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ABSTRACT:

The performance of automatic building detection techniques can be significantly impeded due to the presence of same-height objects,
for example, trees. Consequently, if a building detection technique cannot distinguish between trees and buildings, both its false positive
and false negative rates rise significantly. This paper presents an improved automatic building detection technique that achieves more
effective separation of buildings from trees. In addition to using traditional cues such as height, width and colour, the proposed improved
detector uses texture information from both LIDAR and orthoimagery. Firstly, image entropy and colour information are jointly applied
to remove easily distinguishable trees. Secondly, a voting procedure based on the neighbourhood information from both the image and
LIDAR data is employed for further exclusion of trees. Finally, a rule-based procedure using the edge orientation histogram from the
image is followed to eliminate false positive candidates. The improved detector has been tested on a number of scenes from three
different test areas and it is shown that the algorithm performs well in complex scenes.

1 INTRODUCTION

Building detection from remotely sensed data has a number of
practical applications including city planning, homeland secu-
rity and disaster management. Consequently, a large number of
building detection techniques have been reported over the last few
decades. Since photogrammetric imagery and LIDAR (LIght De-
tection And Ranging) data have their own merits and demerits,
the recent trend is to integrate data from both of these sources
as a means of advancing building detection by compensating the
disadvantages of one with the advantages of the other.

The success of automatic building detection is still largely im-
peded by scene complexity, incomplete cue extraction and sen-
sor dependency of data (Sohn and Dowman, 2007). Vegetation,
and especially trees, can be the prime cause of scene complex-
ity and incomplete cue extraction. Image quality may vary for
the same scene even if images are captured by the same sen-
sor, but at different times. The situation also becomes complex
in hilly and densely vegetated areas where only a few buildings
are present, these being surrounded by trees. Important building
cues can be completely or partially missed due to occlusions and
shadowing from trees. Therefore, many existing building detec-
tion techniques that depend largely on colour information exhibit
poor detection performance.

Application of a recently developed building detection algorithm
(Awrangjeb et al., 2010a) has shown it to be capable of detecting
buildings in cases where cues are only partially extracted. For
example, if a section of the side of a roof (at least 3m long) is
correctly detected, the algorithm can also detect all or part of the
entire building. However, this detector does not necessarily work
well in complex scenes when buildings are surrounded by dense
vegetation and when they have the same colour as trees, or where
trees are other than green.

This paper presents an improved detection algorithm that uses
both LIDAR and imagery. In addition to exploiting height, width
and colour information, it uses different texture information in

order to differentiate between buildings and trees. Firstly, image
entropy and colour information are employed together to remove
the trees that are easily distinguishable. Secondly, a voting pro-
cedure that considers neighbourhood information is proposed for
the further exclusion of trees. Finally, false positive detections
are eliminated using a rule-based procedure based on the edge
orientation histogram. The improved detector has been tested on
a number of scenes covering three different test areas 1.

2 CUES TO DISTINGUISH TREES AND BUILDINGS

Cues employed to help distinguish trees from buildings include
the following:

• Height: A height threshold (2.5m above ground level) is
often used to remove low vegetation and other objects of
limited height, such as cars and street furniture (Awrangjeb
et al., 2010a). The height difference between first and last
pulse DSMs (digital surface models) have also been used
(Khoshelham et al., 2008).

• Width, area and shape: If the width or area of a detected
object is smaller than a threshold, then it is removed as a tree
(Awrangjeb et al., 2010a). A number of shape attributes can
be found in (Matikainen et al., 2007).

• Surface: A plane-fitting technique has been applied to non-
ground LIDAR points to separate buildings and trees (Zhang
et al., 2006), and a polymorphic feature extraction algorithm
applied to the first derivatives of the DSM in order to esti-
mate the surface roughness has also been employed (Rotten-
steiner et al., 2007).

