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ABSTRACT:  
 
It’s necessary to discuss the topology model of digital images for integrating remote sensing and geographic information system in 
higher levels. Based on complex theories, a multi-level hierarchical image representation is presented that preserves topological 
relation equivalency and a set of functional architectures that efficiently reflects this representation. In the proposed hierarchical 
framework, a novel progressive region growing method is proposed that incorporates spatial information related to adjacency 
between pixels. The particularity of this method is that connected regions and their topology generate objects in different scales, 
furthermore constructing a tree-object structure reflecting their spatial relationships. 
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1. INTRODUCTION 

Image engineering consists of three layers: low-level image 
processing based on pixel, inter-level image analyzing based 
on object, and high-level image understanding based on 
semantics (Zhu, 2003). The course from image processing, 
analyzing to understanding is a progressive procedure 
reflecting information processing phases. In the processing, 
images are interpreted by description models using certain 
ways; while the transition from digital number within low-level 
origin images, objects within inter-level image extraction to 
knowledge retrieved from high-level architecture (e.g. spatial 
relationship) is progressively accomplished. It is amazed that 
such a hierarchical image information representation that 
preserves spatial relationships is constructed along with the 
progressive processing, which implies an information 
framework from abstract status to physical one and a 
hierarchical transition from discrete structure to continuous one. 
However, problems remain along with the evolvement. Digital 
images are discrete objects in nature, but they are usually 
representing continuous objects or, at least, they are perceived 
as continuous objects by visual perception of human beings. 
Therefore, having a discrete and continuous representation of 
one object at the same time may activate interests.  
 
The field of digital topology grew out of this challenge, and its 
main purpose is to study the topology properties of digital 
images (Rosenfeld, 1979). Based on the theory, this paper 
presents a multi-level hierarchical image representation that 
preserves topological relation equivalency between discrete 
and continuous descriptions of the same object and a set of 
functional architectures that efficiently reflects this 
representation. This hierarchical framework involves a general 
method to associate each digital object, in an arbitrary digital 
space, with a Euclidean polyhedron (named as its continuous 

analogue), which naturally represents the “continuous 
perception” that an observer may take on that object. The 
multilevel architecture and, particularly, continuous analogues 
of objects can be applied to obtain new results in digital 
topology, by translating the corresponding continuous results 
through the levels of the architecture. So it may derive interests 
for integrating remote sensing and geographic information 
system in higher levels. 
 
Image segmentation aim to subdivide the image into disjoint 
subsets of pixels, called regions, on the basis of some 
homogeneity criterion. Usually, this is the starting point in 
practical applications like content-based image retrieval or 
image compression (Chamorro-Martinez et al., 2003). Many 
types of segmentation techniques have been proposed in 
literatures (Chamorro-Martinez et al., 2003; Smith et al., 2000; 
Metternicht, 2003). Nevertheless, a drawback of most of these 
approaches is that they don’t take into account that a region 
must be topologically connected. As a consequence, pixels 
belonging to separate and different regions could be assigned 
to the same cluster. The proposed hierarchical framework in 
this paper preserves spatial relationships and, so raises a 
suitable condition for image segmentation to incorporate 
spatial information related to adjacency between pixels. Based 
on the hierarchical representation, a novel progressive region 
growing method is proposed which incorporates spatial 
information related to adjacency between pixels. The 
particularity of this method is that connected regions and their 
topology generate objects in different scales, furthermore 
constructing a tree-object structure reflecting their spatial 
relationships.  
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2. BASIC NOTIONS OF DIGITAL IMAGE 

A topological model is used to explicitly specify adjacency and 
inclusion relationships between the different cells (vertices, 
edges, faces for dimensions 0, 1, 2) of a geometrical object. 
Information, called embeddings (labels), such as geometrical 
ones (for instance vertex coordinates) can be added to the 
model. The archetypical device model (R2) is a standard 
decomposition of Euclidean plane (R2) into abstract cells. The 
kernel of our modeller is based on the topology of cellular 
complexes which is the only possible topology of finite sets 
(Kovalevsky, 1989; Kovalevsky, 2006). Under this topology no 
contradictions or paradoxes arise when defining connected 
subsets and their boundaries. In this section, we briefly 
summarize the basic notions of the multilevel architecture 
based on the topology of cellular complexes, as well as the 
notation that will be used throughout the paper. 
 
