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ABSTRACT:

Terrestrial geolocalized images are nowadays widely used on the Internet, mainly in urban areas, through immersion services such as
Google Street View. On the long run, we seek to enhance the visualization of these images; for that purpose, radiometric corrections
must be performed to free them from illumination conditions at the time of acquisition. Given the simultaneously acquired 3D geometric
model of the scene with LIDAR or vision techniques, we face an inverse problem where the illumination and the geometry of the scene
are known and the reflectance of the scene is to be estimated. Our main contribution is the introduction of a symbolic ray-tracing
rendering to generate parametric images, for quick evaluation and comparison with the acquired images. The proposed approach
is then based on an iterative estimation of the reflectance parameters of the materials, using a single rendering pre-processing. We
validate the method on synthetic data with linear BRDF models and discuss the limitations of the proposed approach with more general

non-linear BRDF models.

1 INTRODUCTION
1.1 Context

The development of digital cameras has led to new possibili-
ties for radiometric processes: the linear response of the sensor
with respect to incoming radiance gives radiometer abilities to
the camera. So understanding the physical processes that lead
to the formation of digital images is a key to developing many
applications, for professionals as well as for the general pub-
lic. For instance, terrestrial images are nowadays widely avail-
able on the Internet: Google Street View in 2007, Microsoft Bing
Streetside in 2009 (North America only), or the research project
iTowns (Devaux and Paparoditis, 2010). These images have very
high spatial resolution (a few centimeters); so the radiative phe-
nomena must be modelized with the same resolution. In this
work, we focus on images acquired from terrestrial vehicles, with
large spectral bands in the visible domain. The seamless visual-
ization of such images has to deal with the dependence of the
pixel values on the illumination conditions at the time of acqui-
sition. For instance, the illuminated and shadowed areas are de-
termined by that time, and can be a disturbance for the viewer.
On the long run, the objective is to free images from their illu-
mination conditions, enabling applications such as relighting or
augmented reality. That can be done through the estimation of
the intrinsic color properties of the scene surface: the reflectance.

1.2 Related work

The estimation of one or several radiometric parameters of a scene,
from a set of observations (mainly images), is referred to as in-
verse rendering in computer graphics. Patow and Pueyo (2003)
propose a survey of these methods. As part of it, inverse re-
flectometry aims at retrieving reflectance properties of objects
from one or several images. The hypotheses and input data of
these works can be very different: global or only direct illumi-
nation, controlled or uncontrolled light sources, invariant or tex-
tured reflectance map, single or multi-angular. Machida et al.
(2007) propose an inverse method using photon mapping, with
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a parametric model of BRDF (Bidirectional Reflectance Distri-
bution Function), from images with very directional light source
with known position. Yu et al. (1999) use inverse radiosity in a
multi-scale hierarchical method, from a large set of images from
different camera positions. Boivin and Gagalowicz (2001) esti-
mate BRDF from a single image. Lensch et al. (2003) estimate
spatially-varying BRDF without considering reflections between
objects. The main goal of these methods is often to produce aug-
mented reality from real images, such as addition of new objects
or relighting under user-defined lighting conditions.

In the remote sensing community, some authors follow a more
physical approach, looking for accurate estimation of properties,
mainly analyzing outdoor aerial or satellite images for classifi-
cation purposes. A physical modelization of the different radi-
ance terms in urban images has been proposed by Miesch et al.
(2000). Using multi-view aerial images, Martinoty (2005) uses
the same modelization for classification of roof materials with
BRDF parameters as criteria, and Lachérade et al. (2008) esti-
mates the albedo (in the Lambertian case) for accurate synthesis
of satellite images under any atmospheric conditions.