• Colours: While a high NDVI (normalised difference veg-
etation index estimated using multispectral images) value
represents a vegetation pixel, a low NDVI value indicates

1This paper is a condensed version of (Awrangjeb et al., 2011).
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Figure 1: Flow diagram of the improved building detection tech-
nique.

a non-vegetation pixel. This cue, although frequently used,
has been found unreliable even in normal scenes where trees
and buildings have distinct colours (Awrangjeb et al., 2010a).
K-means clustering was applied on multispectral images to
obtain spectral indices for clusters like trees, water and build-
ings (Vu et al., 2009). Colour invariants have also been used
(Shorter and Kasparis, 2009). A number of other cues gen-
erated from colour image and height data can be found in
(Matikainen et al., 2007, Salah et al., 2009).

• Texture: When objects have similar spectral responses, the
grey level co-occurrence matrix (GLCM) can be estimated
from the image to quantify the co-occurrence probability
(Chen et al., 2006). Some GLCM indices, eg mean, stan-
dard deviation, entropy and homogeneity, have been applied
to both height and image data in order to classify buildings
and trees (Salah et al., 2009, Matikainen et al., 2007).

• Training pixels: Training pixels of different colours from
roofs, roads, water, grass, trees and soil have been used for
classification (Lee et al., 2003).

• Filtering: Morphological opening filters have been employed
to remove trees attached to buildings (Yong and Huayi, 2008).

• Others: Segmentation of LIDAR intensity data can also
be used to distinguish between buildings and trees (Maas,
2001). The density of raw LIDAR data has also been em-
ployed (Demir et al., 2009).

3 IMPROVED BUILDING DETECTION

The proposed improved detector employs a combination of height,
width, angle, colour and texture information with the aim of more
comprehensively separating buildings from trees. Although cues
other than texture were used in the earlier version of the detector,
the improved formulation makes use of additional texture cues
such as entropy and the edge orientation histogram at four stages
of the process, as shown in Fig. 1. Different steps of the detection
algorithm have been presented in (Awrangjeb et al., 2010a). This
paper focuses on how texture, dimensional and colour informa-
tion can be applied jointly in order to better distinguish between
buildings from trees. The setup of different threshold values are
discussed in (Awrangjeb et al., 2011).

Figure 2: (a) Image of a test scene, (b) corresponding LIDAR
data (in gray-scale), (c) primary mask and (d) secondary mask.

Figure 3: Detection of green buildings: (a) the NDVI informa-
tion alone missed green buildings whereas (b) combined NDVI
and entropy information detects green buildings. ‘Blue’ lines are
accepted, ‘red’ represents rejected.

3.1 Application of Height Threshold

A height threshold Th = Hg + 2.5m, where Hg represents the
ground height, is applied to the raw LIDAR data and two build-
ing masks are created – the primaryMp and secondaryMs masks
(Awrangjeb et al., 2010a). This threshold removes low height ob-
jects (grounds, grass, roads, cars etc.) and preserves non-ground
points (trees and buildings). The corresponding DEM height for
a given LIDAR point is used as the ground height. If there is no
corresponding DEM height for a given LIDAR point, the average
DEM height in the neighbourhood is used. Fig. 2 shows the two
extracted masks for a scene.

3.2 Use of Width, NDVI and Entropy

The black areas in Mp are either buildings, trees or other ele-
vated objects. Line segments around these black shapes in Mp

are formed, and in order to avoid detected tree-edges, extracted
lines shorter than the minimum building width Lmin = 3m are
removed. Trees having small horizontal area are thus removed.

The mean of the NDVI value is then applied, as described in
(Awrangjeb et al., 2010a), to eliminate trees having large horizon-
tal area. However, the NDVI has been found to be an unreliable
cue even in normal scenes where trees and buildings have dis-
tinct colours (Rottensteiner et al., 2007, Awrangjeb et al., 2010a).
In addition, it cannot differentiate between trees and green build-
ings. Fig. 3(a) shows an example where a green building B1

cannot be detected at all since all lines around it are rejected.
However, green building B2 can be partially detected because it
has a white coloured roof section. In some areas there may be
non-green buildings having the same colour as trees, especially
when leaves change colour in different seasons. In such cases,
the removal of trees based on the NDVI will result in many build-
ings also being removed. Detection of these same buildings will
likely also lead to detection of trees.