Definition 1: An abstract cellular complex (AC complex) 
C=(E, B, dim) is a set E of abstract elements (cells) provided 
with a natural reflexive, antisymmetric and transitive binary 
relation B⊂E×E called the bounding relation, and with a 
dimension function dim: E I from E into the set I of non-
negative integers such that dim(e')≤dim(e") for all pairs (e', 
e")∈B. An AC complex C, when regarded in this way as a 
topological space, is called an underlying polyhedron and 
written |C| = ∪{e, e∈C}. Moreover, C satisfies the following 
properties: 
 

C1: ≤ is a partial order in E. 
C2: If e'∈C and e'' is a face of e' then e''∈C. 
C3: If e', e''∈C then e'∩e'' is a face of both e' and e''. 
C4: ∀e∈C is a face of some n-dimensional cells in the C. 
 

According to the definition of open star in the general topology, 
we introduce two types of “digital neighbourhoods”: star and 
extended star of a cell x∈C in a given digital object 
O⊆celln(C).  
 
Definition 2: The star of x in O is the set stn(x; O) = {y∈O, x ≤ 
y} of n-cells (pixels) in O having x as a face. Similarly, the 
extended star of x in O is the set stn

*(x; O) = {y∈O, x∩y ≠ ∅} 
of n-cells (pixels) in O intersecting x. 
 
Definition 3: Given an AC C and two cells x, y∈C. A 
centroid-map on C is a map Θ:C→|C| such that Θ(x) belongs to 
the interior of x; that is, Θ(x) ∈xo = x-∂x, where ∂x= ∪{y, y<x} 
stands for the boundary of x. 
 

Y

X0 i

j 2-cell’s centroid 
0-cell (vertex)

1-cell (edge)

2-cell (pixel)

 
 

Fig. 1 An abstract cell in R2 

 
The maximum dimension of the cells of an AC complex is 
called its dimension. We shall mainly consider complexes of 
dimension 2. Their elements with dimension 0 (0-cells) are 
called points, elements of dimension 1 (1-cells) are called 
edges, elements of dimension 2 (2-cells) are called pixels 
(faces). As a consequence, the spatial layout of pixels in a 

digital image is represented by a device model, which is an n-
dimensional locally finite AC complex determined by the 
collection of unit 2-squares in R2 whose edges are parallel to 
the coordinate axes and whose centres are in the set Z2. The 
centroid-map we will consider in R2 associates to each square x 
its barycentre Θ(x). In particular, if dim(x)=2 then Θ(x)∈Z2. 
So that, every digital object O in R2 can be identified with a 
subset of points in Z2.  
 
Let the digital image (G) be a locally finite AC complex of 
dimension n (n=2). Each n-cell in G represents a pixel, and so 
the digital object (O∈G) displayed in a digital image is a 
subset of the set celln(G) of n-cells in G, denoted by 
O⊆celln(G); while the other lower dimensional cells in G are 
used to describe how the pixels could be linked to each other. 
If the full image is partition into m disjoint subsets (Oi, i=1, 
2,…, m), then  
 

GO
m

i
i =

=
U

1
 and ∀i≠j : Oi∩Oj=∅                (1). 

