it might deviate depending on the LIDAR 
system. 

2.2 Watershed segmentation 

A first crude segmentation of the tree crowns is calculated from 
a CHM by the watershed algorithm (Vincent and Soille, 1991). 
The CHM is interpolated by means of least squares from the 
LIDAR points best representing the tree shapes (Reitberger et 
al., 2008a). The local maxima of the watershed segments define 
possible tree positions (Fig. 1). 
Note that the interpolation process smoothes the CHM surface 
considerably in order to avoid over-segmentation. Thus, 
neighbouring trees are often not separated and, instead, form a 
tree group made up of single trees. Moreover, smaller trees in 
the intermediate and lower height levels cannot be recognised 
since they are not visible in the CHM. 
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Figure 1. Reconstructed CHM with local maxima as tree tops 
 
 
2.3 Stem detection 

The key idea of the stem detection is to separate neighbouring 
trees that have been combined to form a tree group and to 
improve the accuracy of the tree positions calculated from the 
local maxima. The approach is motivated by the observation 
that in case of full waveform data the stems of trees are very 
often clearly visible. The method works in a 3-step algorithm. 
First, it isolates points of the stem area from the crown points 
using an appropriate crown base height (Fig. 2a). Second, 
possible stem points are found by hierarchically clustering of 
these points using their horizontal distances. Third, the stem 
position is estimated with a robust RANSAC-based adjustment 
of the stem points (Reitberger et al., 2007). Note that several 
stems can be found within a tree segment. The figures 2b and 2c 
show a group of beech trees that are merged to one segment by 
the watershed algorithm. The stem detection method was able 
to identify the four stems that had been verified in the reference 
data. Thus, this approach improves the detection rate of single 
trees in the intermediate and upper tree level and the accuracy 
of the tree positions originally provided by the watershed 
segmentation. However, the crown points belonging to the 
original segment are not separated with respect to the detected 
stems. The stem positions  
provided by the stem detection are used later on in the 3D 
segmentation. 
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Figure 2. A group of beeches where a) crown and stem points 
are separated and b) and c) stems are reconstructed with 

RANSAC 
 
2.4 Normalized cut segmentation 

The stem detection works perfectly if there are enough stem 
reflections and if the stem area can be reliably separated from 
the crown points by the crown base height. It fails of course 
when young regeneration and small trees are located below tall 
trees. In order to tackle this problem, we have set up a true 3D 
segmentation of single trees using the normalized cut method 
known from image segmentation (Shi and Malik, 2000).  
 
 

  
 
Figure 3a. Subdivision of 
ROI into a voxel structure 

 
Figure 3b. Division of voxels into 
two tree segments A and B. 
 

 
The normalized cut segmentation divides a graph G formed by 
the voxels (Fig. 3a) into disjoint voxel segments A and B (Fig. 
3b) by maximising the similarity of the segment members and 
minimising the similarity between the segments A and B. The 
corresponding cost function is 
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with as the total sum of weights between 

the segments A and B and representing 

the sum of the weights of all edges ending in the segment A. 
The weights wij between two voxels are basically a function of 
the LIDAR point distribution and features calculated from the 
pulse width Wi and the intensity Ii. They define the similarity 
between the voxels. The minimisation of NCut(A,B) is solved 
by the corresponding generalised eigenvalue problem 
(Reitberger et al., 2008b). 
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Figure 4. Examples of normalized cut segmentation 

 
The approach can use auxiliary data, such as for instance, 
information on the local maxima of a CHM 

, in order to weight the similarity 
between the voxels below the CHM maxima. Also, the results 
of the stem detection ( can be 
introduced to provide special weights for similarity between the 
voxels. The figure 4 shows complex situations where the 
normalized cut segmentation works excellently and where the 
watershed segmentation and stem detection approaches fail.  
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3. EXPERIMENTS 

