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ABSTRACT:

In this paper we focus on a stereo system consisting of one stationary and one moving platform. The stationary platform detects
motions and gives cues to the moving platform. When an object is in the field of view of both sensors the object’s position, velocity,
and acceleration are estimated from stereo. To prove the results a second stationary sensor platform is available to compute a reference
from traditional stereo. We describe investigations about the accuracy and reliability concerning the automatic velocity estimation of
targets in image sequences of multi-ocular systems with emphasis on moving sensor platforms. In order to make the assessment more
comprehensible, we discuss a stereo-system consisting of one stationary and one moving platform. Therefore in this context dynamic
stereo means that the stereo basis and relative orientation are varying within the image sequence.

We present image sequences originating from different sensors at different positions including one moving sensor that were recorded
during the same time span. Since all-day capability is required for warning systems predominantly infrared (IR) sensors were employed.
We took image sequences of scenarios with one or more vehicles. The vehicles moved with typical velocities in natural surrounding.
Their distances to the sensors was in the close range. The trajectories of all sensors and vehicles were registered with GPS-recorders to

obtain ground-truth data.

1 INTRODUCTION

Modern automatic surveillance and warning systems need to en-
sure the safety of high value targets. To achieve results that guar-
antee adequate protection against different attacks high quality
classifications of threats are essential. Incorporating the move-
ment patterns of active objects appearing in the field of view of
the surveillance system into the analysis of potential threats im-
proves the reliability of the classification results. This is true even
more, if the information about the movement of the objects is of
high quality. The required high quality information could be ob-
tained by a reconstruction of the trajectory of the objects in time
and space, which can be done with multi-ocular stereo vision.
Furthermore, a more precise definition of the threat is obtained,
if the accuracy of the reconstructed trajectory allows the deriva-
tion of the three-dimensional velocity and acceleration of each
object. Especially for objects moving directly towards the sensor,
the three-dimensional position, velocity or even acceleration of
the object are of highest interest, since they result in more robust
features than shape, size, texture or intensity for the analysis of
the threat. Since also moving objects need protection, e.g., con-
voys of vehicles, the necessity to discuss a moving sensor plat-
form arises. In order to make the assessment more comprehensi-
ble, we discuss a stereo-system consisting of one stationary and
one moving platform.

The analysis starts with detection and tracking of objects in each
individual image sequence. Additionally the trajectory of the
moving sensor is estimated by Structure-From-Motion methods
(Hartley and Zisserman, 2000), (Kirchhot and Stilla, 2006). The
accuracy of the trajectory and relative orientation is improved by
sliding bundle adjustment over up to 100 subsequent frames. The
resulting trajectory is then matched with the corresponding GPS-
track of the vehicle carrying the moving sensor. This ensures that
all cameras can now be described in the same coordinate sys-
tem. Afterwards the correspondence problem is solved and the
three-dimensional trajectories and velocities of the observed ob-
jects are reconstructed (Scherer and Gabler, 2004)). The accuracy
of the reconstructed trajectories in space and time is assessed by
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comparison to the recorded GPS-data. Furthermore to analyze
possible performance degradations arising from the movement of
sensors, we compare the results of the moving stereo system with
the results of a stereo system consisting of two stationary sensors.
The solution to the correspondence problem and the trajectory
and velocity estimation of the observed object is identical for the
stationary and the dynamic case.

1.1 Related Work

Typical approaches for the estimation of the trajectory and ve-
locity of moving objects assume that the objects move on an ob-
served plane. In this case a monocular image sequence is suffi-
cient to determine the trajectory and velocity of a moving object.
One typical example may be (Reinartz et al., 2006). Reinartz
et al. compute a georeferenced image sequence which allows
to compute the position and velocity directly from image dis-
placements. Nistér presented quite different work about dynamic
stereo (Nistér et al., 2004) introducing a system of a stereo cam-
era mounted on a vehicle. The advantage of this system is that
the stereo basis and relative orientation remain constant over the
sequence although the sensors are moving. The approach pre-
sented here is based on (Scherer and Gabler, 2004) where the
range and velocity of objects at long ranges were computed from
triangulation. Caused by the long range application the contri-
bution focuses on discretization effects in the range and velocity
estimation. For such applications the relative rotations between
the sensors is very important while the relative positioning error
can be very large without effecting the results. Therefore posi-
tioning the sensors with GPS was sufficient in that work.