 
The 2-cells (pixels) are the area elements. In image processing, 
2-cells must be associated with the notion of pixels since a gray 
value assigned to a pixel originates from measuring the amount 
of energy radiated from an elementary area. Valid adjacencies 
are between adjacent pixels which are labelled by identical 
image values(Rosenfeld, 1984). In fact, pixels are usually a 
combination of materials, and frequently in multispectral and 
hyperspectral image (Bragato, 2004; Plaza et al., 2004). To 
solve this problem, region is regarded as a fuzzy subset of 
pixels (Bragato, 2004), in such a way that every pixel of the 
image has a membership degree to that region. It is a key that a 
fuzzy resemblance relation between neighbour pixels is 
obtained from a fuzzy resemblance relation between their 
corresponding feature vectors. So we characterize each pixel p 

by means of a vector of features , where a 
feature ∈R with i {∈ 1, 2,…,k}, is a numerical measure of 
any relevant characteristic that may be obtained for p. In 
general, we define a fuzzy resemblance relation between 
feature vectors as a fuzzy subset FR of R

][ 21 k
pppp f,...,f,ff =

→

i
pf

k×Rk, with 
membership function FR:Rk×Rk→[0, 1]. For simplicity, we 
define a set of centroids and compute the membership value for 
all the pixels in the image to each centroid. 
 
 

3. MULTI-LEVEL IMAGE REPRESENTATION  

3.1 A Hierarchical Information Representation (HIR) for 
Images 

In the processing from low-level to high-level, images are 
interpreted by description models using certain ways in 
different abstract levels; while the transition from digital 
number within low-level origin images, objects within inter-
level image extraction to knowledge retrieved from high-level 
architecture is progressively accomplished. Amazing as it is, 
such a hierarchical information representation (HIR) for images 
that preserves spatial relationships is constructed along with the 
progressive processing, which shows an information 
framework from abstract to material and a hierarchical 
transition from discrete to continuous. Considering the gap 
between the discrete world of digital objects and the Euclidean 
world of their continuous interpretations, this paper proposes a 
progressively hierarchical image representation, in which there 
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coexist discrete and continuous descriptions of the same object 
preserved topological relation equivalency.  
 
This framework consists of four levels: two extreme levels: 
device and continuous levels, and additional two intermediate 
levels: logical and conceptual levels. The device level 
represents the physical problem (Fig.2a/a’) whereas the models 
in the continuous level are topological spaces which allow us to 
use the well-known results of continuous topology (e.g. 
polyhedral topology) (Fig.2b/b’). The additional two 
intermediate levels are used to bridge the two extreme levels, 
which allow a progressive evolution from the discrete object to 
the Euclidean one, and vice versa. The logical level is closer to 
the device level and it is used for processing, for writing 
algorithms and to show their correctness (Fig.2c/c’). The 
conceptual level is the nearest to the continuous level and it is 
used to translate results and notions from the continuous level 
to the logical level (Fig.2d/d’).  
 
3.2 

3.2.1 

3.2.2 

A Multi-Level Functional Architecture 

Because a digital space fixes, among all the possible 
continuous interpretations, just one for each digital object, this 
continuous interpretation of a digital object is represented at 
each level of the architecture using a different model; in 
particular, the corresponding model at the continuous level is a 
Euclidean polyhedron, called the continuous analogue of the 
object. According to target applications, in each one of them 
we can use different models.  
 
To illustrate our purpose, we introduce an empirical functional 
structure in dimension 2 that efficiently reflects the proposed 
representation. Inside the modelling structure, objects are 
represented with four different models: discrete, discrete 
contours, discrete analytical, and continuous. In the 
hierarchical structure, links between the different consecutive 
levels allow us to manipulate and propagate modifications 
locally. Updating the whole structure is thus not systematically 
needed. Of course such a framework comes with a prize. The 
complexity of the hierarchical structure is much more complex 
than classical topology based modelling or imaging softwares. 
 
Let the full image G be subdivided into n disjoint objects 
Oi⊆cell2(G) (i=1,2,..,n), which is a set of 2-cells with domain 
fp

* of homogeneous feature value (Fig. 2).  
 