If the mean NDVI is above the NDVI threshold at any side of
a line segment, a further test is performed before removing this
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Figure 4: Use of neighbourhood information to remove tree-
edges: (a) before voting: ‘blue’ represents lines from the pri-
mary mask after the extending procedure and ‘green’ represents
lines from the image and (b) after voting: ‘cyan’ represents ac-
cepted lines after the voting procedure and ‘red’ represents re-
jected lines.

line segment as a tree-edge. This test checks whether the aver-
age entropy is more than the entropy threshold Tent = 30%. If
the test holds, the line segment is removed as a tree edge, other-
wise it is selected as a building edge. Fig. 3(b) shows that the
green buildings B1 and B2 can be fully detected using this ap-
proach. In addition, some of the trees subject to shadowing and
self-occlusion are also detected.

3.3 Voting on the Neighbourhood Information

The joint application of NDVI and entropy can remove some
large trees; however, in the case when there are shadows and
self-occlusions within trees, difficulties with the approach can be
expected. Therefore, for each of the extended lines a voting pro-
cedure based on the information within the neighbourhood of that
line is followed.

All the extracted and extended lines that reside around the same
black shape in the primary mask Mp fall into the same neigh-
bourhood. Let Ω = {li}, 0 ≤ i ≤ nt be such a neighbourhood
obtained after the application of the width threshold Lmin in the
previous section, where li indicates an extracted line, its length
Lli ≥ 3m, and there are a total of nt extracted lines. Further-
more, let ne lines, out of nt extracted lines in Ω, survive after the
extending procedure discussed above, with the average length of
these being LΩ,avg . We also consider the longest image line, ex-
tracted from the grey-scale orthoimage, which resides around li.
The longest local image line `i for li within a rectangular area of
width 3m around li is obtained. Let the length of `i be L`i . In
some cases, no `i may be found due to poor image contrast or if
li is a tree edge. Fig. 4(a) shows the extended lines from Mp and
the accepted lines from the orthoimage.

For each line li in the proposed voting procedure, four votes vk,
0.0 ≤ vk ≤ 1.0 are cast by exploiting its neighbourhood infor-
mation as follows:

• v1 = 1.0, if Lli ≥ LΩ,avg; else v1 =
LΩ,avg−Lli
LΩ,avg

.

• v2 = Θ−θi
Θ

, where θi is the adjustment angle between li and
the longest line in Ω, which was used as the base line in
the adjustment procedure, and Θ = π

8
is the angle threshold

used in the adjustment procedure (Awrangjeb et al., 2010a).

• v3 = ne
nt

. This is based on the observation that line seg-
ments around a building are more likely to be adjusted, which

Figure 5: A complex scene: (a) primary mask, (b) detected can-
didate buildings with a large number of false detections and (c)
detected final buildings after removing false positives.

means that they are either parallel or perpendicular to the
base line around the same black shape in Mp.

• v4 = 1.0 if L`i ≥ 2Lmin; else v4 =
L`i

−Lmin

Lmin
. If there is

no image line found around li, then v4 = 0.0.

The voting procedure is executed for ne lines in Ω. A line li
is designated a building edge if it obtains a majority vote. This
means that the mean of vk, 1 ≤ k ≤ 4, is greater than 0.50. Fig.
4(b) shows that the majority of tree edges can be removed by ap-
plying the voting procedure. A candidate building set is then ob-
tained using the extended lines that survive the voting procedure
(Awrangjeb et al., 2010a).

In areas with dense vegetation, the black shapes of buildings and
nearby trees are not separable and consequently a building may
be connected with another building a few metres away (see Fig.
5). If the connected buildings are not parallel to each other, then
the improved adjustment procedure will likely still fail. This is
why in the improved detection algorithm, the adjustment and vot-
ing procedure is available as an optional step, the choice of which
will depend upon vegetation density. In either case, there may
be some false buildings present in the candidate building set, as
shown in Fig. 5(b). A procedure utilising the edge orientation
histogram from the orthoimage is then applied in order to remove
false positives.