1.3 Proposed approach

In this work, the input data is a set of terrestrial images shot from
a mobile-mapping vehicle. We also suppose that we have a 3D
geometric model of the scene, segmented in areas that are ho-
mogeneous in reflectance. That segmentation could be obtained
with the LIDAR backscattering data (independent of illumina-
tion) simultaneously acquired by the vehicle, but that topic is
not tackled in this work (see (Miiller et al., 2007) for an ex-
ample of facade modeling). We also consider the data are ac-
quired under good atmospheric conditions which are supposed
to be known through observable variables for aerosol (type, con-
centration) and gas (water vapour content). The method aims at
enabling radiometric corrections of terrestrial images (shadow re-
moval, relighting, etc), and intends to be as general as possible,
though adapted to outdoor urban scenes. Furthermore, we do not
look for purely image-based methods, such as tonemapping; but
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we instead try to use a physical model of the image radiome-
try, in order to explore the potential of physically-based methods.
To summarize, our method uses the following input data: known
but uncontrolled light sources (sun, sky), a 3D geometric model
of the scene segmented into regions of homogeneous reflectance
properties, and single or multi-view calibrated images. It takes
into account the reflections between objects and the bidirectional
behaviour of materials (up to the limitations discussed in sec-
tion 4.3). This paper presents the physical background of that
study, in section 2, and the simulation method used in section 3.
Then the inversion algorithm is presented in section 4, as well as
the motivations for symbolic ray-tracing. Results on a synthetic
scene are then shown in section 5, as well as the computational
limitations of the inversion method.

2 RADIATIVE TRANSFER IN URBAN SCENES

An image is the result of the propagation of light rays from the
light sources to the sensor. This propagation of a light ray is
affected by the medium it goes through and the surfaces it hits.
In the case of an outdoor urban scene: the source is the sun, the
medium is the atmosphere, and the surfaces are the objects of the
scene: buildings, soil... So the modelization of the radiometric
pixel values requires the modelization of the radiative transfer in
the atmosphere and the reflection on the objects of the scene.

2.1 Participating medium

The solar light interacts with the atmospheric particles (gas mole-
molecules or aerosol) located at point ). Part of its energy is
absorbed and scattered, in a proportion given by the attenuation
coefficient o.. Along a unit vector ¢, the radiance going out
of the particle at wavelength ) is given by the radiative transfer
equation (Meyzonnette and Lépine, 1999):

L(Q+06,d, A) = L(Q,V,A)—0e (L(Q, &, A) — J(Q,d,A)) &

)]
where ¢ is a small length, and J is the source function that takes
into account the scattering of the light hitting the particle from
other directions than ¢ and volumetric light emission.

2.2 Interaction with surfaces

When hitting a surface at point P, the light is reflected according
to its Bidirectional Reflectance Distribution Function (BRDF),
that links the outgoing radiance L. in a given direction of re-
flection Wy to the radiance distribution L;, coming from the
incident directions &;, (Nicodemus et al., 1977). Considering
a non-emitting surface, and denoting by 2p the hemisphere di-
rected by the surface normal 7y, this relation is (Kajiya, 1986):

Laut (P7 a_jout, )\) =

/ b’r‘dfp ((f)in, Qouty )\) . Lin (P, —Qin, )\) <(§zn ﬁp>dﬁ~m
Bin€EQp

@

The high dimension of the parameter space of BRDF distribu-
tions prevents its accurate modelization with a limited number
of parameters. Many models exist, each fitted for certain mate-
rials; for instance the models of Torrance and Sparrow (1967),
Cook and Torrance (1981) and Ward (1992) are widely used in
computer graphics (Yu et al., 1999; Machida et al., 2007). For
reasons of space-complexity of the inversion method (see sec-
tion 4.3), and at the expense of physical reliability, we propose
to limit our search space to the particular class of kernel BRDFs.
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We denote a kernel BRDF as a linear combination of parame-

terless BRDF basis functions f; ) (P, @in,Gout ) weighted by
geometry-agnostic functions p*¢9(") (A\) which are the unknown
constants for each scene surface segment of homogeneous re-
flectance (seg(P) denotes the index of the scene segment con-

taining P).

brdfp (szn’ Dout, ,\) = Z pfeg(P) ()\) ] f§eg(P)
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(3)
For instance, the following kernel BRDF blends a Lambertian
model (isotropy of the outgoing radiance; corresponding to a per-
fectly diffuse behaviour), weighted by p4, and a perfectly specu-
lar model (mirror behaviour), weighted by ps :
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2.3 The specific case of urban terrestrial images

High spatial resolution urban terrestrial imagery imply specific
conditions that prevent us from using the hypotheses commonly
assumed in aerial and satellite remote sensing. First, the objects
of the scene cannot be considered as equally distant from the
camera, so the scene cannot be modelized as a plane (as in the
radiometric equalization proposed by Chandelier and Martinoty
(2009)). This also means that the reflections between objects have
to be taken into account. However, the reflected light may be
neglected after a few reflections, because its radiance decreases
with the number of reflections (due to the geometric attenuation,
the transmittance, the reflectance). The importance of reflections
decreases also with the square of the distance of the reflecting
surface. Lachérade et al. (2008) show that it may be neglected
after two reflections.