0-Device Level: corresponds to the classical discrete 
representation of image elements (pixels) in a computer screen. 
Each pixel is represented by a square topological face 
associated with a colour feature embedding. Moreover, integer 
coordinates are attached to each topological vertex.  
 
A discrete model of O in this level is the subcomplex 

={x G; x ≤ y, y O} induced by the cells in O, and ∈ ∈

∈f

f
OD

→
pf p

* for any cells (Fig. 2a). This level has a very few degree 
of abstraction and we only represent the physical aspects of the 
objects. 
 

1-logical level: corresponds to the contours obtained 
for each 4-connected region with homogeneous feature vector. 
The representation of these contours is based on the inter-pixel 
model (Kovalevsky, 1989). Each discrete point is represented 
by a 0-cell and two successive points are linked by a 1-cell (Fig. 
2b). This representation simplifies the coverage of level 0 
regions boundaries. There is no embedding at this level and 
geometrical information needed for the visualization of the 
level are located in level 0 and can be accessed from level 1.  
 
A discrete border model of O in this level is an undirected 
graph , whose vertices are 0-cells and linked by 1-cells in O, 
moreover two of those cells x, y are adjacent if there exists a 

common face a≤x∩y such that (x), (y)∈f

f
OL

→
f

→
f p

*. 
 
In this level, we consider the proximity aspects of the objects 
and so, we can study some properties of topological nature. 
The main function of this level is to be the support for writing 
the algorithms and to prove their correctness. Because  is 
not planar, this level is far from the mathematical model. So we 
need the conceptual level as an interface between the level 
above and the continuous level. 

f
OL
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Fig. 2 Multi-level hierarchical representation for digital images: 

(a) discrete level; (b) logical level; (c) conceptual level; (d) 
continuous level. 
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3.2.3 

3.2.4 

2-Conceptual Level: is an implicit representation of 
the discrete border primitive. It corresponds to the discrete 
analytical description of the level 1 region contours. More 
precisely, each contour is described as a discrete analytical 
polygon computed according to the given models. For the sake 
of simplified solution, we flatten out the graph  in a natural 
way and we get the planar graph (Fig. 2c). In this graph there 
are two different kinds of vertices: 0-cells and centroids of 1-
cells. Observe that this graph is a triangulation of the Euclidean 
plane, which makes up the conceptual level. 

f
OL

 
A discrete analytical model of O is an induced directed graph 

, whose vertices are the centroids Θ(x) of all 0-cells and 1-

cells x∈G with (x)∈f

f
OC

→
f p

*, and its directed edges are pairs 
(Θ(x), Θ(y)) with x<y. 
 

3-Continuous Level: is an explicit representation. In 
this level, each region is described as a Euclidean polygon with 
attribute features in the classical boundary representation form. 
The primitive of this level may be created using the tools 
available inside the modeller, or may be the result of the 
reconstruction process applied on level 0. 2D Euclidean vertex 
coordinates and face features are associated to the continuous 
model of O in this level (Fig. 2d). 
 
A simplicial analogue  is an order complex associated to the 
directed graph . This is, <Θ(α

f
OS

f
OC 0), Θ(α1), …, Θ(αm)> is m-

simplex of  if Θ(αf
OS 0), Θ(α1), …, Θ(αm) is a directed path in 

.This simplicial complex defines the simplicial level for the 
object O in the architecture and, finally, the continuous 
analogue of O is the underlying polyhedron | | of . 

f
OC

f
OS f

OS
 
When given a concrete problem, we must choose specific 
models in each level and functions which can support the 
functionality that we have described. Specifically, suppose that 
these chosen models are D, L, C and S for the device, logical, 
conceptual and continuous level, respectively. Let Ω(D), Ω(L), 
Ω(C) and Ω(S) be the sets of the objects of these models. Then 
here are several mappings: (1) a 1-1 mapping i:Ω(D)→Ω(L); (2) 
a natural mapping π: Ω(L)→Ω(C) and π*:Ω(C)→Ω(L); (3) a 
suitable mapping j:Ω(C) and Ω(S). So we have the following 
functional architecture: 
 

)()(

)()(

*

SΩCΩ

DΩLΩ

j

i

⎯→⎯

↓↑

⎯→⎯

ππ . 