3.4 Application of Edge Orientation Histogram

Following the detection of candidate buildings, a gradient his-
togram is formed using the edge points within each candidate
building rectangle. Edges are first extracted from the orthophoto
using an edge detector and short edges (less than 3m in length) are
removed. Each edge is then smoothed and the gradient (tangent
angle) is calculated on each point using the first order derivatives.
The gradient will be in the range [−90◦,+90◦]. A histogram
with a successive bin distance of Dbin = 5◦ is formed using the
gradient values of all edge points lying inside the candidate rect-
angle.

Rectangles containing the whole or major part of a building should
have one or more significant peaks in the histogram, since edges
detected on building roofs are formed from straight line segments.
All points on an apparent straight line segment will have a similar
gradient value and hence will be assigned to the same histogram
bin, resulting in a significant peak. A significant peak means the
corresponding bin height is well above the mean bin height of the
histogram. Since edge points whose gradient falls into the first (at
−90◦ to−85◦) and last (at 85◦ to 90◦) bins have almost the same
orientation, located peaks in these two bins are added to form a
single peak.

Fig. 6 illustrates three gradient histogram functions and mean
heights for candidate buildings B1, B2 and B3 in Fig. 5(b). Two
bins at ±90◦ basically form one bin, because lines in these two
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Figure 6: Gradient histogram functions and means for rectangles
(a) B1, (b) B2 and (c) B3 in Fig. 5(b): x-axis is in degrees and
y-axis is in pixels (bin heights).

bins are perpendicular to the x-axis and reside above & below
this axis. Therefore, these can be a peak at either of these bins
and their heights can be accumulated to form a single peak. Fig.
6(a) shows that B1 has two significant peaks: 80 pixels at 0◦ and
117 (55 + 62) pixels at ±90◦, these being well above the mean
height of 28.6 pixels. The two significant peaks separated by 90◦

strongly suggest that this is a building. From Fig. 6(b) it can
be seen that B2 has one significant peak at ±90◦ but a number
of insignificant peaks. This points to B2 being partly building
but mostly vegetation, which is also supported by the high mean
height value. With the absence of any significant peak, but a num-
ber of insignificant peaks close to the mean height, Fig. 6(c) in-
dicates that B3 is comprised of vegetation. Although there may
be some significant peaks in heavily vegetated areas, a high aver-
age height of bins between two significant peaks can be expected.
Note that the orthophoto resolution in this case was 10cm, so a
bin height of 80 pixels indicates a total length of 8m from the
contributing edges.

The observations above support the theoretical inferences. In
practice, however, detected vegetation clusters can show the edge
characteristics of a building, and a small building having a flat
roof may not have enough edges to show the required peak prop-
erties. As a result, some true buildings can be missed, while some
false buildings may be detected. A number of precautions can be
formulated in order to minimize the occurrence of false detec-
tions.

Two types of histograms are formed using edges within each de-
tected rectangle. In the first type, one histogram considers all the
edges collectively, and in the second type histograms for indi-
vidual edges whose length is at least Lmin are formed. Let the
collective histogram be symbolized as Hcol, with an individual
histogram being indicated by Hind. Tests on Hcol and Hind can
be carried out to identify true buildings and remove trees. If a
detected rectangle passes at least one of the following tests it is
selected as a building, otherwise it is removed as vegetation.

1. Test 1: Hcol has at least two peaks with heights of at least
3Lmin and the average height of bins between those peaks
is less than 2Lmin. This test ensures the selection of a large
building, where at least two of its long perpendicular sides
are detected. It also removes vegetation where the average
height of bins between peaks is high.

2. Test 2: The highest bin in Hcol is at least 3Lmin in height
and the aggregated height of all bins inHcol is at most 90m.
This test ensures the selection of a large building where at
least one of its long sides is detected. It also removes vege-
tation where the aggregated height of all bins is high.

3. Test 3: Hcol has at least two peaks with heights of at least
2Lmin, and the highest bin to mean height ratio RMm1 is
at least 3. This test ensures the selection of a medium size
building, where at least two of its perpendicular sides are
detected. It also removes vegetation where the highest bin
to mean height ratio is low.