3.1 Material  

Experiments were conducted in the Bavarian Forest National 
Park (49o 3’ 19” N, 13o 12’ 9” E). 18 sample plots with an area 
size between 1000 m2 and 3600 m2 were selected in the mixed 
mountain forests.  Reference data for all trees with DBH larger 
than 10 cm were collected for 688 Norway spruce (Picea abies), 
812 European beeche (Fagus sylvatica), 70 fir (Abies alba), 71 
Sycamore maple (Acer pseudoplatanus), 21 Norway maple 
(Acer platanoides) and 2 lime trees (Tilia europaea). Tree 
parameters, such as DBH, total tree height, stem position, and 
tree species were measured and determined by GPS, 
tacheometry, and the ’Vertex III’ system. First/last pulse data 
were recorded by TopoSys with the Falcon II system. Full 
waveform data were collected by Milan Flug GmbH using the 
Riegl LMS-Q560 system. Table 1 contains details on the point 
density, leaf-on and leaf-off conditions during the flights and 
the footprint size. The term point density is referring to the 
nominal value influenced by the PRF, flying height, flying 
speed and strip overlap. These data sets allow the comparison of 
conventional and full waveform systems, which were flown in 
the same area. However, the data set IV is only available for 12 
reference plots, referred to as ‘Area E’. This has to be 
considered when comparing results of other data sets with this 
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data set.  Naturally, the reference data were updated for the 
individual flying dates. Reference trees are plotted in the figures 
3, 4, 6 and 7 as black vertical lines. 
 
Time of flight Sept. ‘02 May ‘06 May ‘07 May ‘07
Data set I II III IV 
Foliage Leaf-on Leaf-off Leaf-on Leaf-on
Scanner TopoSys 

Falcon II 
Riegl LMS-

Q560 
Riegl LMS-

Q560 
Riegl 
LMS-
Q560

Pts/m2 10 25 25 10 
FOV [deg] 14.3 45 60 60 
HAAT [m] 850 400 400 500 
Footprint [cm] 85 20 20 25 
Ref. plots all all all Area E

 
Table 1. Different ALS campaigns 

 
3.2    Segmentation and evaluation of the results 

The different segmentation approaches were applied to all the 
plots in a batch procedure without any manual interaction. The 
accuracy and reliability of the presented methods are evaluated 
in the following way: the tree positions from the segmentation 
are compared with reference trees if (i) the distance to the 
reference tree is smaller than 60% of the mean tree distance 
within the plot and (ii) the height difference between htree and 
the height of the reference tree is smaller than 15% of the top 
height htop of the plot, where htop is defined as the average 
height of the 100 highest trees per ha (Heurich, 2006). If a 
reference tree is assigned to more than one tree position, the 
tree position with the shortest distance to the reference tree is 
selected. Reference trees that are linked to one tree position are 
so-called ‘detected trees’ and reference trees without any link to 
a tree position are treated as ‘non-detected’ trees. Finally, a tree 
position without a link to a reference tree is referred to as a 
‘false positive’ tree. Furthermore, the trees are subdivided into 3 
layers with respect to the mean height hmean of the tallest 
hundred trees per ha. The lower layer contains all trees below 
50% of hmean, the intermediate layer refers to all trees between 
50% of hmean and 80% of hmean, and finally, the upper layer 
contains the rest of the trees. 
 
3.3   Benefit of 3D segmentation 

In the first instance, we will highlight how the new 3D 
segmentation, based on normalized cut and the stem detection 
method, compares to the 2D segmentation method. As 
described in Reitberger et al. (2008b), the normalized cut 
segmentation not only uses voxel coordinates but also uses 
features derived from the intensity and pulse width. 
Furthermore, tree positions calculated either from the local 
maxima of the segmented CHM or by the stem detection 
method can be utilized. These factors parameterise weighting 
functions, which describe the similarity between the voxels 
(Table 2). Therefore, we discuss the segmentation results for the 
data set II with respect to these options of the approach (Table 
3). 
 
The conventional watershed based segmentation (‘W’) leads to 
an overall detection rate of about 48%. As expected, the 
detection rate is rather poor in the lower forest layer. A 
combination of the watershed segmentation and the stem 
detection (‘W+S’) works successfully in the intermediate and 
upper layers and improves the overall detection rate by 4%. 

Most notably, the 3D segmentation (‘Ncut’) generally increases 
the detection rate considerably in the lower and intermediate 
layers for all options.  The detection rate in the upper layer does 
not improve, if only voxel coordinates and features are used as 
similarity measures.  
 