The Lambertian hypothesis can be valid with low or medium res-
olution images, because each pixel integrates the contribution of
a relatively large surface: the roughness, that is relative to the
resolution, usually is high enough to observe an almost perfectly
diffuse reflectance. This implies that the BRDF does not depend
on the angles of incidence and reflection, so it makes it possi-
ble to compute the irradiance on each surface without saving the
information of incident angle for each ray. This might be very
convenient for further inversion (Lachérade et al., 2008). Unfor-
tunately, the Lambertian hypothesis is no longer valid when the
image has a resolution of a few centimeters (Martinoty, 2005).

The transmittance along each rectilinear portion of a ray can be
computed simply in the case of a homogeneous medium with-
out scattering, by multiplying the radiance by e~ °<¢ where o
is the attenuation coefficient and d the length of the rectilinear
portion. But in general, there is scattering and inhomogeneous
medium, and we have to stochastically divert rays while they
propagate. That complete computation, though possible, might
be very costly. However, a simplification can be adopted: the
atmosphere within the convex hull of the 3D model is almost
perfectly transparent, due to the low distances between sensor
and objects. This hypothesis may be numerically validated; the
extinction coefficient o is linked to the horizontal visibility V'
(that is the greatest distance at which an object can be seen):
e~¢V = 0.02. For an atmosphere with a visibility of 23 km, the
transmittance at a distance of 30 m is 0.995. So the absorption
and the scattering inside the scene may be neglected. Particularly,
it implies that fog or fumes at the street level are not taken into
account. Furthermore, the size of the scene can be considered as
negligible compared to distance at which occurs the atmospheric



In: Stilla U et al (Eds) PIA11. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences 38 (3/W22)

scattering; the downward radiance of the sky coming from a given
direction can be considered as constant on the whole scene.

3 DIRECT PROBLEM: IMAGE SYNTHESIS

3.1 Ray-tracing

Computing the total radiance analytically is untractable in the
general case; we have to use numerical methods to estimate the
radiance at the sensor level (Miesch et al., 2000). These ren-
dering methods have been developed for realistic image synthe-
sis; see (Dutre et al., 2006) for a description of the different ren-
dering methods. In this work, we chose ray-tracing method be-
cause of its genericity: it can simulate complex BRDF models,
and takes into account any scattering or reflection or absorption
phenomenon (within the limits of geometrical optics). Further-
more, it allows any kind of geometry, since it only uses the local
normals to the surfaces and ray/surface intersection tests; no dis-
cretization of surfaces is needed.

The principle of ray-tracing is to use the local equations of radia-
tive transfer (1) and (2) to compute the exitant radiance for every
point hit by a light ray. To compute the radiance at the sensor level
for a pixel of the image, we throw many rays from the camera in
the FOV of the pixel. When hitting a surface, a ray is reflected in
a stochastically sampled direction, until it hits a light source. This
produces a light path C, made of 3D line segments, which carries
aradiance L(C') and a sampling probability pdf (C'). The Monte-
Carlo estimate (5) gathers the radiances L(C}) carried by all the
paths Cj, generated by rays thrown from a pixel FOV into the
radiance value of the pixel LY€% and may even be slightly
modified to take into account the point spread function (PSF) of
the sensor (Pharr and Humphreys, 2004):

synthetic
Lsensor

®

3.2 Implementation details

The criteria of choice of a ray-tracer are: an unbiased estima-
tion, a reasonable computation time (real-time is however out of
scope), open source software to allow modifications, a good con-
trol through physically pertinent parameters. For these reasons,
we chose to use the GPL physically-based renderer LuxRender,
that is based on PBRT (Physically-Based Ray-Tracing) (Pharr
and Humphreys, 2004).