4. Test 4: The highest bin in Hcol has a height of at least Lmin
and the highest bin to mean height ratio RMm2 is at least
4. This test ensures the selection of a small or medium size
building where at least one of its sides is at least partially
detected. It also removes small to moderate sized vegetation
areas where the highest bin to mean height ratio is low.

5. Test 5: The highest bin inHind has a height of at least Lmin
and the aggregated height of all bins inHcol is at most 90m.
This test ensures the selection of buildings which are oc-
cluded on at most three sides.

6. Test 6: The ratio RaTp of the detected rectangular area to
the number of texture pixels (NTp, the aggregated height of
all bins inHcol) is at least 45. This test ensures the selection
of all buildings which are at least partially detected but the
roof sides are missed.

The application of these tests on the complex scene in Fig. 5(b)
produces the result shown in Fig. 5(c). Note that for simple
scenes with small amounts of vegetation, the NDVI and entropy
together can successfully remove most trees so subsequent ap-
plication of the voting procedure and edge orientation histogram
can be considered as optional, leading to a saving of computation
time.

4 RESULTS AND DISCUSSIONS

The threshold-free evaluation system involved in the performance
study conducted makes one-to-one correspondences using near-
est centre distances between detected and reference buildings.
The descriptor ‘threshold-free’ means the evaluation system does
not involve any thresholds based on human choice. Some 15 eval-
uation indices in three categories, namely object-based, pixel-
based and geometric, have been employed. Whereas pixel-based
evaluation considers only spectral properties in the imagery, object-
based evaluation takes into account spatial and contextual proper-
ties in both the imagery and LIDAR data. The root mean square
positional discrepancy value (RMSE) is employed to quantify the
geometric accuracy. The detailed procedure of the threshold-
free evaluation system and the evaluation indices can be found
in (Awrangjeb et al., 2010b).

The test data sets employed cover three suburban areas in Aus-
tralia, Fairfield, NSW; Moonee Ponds, Victoria and Knox, Victo-
ria. The Fairfield data set covers an area of 588m × 417m and
contains 370 buildings, Moonee Ponds covers 447m× 447m and
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has 250 buildings and Knox covers 400m × 400m and contains
130 buildings. Fairfield contains many large industrial buildings
and in Mooney Ponds there were some green buildings. Knox
can be characterized as outer suburban with lower housing den-
sity and extensive tree coverage that partially covers buildings. In
terms of topography, Fairfield and Mooney Ponds are relatively
flat while Knox is quite hilly.

LIDAR coverage comprised last-pulse returns with a point spac-
ing of 0.5m for Fairfield, and first-pulse returns with a point spac-
ing of 1m for Moonee Ponds and Knox. For Fairfield and Knox,
RGB colour orthoimagery was available, with resolutions of 0.15m
and 0.1m, respectively. Moonee Ponds image data comprised
RGBI colour orthoimagery with a resolution of 0.1m. Bare-earth
DEMs of 1m horizontal resolution covered all three areas.

Reference data sets were created by monoscopic image measure-
ment using the Barista software 2. All rectangular structures, rec-
ognizable as buildings and above the height threshold Th, were
digitized. The reference data included garden sheds, garages, etc.
These were sometimes as small as 10m2 in area.

Tables 1 to 3 show results of the object-based, pixel-based and ge-
ometric accuracy evaluations of the improved building detection
algorithm in the three test areas. A visual illustration of sample
building detection results are shown in Fig. 7. The improved
algorithm produced moderately better performance than the orig-
inal in all three evaluation categories within both Fairfield and
Mooney Ponds. The better performance was mainly due to proper
detection of large industrial buildings in Fairfield, detection of
some green buildings in Mooney Ponds, and elimination of trees
in both Fairfield and Mooney Ponds.