Our application is in close range where the relative positioning
error induces very large disparities. Therefore the registration of
the stationary sensor positions was improved by adjustments over
many GPS-measurements supported by distance measurements.
Additionally the registration of the orientation was done by the
comparison of the sensor’s view with the view of a virtual camera
computed from laser measurements taken from a helicopter.
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1.2 Notation

We describe experiments in which we employed different vehi-
cles (V1, V2 and V3). The vehicles V1 and V2 where monitored
with three different cameras (C1, C2 and Cy). Cameras C; and
C2 were stationary, whereas camera Cyy was mounted on top of
vehicle V3, which followed V1 and V>. Vi was driving in front
of Va. The positions of the vehicles were tracked with Global
Positioning Systems (GPS). The GPS-receivers are described by
the letter G. The connection to the vehicle, which’s position is
measured, is established by the use of an index that corresponds
to the vehicle, i.e. the GPS-system in the vehicle V) is depicted
by Gi. To obtain further ground-truth information we used the
information of a GPS-system Gy mounted on a helicopter Vi,
which performed laser measurements of the area in which our
experiments took place.

2 DATA ACQUISITION

The data described in this paper had been recorded during a mea-
surement campaign realized by the authors and other members of
FGAN-FOM. The campaign took place at the end of September
2006.

Three infrared cameras (C1, C2 and Cy) were used as imaging
sensors. The cameras C; and C2 were from AIM INFRAROT-
MODULE. Camera Cy was from FLIR Systems. The technical
details of the cameras are summarized in table [Tl

Ground truth data were recorded using the Global Positioning
System (GPS). The vehicles V1 and V> employed portable GPS-
systems GPSMAP 76CSx (G1 and G2). Vs, which carried the
Camera Cy, was equipped with a GPS-mouse system (Gs). The
portable GPS-systems were also used to determine the positions
of the stationary cameras C; and C2 and some additional outstand-
ing points in the terrain.

Furthermore the terrain was scanned with a Riegl LMS Q650
laser scanner, which was mounted on a Helicopter (Vg ) of type
Bell UH-1D. The scans produced several overlapping stripes
containing height profiles of the terrain. Vg was equipped with
an Inertial Measurement Unit (IMU) and a GPS-antenna (Gg).
The signals from both sensors were processed by a special com-
puter in such a way that position, orientation and acceleration of
the helicopter are known during the data acquisition phase. Fur-
ther details of the helicopter equipment can be found in (Hebel et
al., 2000).

3 TRIANGULATION AND VELOCITY ESTIMATION

We are now going to describe our general approach. First we
show the general procedure of obtaining a three-dimensional
track for the case of two stationary cameras. Second the neces-
sary modifications to expand the approach to the case of moving
sensors are depicted.

Generally the approach is divided into two steps. In the first step
the image sequences of each sensor are processed separately. The

| Camera H FOV [ Spectrum [ No. of Pixels ‘
C1 17.5° x 13.3° | 44-52 um 640 x 480
Co 18.7° x 14.1° | 2.0-5.3 um 384 x 288
Cy 20.0° x 15.0° | 3.0-5.0 um 320 x 256

Table 1: Technical Data of the used IR-cameras.
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results of this step are then used as input to the second step. The
second step combines the results of the analysis of the two image
sequences and constitutes the desired three-dimensional track of
the object of interest.

3.1 Stationary Case

The first step of creating a three-dimensional track applies an In-
frared Search and Track (IRST) algorithm to each of the image
sequences. This algorithm starts with pre-processing the images
to correct for sensor specific inhomogeneities. Afterwards the im-
age sequences are integrated to increase the signal-to-noise-ratio.
In the resulting sequences point like objects are tracked, so that
two-dimensional tracks of these objects are created in each image
sequence.

Figures [I] 2] and [3] show examples of the ’point-like objects’ as
seen from the cameras Ci1, C2 and Cy. The images have been
taken at the same time. The point-like objects found by the appli-
cation of the IRST-algorithm are marked with rectangles. Please
notice that not all of the marked points in one image must have a
corresponding mark in any of the other two images. On the other
hand the blue rectangle in each image marks a point that has cor-
respondences in the other images. That point belongs to the back
of vehicle V1. An example of a two-dimensional track resulting
from one object is given in figure ]

The second step uses the two-dimensional tracks that have
been created by the IRST-algorithm and reconstructs the three-
dimensional trajectories of objects by combining corresponding
two-dimensional tracks from the image sequences. For this re-
construction the knowledge of the camera’s position and orien-
tation are important. Further details and a theoretical discussion
of the accuracy and reliability of this approach can be found in
(Scherer and Gabler, 2004).

3.2 Dynamic Case

In the dynamic case one camera is moving during the observation.
Therefore the second step of the analysis procedure is modified in
such a way that the possible changes of the positional information
(position and orientation) of the camera are considered. These
information are obtained with Structure from Motion methods as
described later in[4.3]

Since these methods only return relative positional informations,
they have to be transformed into our reference frame by an Eu-
clidean transformation. This is done by fitting the whole track of
the moving camera Cy to the whole track of the sensor carrying
vehicle V3 obtained from the GPS-system Gs.