In order to fasten the convergence of the estimation (5), LuxRen-
der uses importance sampling to drive the stochastic choice of the
reflection direction; the BRDF values are used as a probability
density function (pdf). When evaluating the radiance coming di-
rectly from the light sources, the pdf takes into account the BRDF
and the angular distribution of light sources (multiple importance
sampling (Veach, 1997)).

To provide an unbiased estimate, LuxRender emulates the sam-
pling of paths with an unbounded number of reflections (using a
Russian roulette technique). We however chose to limit the max-
imum number of allowed reflections Ny,q. to 3 to prevent the
combinatorial explosion of our technique, driven by the observa-
tion in section 2.3 that the reflected light may be neglected after
a few interactions.

As discussed in section 2.3, the downward radiance from the sky
can be represented as a function of the direction. An environment
map is thus sufficient to describe the radiance coming from the
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Figure 1: An example of environment map computed with 68, at
wavelength 550nm. The solar halo is visible, but this environ-
ment map does not represent the direct solar radiance.

‘Initial guess‘ ‘Atmospheric data‘ ‘ 3D model ‘

v

-’»‘ Parameterized reflectances ‘

Synthetic images‘ ‘Acquired images

Reflectances

Figure 2: Principle of reflectance inversion.

sky, i.e. a Look-Up Table (LUT) giving for each direction the
value of the downward radiance from the sky (figure 1). That
downward radiance can be computed by a radiative transfer code,
such as 6S (Vermote et al., 2002). That environment map and
the irradiance at top of atmosphere and the optical thickness of
the atmosphere are sufficient to model the light sources and the
participating medium in our case.

4 INVERSE PROBLEM: REFLECTANCE ESTIMATION

4.1 General principle and plain algorithm

We face an inverse problem which direct problem has been dis-
cussed in the previous section. We consider that the unknown
properties are the reflectances of the materials that compose the
scene. That means that lighting conditions are supposed to be
known, as well as the geometric 3D model (including the geomet-
ric calibration of the camera). The estimation of the reflectance
from the images is a complex inverse problem in the general case
(non-Lambertian materials, any geometry), because the total irra-
diance at a point P depends on the reflectance of the other surface
elements of the scene, through the reflected irradiance. What is
more, the directional effects of reflectance have to be modelized
by a parametric function, the BRDF, that is not linear. So we use
a minimization algorithm to estimate the parameters of the BRDF
function of every material, in an iterative way, as shown on fig-
ure 2. The function to be minimized is the difference between
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Figure 3: Inversion algorithm with symbolic ray-tracing.

acquired and synthetic sensor images:

S =

Ligheor (6, )
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This difference is the cost function of the set of parameters p =
(pi): of the BRDF models (e.g. albedos of the Lambertian ma-
terials). The input data is composed of the atmospheric prop-
erties (defining lighting conditions), the segmented geometric 3D
model and initial reflectance guesses. They may be based on prior
knowledge of the scene materials or on a preliminary inversion
under a Lambertian hypothesis.

4.2 Symbolic ray-tracing for inversion

A major difficulty appears while minimizing (6): it requires the
evaluation of the radiance image with different sets of parame-
ters, naively leading to numerous computationally intensive ray-
tracing renderings. For instance, for a gradient descent optimiza-
tion relying on finite difference estimates, images not only have to
be rendered for the current parameter values, but also for each di-
mension of the parameter vector p. We can however observe that
for a given camera position, scene geometry and illumination, the
radiance can be expressed as a function of the BRDF parameters.
Thus, by keeping the rendered radiance image as a function of
the BRDFs parameters instead of a numerical value, the costly
ray-tracing rendering may only be performed once. That is what
we refer to as symbolic ray-tracing. For instance, if we assume
that the materials of the scene are Lambertian, their BRDFs are
each described by a single parameter: the albedos p;, and dim(p)
counts these Lambertian materials. Thanks to equations (1) and
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(2), the radiance carried by any light path C is of the form:

. a€R, e €N
,  with
Z]‘ €j SNmaz

dim(p)