 
This architecture provides a link between the discrete world of 
digital pictures represented by a cellular complex, and a 
Euclidean space through several other intermediate levels and, 
embodies the transitions from low-level feature to high-level 
semantic. Further, this framework involves a general method to 
associate each digital object, in an arbitrary digital space, with 
a Euclidean polyhedron called its continuous analogue, which 
naturally represents the “continuous perception” that an 
observer may take on that object. The multilevel architecture 
and, particularly, continuous analogues of objects can be 
applied to obtain new results in digital topology, by translating 
the corresponding continuous results through the levels of the 
architecture. Thus it may be interesting for integrating 

geographic information system and remote sensing in higher 
levels. 
 
 

4. A ROOT TREE STRUCTURE OF OBJECTS 

The proposed hierarchical framework preserves spatial 
relationships, raising a suitable condition for image 
segmentation to incorporate spatial information related to 
adjacency between pixels. Thus this multi-level image 
representation allows manipulating and propagating 
modifications locally (Fig.2, Fig.3). We locally modify the 
segmentation of the digital image by filling the fragmental 
regions in order to obtaining desired-only regions. Thus, we 
can determine which cells must be removed in the other levels. 
Indeed, in the original digital image, these cells where 
surrounded by two faces are represented with different colors. 
After the edits, these cells are surrounded by two faces with the 
same color. Using the links between level 0 and level 1, we can 
easily find the cells of level 1 having been removed. And so on 
for level 2 and level 3. Here, the main interest of using links of 
the structure is that we can make local modification without re-
computing the entire structure. 
 
Suppose the full image and the discrete level correspond to two 
extreme levels of objects: the root and leafs of a tree, 
respectively. Starting with an arbitrary pixels, objects and 
features can be extracted easily through a down-top region 
merging cluster in different scales. While performing the 
down-top union of regions (children) at one level into a single 
larger region (parent) at the next higher level of the tree, 
regions are grouped together according to similarities between 
their feature vectors, which include such features as colour 
information, orientation, texture, size, energy, and neighbour 
information. Any other levels of segmented regions lie betwixt 
the two extreme levels. Hence a root tree structure is 
constructed in a simple and “natural” way the regions 
according to their topology and, where each level consists of 
two data structures, a weight graph Wlevel(Nlevel, Elevel) and a 
disjoint-region set Rlevel

 (Corme, 1990).  
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Fig. 3 Discrete segmentation operation based on the multi-level 
image representation 
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Fig.4. A root tree structure of objects 
 
In the tree construction (Fig. 4), the root node denotes the 
border of the whole image where all the regions are included, 
the leaf nodes denote all pixels of the discrete level, other 
nodes of the tree denote regions Nlevel and has a feature vector 
characterizing those regions, each region in Rlevel is one node or 
a group of nodes from the next lower level. Two nodes are 
linked by an edge if and only if their corresponding regions are 
adjacent each other. The weighted graph in each level is 
composed of the nodes and edges within this level. The 
undirected dot-edges in each level define the spatial 
relationships between the nodes, and the weight of each edge 
defines the degree of the similarity between those two nodes. 
The relationship among the disjoint-set in each level is 
illustrated by the groupings. The directed solid-edges of 
regions in different levels reflect the inclusion relationships 
between them. Since regarded as a rooted “directed” tree, and 
in which from a given region stored, there is only one path to 
the root, this is, the map from the parent node to child nodes is 
1: n (n∈Z). Given this directed notion of a rooted tree, a rooted 
sub-tree can be defined for each node of the tree. As a 
consequence, for each region which contains included regions, 
a sub-tree is recursively generated. The parent node shall 
directly inherit attribute features of the first child with smallest 
feature distance among all the edges connected to this node. 
 