Due to the variance of the positional information obtained by our
GPS-receivers a final translation of the whole track of the mov-
ing camera is needed. This translation is obtained by comparing
the position of the moving camera at one point in time with the
position where it is seen in the corresponding image of one of the
stationary cameras.

4 CALIBRATION AND SYNCHRONIZATION

The measurement of the velocity of vehicles requires knowledge
about the time at which the vehicle is at a certain point. Since we
want to estimate the velocity from different cameras and compare
the results with ground-truth-data the data-streams of all sensors
need to be ’synchronized’ not only in time but also in space.
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Figure 1: Image from camera C;. In the center of the picture ve-
hicle V; can be seen. Vehicle Vs follows V;. The rectangles mark
’objects’ for which two-dimensional tracks had been created by
the IRST-algorithm.

Figure 2: Image from Camera C» taken at the same time as the
image shown in figure[T} Rectangles mark *objects’ that had been
found by the application of the IRST-algorithm.

4.1 Spatial Registration

The positions of the stationary cameras C; and Co were estab-
lished by combing all available position measurements (GPS, po-
sition information derived from the laser scans of the helicopter
and some additional distance measurements), stating a minimiza-
tion problem for the position and distance differences between
the measurements and solving it with the Levenberg-Marquardt
algorithm.

As a result of this procedure we obtained the camera positions
within a precision less than half a meter, which is much better
than the variance of one of our single GPS-measurements.

Now that the position of the stationary cameras had been fixed
we obtained the orientation of the cameras with the virtual over-
lay technique. By this we use the data of the height profiles from
the laser scanner to produce ’images’ of a camera with a virtual
reality tool. These pictures are then compared with the real cam-
era image. The comparison is done in an overlay of the real and
the virtual image. The parameters of the virtual camera are then
manually modified until a reasonable conformance between both
images is reached. An example of an overlay image is seen in
figure 5]
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Figure 3: Picture from camera Cy taken at the same time as the
picture [[] “objects’ resulting from the processing of this video
stream by the IRST-algorithm are again marked as rectangles.

Figure 4: Same image as in figure [T} Here a two-dimensional
track, as it resulted from the application of the IRST-algorithm to
the whole image-sequence of camera Cy, is overlayed. The track
belongs to the "object’ that had been marked with a blue rectangle
in the center of figure[T]

4.2 Temporal Registration

For the temporal registration, we need to synchronize our cam-
eras to a global time, e.g. GPS-time. Fortunately in order to
achieve the synchronization we only need to determine one con-
stant time-shift for each camera, since each image sequence is
equipped with timestamps of a local clock. We identified this
constant at that parts of the image-sequences that show starting
vehicles, since this incident could be identified with high preci-
sion in the GPS-time-stream.

4.3 Structure from Motion

Since the GPS-data contains no information about the orientation
(rotation) of the sensor an image-based reconstruction approach
is required. The reconstruction is initially computed indepen-
dently from the available GPS-data and is improved by sliding
bundle adjustment which takes the GPS-data into account. We
assume that the internal camera parameters are known for exam-

ple by the use of self-calibration techniques like (Zhang, 1999).

In the first step points of interest are detected in the first frame
(Forstner and Giilch, 1987). These points are then tracked
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Figure 5: Example of an overlay picture used to obtain the ori-
entation of camera Co. Reddish scene parts belong to the image
as seen from a virtual camera with data based on the laser mea-
surements. Bluish parts belong to the IR-image from the camera
Co.

through the sequence based on template matching (Lucas and
Kanade, 1981). Outliers of the tracking process are detected
with RANSAC (random sample consensus) (Fischler and Bolles,
1981) for homographies based on our previous work (Kirchhof
and Stilla, 2006). Every tenth frame the tracked point set is im-
proved by applying the point of interest detection to the current
frame.

The relative orientation can now be computed from the essential
matrix using the five point algorithm of Nist’er (Nistér, 2003)).
This relative orientation enforces the triangulation of the corre-
sponding 3d-point set. Subsequent frames can now be stitched
to the reconstruction by linear regression followed by non-
linear minimization of the reprojection error using Levenberg-
Marquardt (McGlone et al., 2004). The 3d-point set can now
frequently be updated in a robust way by retriangulation again
using RANSAC.

As mentioned above we refine the reconstruction with bundle ad-
justment over the latest one hundred frames using Levenberg-
Marquardt taking the GPS-data into account. Although we used a
tracking and matching strategy the computed tracks may be cor-
rupted by slightly moving objects or drifts of the tracker. The
Huber robust cost function (Huber, 1981) reduces the influence
of such errors while it is still convex. Therefore no additional
local minima are induced by it.