In Knox, the improved algorithm exhibited significantly better
performance over the original, due to two main reasons. Firstly,
the improved algorithm better accommodated the dense tree cover
and randomly oriented buildings that characterized the Knox data.
Fairfield and Mooney Ponds on the other hand are low in vege-
tation cover and buildings are generally well separated and more
or less parallel or perpendicular to each other. Secondly, the im-
proved algorithm showed its merits in better handling varying to-
pography. Knox is a hilly area (maximum height HM = 270m
and minimum heightHm = 110m), whereas Fairfield (HM = 23m
andHm = 1m) and Mooney Ponds (HM = 43m andHm = 23m)
are moderately flat.

The original algorithm detected a large number of false buildings
in Knox, as illustrated in Figs. 7 (a) and (c). Moreover, many
buildings detected with the original algorithm were not properly
aligned. Consequently, in object-based evaluation, 56% qual-
ity was observed with 77% completeness and 67% correctness.
The reference cross-lap rate was above 85%, with 39% detection
overlap rate. In pixel-based evaluation, 27% quality was found
with 44% completeness and 42% correctness. The area omission
error was more than 50% and both branching and miss factors
were above 120%. The geometric accuracy was no better than 33
pixels.

In contrast, as shown for Knox in Figs. 7 (b) and (d), the im-
proved detector removed a large number of false buildings using
its orientation histogram. In object-based evaluation, when com-
pared to the original algorithm, the quality increased to 82%, a
26% rise. The detection overlap rate decreased to 13% and the
reference cross-lap rate reduced to 62%. In pixel-based evalu-
ation, again when compared to the original algorithm, the qual-
ity went up to 39%, a 12% growth, while the branching factor

2The Barista Software, www.baristasoftware.com.au, May 2011.

Table 1: Object-based evaluation results in percentages (Cm =
completeness, Cr = correctness, Ql = quality, Md = multiple de-
tection rate, Do = Detection overlap rate, Crd = detection cross-
lap rate and Crr = reference cross-lap rate).

Scenes Cm Cr Ql Md Do Crd Crr

Fairfield 95.1 95.4 92.2 2.7 8.6 3.5 9.7
MPonds 94.5 95.3 89.2 6.2 13.1 7.3 17.5
Knox 93.2 87.2 82.0 9.3 12.8 23.3 61.6
Average 94.0 91.3 86.4 6.9 11.9 14.4 37.6

Table 2: Pixel-based evaluation results in percentages (Cmp =
completeness,Crp = correctness,Qlp = quality,Aoe = area omis-
sion error, Ace = area commission error, Bf = branching factor
and Mf = miss factor).

Scenes Cmp Crp Qlp Aoe Ace Bf Mf

Fairfield 83.2 84.5 72.4 15.3 12.5 13.5 20.3
MPonds 87.2 85.4 75.3 12.7 13.2 16.7 17.3
Knox 49.0 65.9 39.1 51.0 30.9 51.8 104.0
Average 73.1 78.6 62.3 26.3 18.9 27.3 47.2

declined dramatically to 52% and the miss factor was also mod-
erately improved to 104%. Geometric accuracy improved to 20
pixels, or by approximately 50%.

In object-based evaluation, the improved algorithm offered on av-
erage across the three data sets a more than 10% increase in com-
pleteness and correctness and a 15% increase in quality. Multiple
detection and detection overlap rates were also low. In pixel-
based evaluation, there was also a reasonable rise in complete-
ness (4%), correctness (10%) and quality (7%). Area omission
and commission errors were less than those obtained with the
original algorithm. In addition, there was a 5 pixel improvement
in geometric accuracy.

5 CONCLUSIONS

This paper has presented an improved automatic building de-
tection technique that exhibits better performance in separating
buildings from trees. In addition to employing height and width
thresholds and colour information, it uses texture information
from both LIDAR and colour orthoimagery. The joint appli-
cation of measures of entropy and NDVI helps in the removal
of vegetation by making trees more easily distinguishable. The
voting procedure incorporates neighbourhood information from
the image and LIDAR data for further removal of trees. Finally,
a rule-based procedure based on the edge orientation histogram
from the image edges assists in eliminating false positive build-
ing candidates. The experimental results reported showed that
while the improved algorithm offered moderately enhanced per-
formance in Fairfield and Mooney Ponds, it yielded a very signif-
icant improvement in performance in Knox across all three eval-
uation categories.
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