€

O =a [] »y
j=1

@)
where « is a coefficient depending on the geometry, the atmo-
spheric transmission and the power of the light source where the
path originates. The exponent e; is equal to the number of reflec-
tions of the path on material j (and thus O if that material is not
hit by the path C). The radiance of a pixel being the Monte-Carlo
sum (5) of the weighted contributions of many light paths, it may
be expressed as a multivariate polynomial function:

dim ()

Z’yk H pJJk

It is easy to show that if the scene reflectances are all kernel
BRDFs and not only Lambertian, the pixel radiance L:¥nthetic

is still a multivariate polynomial (8), where dim(p) is now the
total number of BRDF kernel terms f; (3).

synthetzc
Lsensor

):Zﬂk'l/(pyck
k

Once the symbolic image has been computed, it is easier to min-
imize (6) with a standard minimization algorithm: the cost func-
tion and its derivative can be evaluated directly and quickly for
any set of parameters. The inversion algorithm only needs a sin-
gle ray-tracing rendering, as shown on figure 3. Furthermore, the
minimization process avoids the instability induced by the change
in the stochastic noise that would be implied by the several ren-
dering passes of the plain algorithm (figure 2). Besides drastically
speeding up the optimization process, symbolic ray-tracing thus
improves its numerical stability.

4.3 Symbolic ray-tracing tractability

The number N, of (e;); series satisfying constraints (7) is the
number of Ny,q, combinations with repetitions of dim(p) + 1
elements, known as the multiset coefficient (d'm(p )+N “mar). The
space complexity of storing the multivariate polynomlal func-
tion L¥rthetie(p) (8) is thus bounded by N, since each of its
monomial term corresponds to a unique series (e;);. A mono-
mial weight is thus simply a sum of ~y; values corresponding to
identical series (ej,x);. For instance, for a scene with 10 differ-
ent materials and at most 3 reflections, the maximal number of
monomial terms in L$¥7EEete(p) is N, = 286.

In the general case of non-kernel BRDFs, this bounded size refac-
toring is however not possible, and thus the space-complexity of
Lsynthetic( 5y orows with each new sampled path of the Monte
Carlo estimate (5). For instance the models from (Torrance and
Sparrow, 1967), (Cook and Torrance, 1981) or (Ward, 1992), whose
exponential term, containing both a geometric coefficient and a
model parameter, prevents the factorization of the L(C}) terms in
(5). As Monte-Carlo integration relies on many rays to decrease
the stochastic noise; using non factorizable BRDF models be-
comes untractable, which drove our restriction to kernel BRDFs.

4.4 Implementation details

We implemented the symbolic ray-tracing in LuxRender, by keep-
ing the expression of the reflectance every time a ray hits the sur-
face of an object. The symbolic expressions are handled through
the GPL library GiNaC. For minimizing (6), we chose a conju-
gate gradient method, using the GPL scientific library GSL. Fur-
thermore, we chose p = 2 for the norm of the difference (6),
because it is the lowest degree such that €” is a multivariate poly-
nomial (hence without absolute differences and differentiable).
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(b) Final Reconstructed
image (Lambertian BRDF)

c) Image with initial
g
parameters

(d) Reconstructed image
after 20 iterations

(e) Final reconstructed (f) Error image (difference

image (1000 iterations) ~ between (e) and (a) )

Figure 4: Reference image (a), reconstruction with Lambertian
BRDF (b), and convergence of the estimation with kernel BRDF.

5 RESULTS OF THE INVERSION METHOD WITH
SYNTHETIC DATA

5.1 Scene description and methodology

The inversion algorithm is tested on a synthetic urban scene (fig-
ure 4), at wavelength A\ = 550nm. The geometry is described
by a very detailed 3D model, and the material have a Lamber-
tian BRDF or a BRDF with Lambertian and specular kernels (4)
(for walls and windows). The environment map describing at-
mospheric scattering is computed with 6S. A reference image of
the synthetic scene is simulated with LuxRender. A second sim-
ulation is made with symbolic ray-tracing, creating a symbolic
image from the same point of view. The numerical and symbolic
images cannot be simulated with the same ray-tracing pass, be-
cause it would lead to correlation between the stochastic noise
due to the Monte-Carlo integration; that could enhance the inver-
sion results without qualifying the method itself. Furthermore,
the symbolic ray-tracing uses the numerical values of the BRDF
parameters to drive importance sampling, so these values must be
set arbitrarily.
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| Object | Reference albedo | Estimated albedo [ Error ‘
Roof 0.2 0.285 0.085
Wall 0.8 0.761 -0.039
Balcony 0.3 0.291 -0.009
Asphalt 0.2 0.201 0.001
Awning 0.05 0.0496 -0.0004
Window 0.9 0.230 -0.670