Option: Parameterisation of weighting function 
NCutC

 Coordinates 
NCutCF Coordinates, Features 
NCutCPm Coordinates, Position of maxima from CHM 
NCutCPms Coordinates, Positions of maxima from CHM and 

stem detection 
NCutCFPms Coordinates, Features, Positions of maxima from 

CHM and stem detection 

Table 2. Options of normalized cut segmentation 
 
 

Detected trees per height layer [%] Method 
low intermed. up total 

False pos. [%]

W 5 21 77 48 4 
W + S 7 27 82 52 5 
NCutC 18 32 77 53 6 
NCutCF 19 35 77 54 6 
NCutCPm 20 36 83 57 9 
NCutCPms 20 37 86 59 9 
NCutCFPms 21 38 87 60 9 

Table 3. Results of segmentation methods with data set II 
 
 

 
Figure 5. Comparison of single tree detection with data set II 
 
If the tree positions – calculated from the local maxima of the 
CHM and by the stem detection – are used, the detection rate in 
the upper and intermediate layers is significantly improved by 
up to 10%. If features are used, the gain is small (by 1%) but 
always significant. In summary, the 3D segmentation and stem 
detection increase the overall detection rate by 12%. Most 
interestingly, the improvement is more evident in the lower and 
intermediate levels by about 16%. This is remarkable and 
shows that the new 3D segmentation technique can successfully 
detect smaller trees below the CHM. The high spatial point 
density of the full waveform data, which practically contain all 
relevant reflections of the laser beam, turns out as to be the key 
factor for segmenting in 3D, not only the dominant trees but 
also the dominated smaller trees in the lower and intermediate 

1400



The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B8. Beijing 2008 

layers. However, this increased detection rate reduces the 
reliability of the segmentation process by a factor of 2 in terms 
of false positives. Figure 5 illustrates the improvement of the 
detection rate graphically, but also shows that there are still 
many undetected smaller trees. Possible reasons, therefore, are 
shown in figure 6, where several smaller trees are merged to 
one segment. These trees remain statistically undetected since 
the positions and heights of the segmented trees do not 
correspond with the reference trees within the assumed error 
tolerances. However, as the figure 6 clearly shows, the 3D 
structure of the forest area is fully captured and separated into 
the dominant trees and the group of small trees of the 
understorey. Thus, the segments of dominant trees are mostly 
not affected by trees from the understorey. Subsequent analyses 
of tree species and timber volume will be more precise than 
they would be with 2D segments calculated from the watershed 
segmentation method. 
 

 
 

Figure 6. Two examples where several small trees are merged 
to one segment (blue) 

 
3.4   Leaf-on versus leaf-off 

The results given in table 3 for leaf-off conditions can also be 
compared with full waveform data captured in the same area 
and with the same point density in leaf-on condition (data set 
III). Table 4 shows that the watershed segmentation and stem 
detection do not change in all layers, both in detection rate and 
in reliability. Apparently, the reconstructed surface of the CHM 
is identical in both foliage conditions, and the crown shape of 
deciduous trees is well represented even in a leaf-off situation. 
As expected, the detection rate deteriorates in the case of the 
normalized cut segmentation in the lower and intermediate 
layer by roughly 5% due to the reduced penetration rate of the 
laser beam, which in turn causes a worse spatial distribution of 
the reflections. Finally, the number of false positives does not 
change significantly for the normalized cut segmentation. 
  

Detected trees per height layer [%] Method 
lower intermed. upper total 

False pos. 
[%] 

W 5 20 79 48 4 
W + S 6 27 83 52 6 
NCutC 13 29 73 49 7 
NCutCF 16 29 73 50 7 
NCutCPm 15 29 82 54 9 
NCutCPms 15 31 86 57 10 
NCutCFPms 17 32 86 58 10 

Table 4. Results of segmentation methods with data set III 

3.5   Impact of point density 

If we restrict data set III to the area E and compare it with data 
set IV, the impact of the nominal point density on the 
segmentation methods can be shown. Tables 5 and 6 
demonstrate that the detection rate and false positives are 
practically the same for both point densities. Only the stem 
detection benefits from the higher point density and shows a 
detection rate that is 2% better than it is with lower point 
density. Obviously, although the number of penetrating laser 
beams is significantly reduced, the most relevant tree structures 
are still detected by reflections. 
 
 

Detected trees per height layer [%] Method 
lower intermed. upper total 

False pos. 
[%] 

W 5 20 82 55 5 
W + S 6 29 87 60 7 
NCutCFPms 24 35 88 66 11 
 
Table 5. Results of segmentation methods with data set III (only 

area E) 
 
 

Detected trees per height layer [%] Method 
lower intermed. upper total 

False pos. 
[%] 

W 6 21 84 57 6 
W + S 7 22 86 58 7 
NCutCFPms 26 33 87 65 11 
 

Table 6. Results of segmentation methods with data set IV 
(Area E) 

 
3.6   First/Last pulse versus full waveform 

Finally, we compare the segmentation methods with respect to 
conventional first/last pulse data (data set I; table 7) and full 
waveform data that have the same nominal point density (data 
set IV; table 6). The foliage condition is leaf-on in both cases. 
 