5 EXPERIMENTS

For the comparison of the stationary case with the dynamic case
we tracked vehicle V1 with all three cameras. The figures[T]to[3]
show images of the sequences. Within these images the blue rect-
angles mark the objects in the images that we used to reconstruct
the three-dimensional trajectory of V;. For the camera C; the
two-dimensional track of the object marked with a blue rectangle
is shown in figure 4]

5.1 Stationary Case

The result of the evaluation of the stationary cameras C; and Ca
is visible in figure [6] as a blue line. Because of the field of view
of the camera Cz only the last part of the track is visible. In that
range the position of the track coincides very well with the real
track of the vehicle.
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Figure 6: Reconstruction of the three-dimensional trajectory of
vehicle V1 (blue line) based on the images from the stationary
cameras C; and Ca.

5.2 Dynamic Case

Figure 7: Three-dimensional trajectory of V; (green line) recon-
structed from the cameras C; and Cy .

For the case including one moving camera Cy, which was the
main purpose of our investigation, the resulting three dimensional
track of vehicle V; is shown in figure[7|as a green line. Again the
track is in good accordance with the track of vehicle V1, as could
be seen by comparison with the two-dimensional track shown in

figure[d]
5.3 Comparison

A more quantitative comparison of the reconstruction results with
the real trajectory of V; as the one presented in the previous sec-
tions [5.1] and [5.2] is shown in figure[§] as a top view. The center
of the depicted coordinate system coincides with the position of
the camera C;. The vehicle V1 moves from the upper left cor-
ner to the lower right corner. It is obvious that in the stationary
(blue dots) and the dynamic case (green dots) the reconstructed
positions match well with the GPS-measurements (black dots).
At the end the dynamic track shows problems arising from in-
stabilities in computation of the position and orientation of the
moving camera Cy . These problems result in reconstructed posi-
tions showing a backward moving vehicle in contradiction to the
real trajectory of V;. Possibly the problem arises from the same
source as the fact that the pitch of the camera Cy needed a cor-
rection of about 1° before the data could be processed. Up to that
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point the results are quite good, as seen in the transition to the
track reconstructed from the stationary cameras.
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Figure 8: Comparison between the positions obtained in the sta-
tionary (marked by green dots) and the dynamic (blue dots) case
with GPS-measurements. Black dots represent the positions of
vehicle V1 as measured with G;.

Based on the good three-dimensional reconstruction of the posi-
tion it is now possible to derive the velocity of the vehicle V.
The velocity is calculated as a running linear regression over 15
time points. Figure [J]shows the results as green dots for the dy-
namic case and blue dots for the stationary case. The mean ve-
locity value from the GPS-data is shown as a black line. For both
cases the velocities vary around the mean value obtained from
the GPS-data. Obviously the velocity values from the dynamic
case are distorted by the reconstruction problems of the trajectory
mentioned in the previous paragraph, which start at 26.5 seconds
in figure[9] On the other hand it is seen, that without these prob-
lems the stationary data are a good continuation of dynamic ones.
Furthermore the figure shows that the variation of the velocity ob-
tained from the dynamic case (up to 26.5 seconds) is equal to the
variation of the velocity obtained from the stationary case.
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Figure 9: Comparison of the velocities obtained from the station-
ary (marked by green dots) and the dynamic (blue dots) case. The
horizontal black line represents the mean velocity obtained from
the GPS-data.

6 CONCLUSION

We described the results obtained from systems for automatic ve-
locity estimation from stereo data. One of the systems had a fixed
stereo basis, the other had a varying stereo basis since the second
camera of the stereo pair was mounted on a moving vehicle. It
has been shown that the described approach is applicable in prin-
ciple, provided that a high quality registration of all necessary
data is available.
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The structure from motion methods need to be supported by addi-
tional metrical information, e. g., GPS in our case. But the obtain-
able results seem to depend strongly on the quality of this addi-
tional information. In our case the velocity calculation was quite
good in the beginning, but failed when the position estimates ob-
tained by the structure from motion approach break down. Fur-
ther detailed investigations will be necessary to find the cause of
this failure.

7 OUTLOOK

As we pointed out above the structure from motion approach is
the bottleneck of the presented work. The 3d registration can
be improved by considering not only the relative orientation of
the monocular moving sensor but also the relative orientation be-
tween the moving and the stationary sensor. This is in general
a wide base stereo approach. Therefore the used descriptors for
points of interest have to be replaced by rotational and scale (and
in the optimal case affine) invariant descriptors like SIFT (Lowe,
2004) - or MSR - features. Additional improvement can be ob-
tained by detecting the moving objects and exclude them from
further processing.
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