Table 1: Inversion results on a synthetic urban scene, with a single
image, assuming a Lambertian BRDF model

| Object | Param. | Ref. value [ Estim. value [ Error
Roof pd 0.2 0.390 0.190
Wall pd 0.72 0.762 0.042
Ps 0.08 0.326 0.246

Balcony pd 0.3 0.284 -0.016
Ps 0 0.373 0.373

Asphalt pd 0.2 0.218 0.018
Ps 0 0.000 0.000

Awning pd 0.05 0.046 -0.004
Ps 0 0.300 0.300

Window pd 0.18 0.185 0.005
Ps 0.72 0.494 -0.226

Table 2: Inversion results on a synthetic urban scene, with a single
image, assuming a Lambertian+Specular kernel BRDF model

5.2 Parameter estimation

Lambertian BRDF.  We first perform the symbolic simulation
assuming that the materials have a Lambertian BRDF. The diffuse
part of the reference BRDFs are correctly estimated (table 1), ex-
cept for materials that are not directly seen in the image (such as
roofs), as well as for materials with a high specular component
(such as windows).

Lambertian+Specular BRDE.  In order to retrieve the spec-
ular behaviour of materials, we make a symbolic simulation as-
suming that all materials have a Lambertian+specular kernel BR-
DF (4). The results of the parameter estimation are shown in ta-
ble 2. The total process (symbolic ray-tracing and minimization)
takes about 20 min, with images of 200x200 pixels. Though the
value itself of the parameters can be estimated with high errors,
the image reconstructed with these parameters is visually close
to the reference image (figure 4). This is due to the ill-posedness
of the inverse problem when trying to estimate the specular com-
ponent, which is not always directly seen by the camera for each
material. For instance there is no point light reflection visible in
the windows, but only a large surface light (the sky). There is
therefore a strong correlation between the effects of the specular
and diffuse components.

6 CONCLUSION AND FUTURE WORK

In this work, we have developed an inversion algorithm to esti-
mate the reflectance of materials of an outdoor scene, assuming
known atmospheric conditions, and a known and segmented ge-
ometric 3D model. The geometric complexity of the 3D model
only impacts the computing time of the symbolic ray tracing dur-
ing the preprocessing step. The inversion method uses symbolic
ray-tracing, therefore it can perform reflectance estimation using
a single rendering pass. It proves to yield good results with syn-
thetic data for Lambertian BRDF models, but has difficulties for
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estimating the specular components of Lambertian+specular ker-
nel BRDFs. The estimated reflectances of the materials can be
used to reconstruct images of the scene from any point of view.

To improve the results, we could use the redundant information
of multi-view acquisition (that is the case for terrestrial acqui-
sitions with a vehicle). It cannot be done for complex scenes
without improving our current code, because it is highly memory-
consuming. However, as the image reconstructed from the esti-
mated parameters with Lambertian models is close to the refer-
ence image, the algorithm should be tested on a real set of urban
terrestrial images, to qualify the reliability of the Lambertian hy-
pothesis for relighting purpose.

From a more theoretical point of view, the space-complexity of
the symbolic ray-tracing can be limited by using of a decompo-
sition of BRDF in an adapted function basis, leading to a kernel
BRDF model; see (Rusinkiewicz, 1997) for a review on BRDF
decomposition. That decomposition can better represent the phys-
ical behaviour of materials, that includes non-delta specular and
retro-specular lobes. But the high number of parameters intro-
duced by the decomposition leads to an ill-posed problem, and
cannot be used in our context.

Another strong hypothesis used in this work is the segmentation
of the 3D model into homogeneous regions; textured segments
may thus not be processed. For instance, (Yu et al., 1999) con-
sider a spatially-varying diffuse albedo, while the specular part
is constant per area. This can lead to a better modelization of
the materials of a real scene, which are not homogeneous, but
increases the number of parameters to be estimated.
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