Detected trees per height layer [%] Method 
lower intermed. upper total 

False pos. 
[%] 

W 2 12 80 52 5 
W + S 3 13 80 52 6 
NCutCPms 15 27 77 55 13 
 
Table 7. Results of segmentation methods with data set I (only 

area E) 
 
 
The total detection rate of the 2D watershed based segmentation 
is better by 5% for the full waveform data. The number of false 
positives is basically the same. The main reason for this is that 
the full waveform data represent the tree shape more precisely 
since the waveform decomposition even detects weak 
reflections and reflections resulting from adjacent targets. This 
leads to an effective point density, which is higher by a factor 
of 2 - 3 compared to first/last pulse data.  
 
Contrary, first/last pulse systems ignore most of these 
reflections due to the inherent detection method and the dead 
zone of about 3 m after the first reflection. For example, figures 
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7a and 7b show two neighbouring spruce captured both with 
first/last pulse data and with full waveform data. 
 

  
 

Figure 7. Neighbouring spruces captured a) with first/last 
pulse data and b) with full waveform data 

 

 

Figure 8. a) Detailed view on crown points of fig. 7b and b) 
waveform of the two marked points 

 
In figure 8b, a typical waveform is depicted that results from 
two adjacent targets (black points in fig. 8a) with a distance of 1 
m. Obviously, the tree shape is better detected by the full 
waveform data. If we focus on the normalized cut segmentation 
in tables 6 and 7 the benefit of full waveform data becomes 
clearer. The total detection rate amounts to 65%, which is 10% 
better than with first/last pulse data. Remarkable is the fact that 
the normalized cut segmentation increases the detection rate in 
the lower and intermediate layer even for the first/last pulse 
data. 
 
 

4. DISCUSSION 

The watershed segmentation method generates results that are 
comparable with results obtained by Heurich (2006), who 
obtained a detection rate of 45% in almost the same reference 
areas using data set I. In general, the experiments with the 
different data sets show that a combination of the normalized 
cut segmentation with the watershed segmentation and the stem 
detection methods always provides the best results. Using only 
the normalized cut segmentation with voxel coordinates 
improves the segmentation significantly in the lower and 
intermediate layers, whereas the detection rate in the upper 
layer is equal or even slightly worse than the detection rate of 
the watershed segmentation method. The implementation of the 
tree positions from the local CHM maxima and the stem 
detection improves the detection rate in the upper layer 

significantly. The use of the features, intensity and pulse width, 
shows a small, but constant improvement. 
 
A comparison of the different foliage conditions demonstrates a 
higher detection rate for the leaf-off data set mainly in the lower 
and intermediate layer because of the higher penetration of the 
deciduous trees in the leaf-off situation. Thus, the leaf-off 
situation seems to be the more appropriate flying time to 
segment trees in 3D, at least for mixed mountain forests that are 
scanned with a high point density. Note that the leaf-off 
condition is advantageous for deriving a DTM and for 
classifying coniferous and deciduous trees (Reitberger et al. 
2008a). 
 
The experiment with the different point densities showed that a 
nominal point density higher than 10 pts/m2 does not improve 
the detection rate considerably. However, it remains to be seen 
whether a higher density would be advantageous for estimating 
other parameters, such as timber volume. 
 
Finally, the experiments show that the use of full waveform 
data is clearly superior to first/last pulse data. All segmentation 
approaches shown in this paper work better with full waveform 
data. Most notably, only the normalized cut segmentation can 
take advantage of the high spatial point density that the full 
waveform technique provides. In summary, the significant 
improvement of the detection rate – especially apparent in the 
lower and intermediate layers – is influenced both by the full 
waveform data and the new normalized cut segmentation. 
 
 

5. CONCLUSIONS 

We have shown in this paper how several segmentation 
methods work with conventional first/last pulse data and full 
waveform data. The combination of a new normalized cut 
segmentation with the tree positions derived with watershed 
segmentation or stem detection methods leads to a significant 
improvement in the detection rate, especially in the case of full 
waveform data. 
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