The tree-like organization embodies reflecting the relationships 
of regions and their attribute features. For each region stored in 
the tree, we can directly access to the included regions, the 
parent region, (e.g. vertical navigation), or adjacent regions 
(horizontal navigation) (Maire et al., 2005). Once the tree 
structure is stored, further complementary manipulating is 
possible for local modification without recomputing the entire 
structure. 
 
 

5. DISCRETE IMAGE SEGEMETAION 

As a practical instance, a region growing algorithm that 
efficiently constructs this root tree structure is proposed. The 
sequential process is described as four steps. 
 
5.1.1 

5.1.2 

5.1.3 

5.1.4 

Step 1. Initialization: To reduce the computation 
complexity, the image is initially partitioned into small K×K (K 
varies by image size, usually equates to 4 or 8) blocks 
composed of topological connected pixels with similar image 
features. Each blob has an associated set of features measured 
from the original pixel spectral features of the image. Based on 
these extracted features and the neighboring relationships 
among blobs, the one-level is built. 
 

Step 2. Region Merging Cluster: A recursive node 
clustering and region merging are performed at each level 
using a bottom-up strategy. At the end of each iteration, the 
algorithm has completed one level of the hierarchy, so a new 
level is constructed and the structure is updated. The procedure 
is repeated until the stopping condition has been attained, 
which is defined as either the desired final number of objects, 
or the maximum feature distance (threshold) below which 
clusters may be combined. Or if not specified, the algorithm 
will continue until a full tree structure of the original image is 
built with the root node of the tree being a single object 
corresponding to the whole image.  
 

Step 3. Extraction of Geometry and the Adjacency 
Relation: Geometry and the topological relation in each level 
are extracted for each region detected during step 2, and stored 
in the database. When progressively recognizing, classifying 
and integrating image objects (nodes) from different regions in 
intra-level or inter-level, besides just colour and geometry 
information, multi-dimensional information, including the 
orientation, texture, size, energy, and neighbour relationships 
between objects are considered in the processing of region 
merging cluster.  
 

Step 4.  Building the tree structure: Based on 
segmentation results, and by analyzing topology relations and 
feature vectors, the regions are recursively created and stored 
in the tree structure and, so region inclusions are recursively 
deduced and propagated to the whole segmented image by 
adjacencies relations. Hence the tree-like organization of the 
hierarchical relations of spatial objects reflects hierarchical 
topological relations of spatial objects. From this tree structure, 
objects and features can be extracted easily through a top-down 
traversal of the final hierarchical structure of the image. 
 
In our practical instance, to ensure low computation 
complexity, the second low computation complexity, the step 2 
requires that each single-node region merge with at least one 
other region in this level. So, before a new level is generated, 
this iteration guarantees that all sets of the current Slevel include 
at least two nodes. As a consequence, each new level of the 
hierarchy is guaranteed to have no more than half the number 
of nodes as the previous level, ensuring fast convergence of the 
algorithm. 
 
 

6. CONCLUSION AND FUTURE WORK 

In this paper we presented a multi-level hierarchical 
information representation (HIR) for images that preserves 
topological relation equivalency and a set functional 
architecture that efficiently reflects this representation. Each 
level corresponds to a particular representation of the same 
object: discrete, discrete border, discrete analytical of regions, 
and continuous representations. Each level is linked with the 
levels above and below itself by transition mapping. This 
ensures the topological relation equivalency between all the 
representations. In the proposed hierarchical framework, a 
progressive region growing method is used to subdivide image 
into regions and to construct a tree-object structure reflecting 
their spatial relationship. The particularity of this method is 
that it incorporates spatial information related to adjacency 
between pixels, while keeping connecting regions and their 
topology generated in different scales. As a short term goal, we 
plan to develop spatial relationship of discrete digital objects, 
while more studies in details for the propagation of local 
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modifications along with the hierarchical multi-level will be 
pursued in the future. 
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