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ABSTRACT 
The paper deals with the registration and modelling of terrestrial laser point clouds. For both problems a non parametric regression is 
suitably exploited, whose unknowns are the function values and the partial derivatives of a second order Taylor’s expansion 
estimated for a certain number of surface points. These allow to directly estimate local curvatures, namely Gaussian, mean and 
principal values. Relating to the registration problem, tie points are automatically detected from point clusters having extreme 
Gaussian curvature values. The centroids of such clusters generate a vertexes configuration: the point to point correspondences are 
automatically defined by the analysis of the respective adjacency matrices. For these sets of pairs, the pre-alignment roto-translation 
parameters are computed by a SVD algorithm, while the final alignment is executed by an ICP method. The paper further proposes a 
method to directly detect the discontinuities (segmentation) and to successively estimate the parameters for each recognized surface 
(classification). For both goals, the algorithm exploits again the curvature values: the discontinuity contours are characterized by 
points having mean curvature greater than a threshold, while classification is performed by a cluster analysis of points having 
homogeneous curvature values. Some numerical examples show the proper applicability of the proposed method for coarse and fine 
registration of different scans, for edge detection, and for surface primitives classification. 
 
 

1. INTRODUCTION 

As well-known registration, segmentation and classification are 
three main phases of laser data processing once different point 
clouds are available for a certain object. To automatically carry 
out these phases in a sequential way, a non parametric 
analytical technique is proposed in this paper (section 2). 
About the registration, a hybrid technique, to automatically 
execute the alignment of close range point clouds by evidencing 
their morphological singularities, is presented (section 3). The 
method is developed by studying the local Gaussian curvature 
values, computed from the partial derivatives of the Taylor’s 
expansion, by running a clustering procedure of points having 
extreme curvature values, and finally by determining the 
centroids of each cluster. For every point cloud, the centroids 
generate a vertexes configuration. Once the centroids set of 
pairs are identified, the pre-alignment roto-translation is 
estimated by a SVD algorithm. The refined alignment is 
completed by a variant of the ICP method. 
In order to reconstruct the geometric primitives embedded in 
the point cloud, the paper further proposes a method to directly 
detect the discontinuities (segmentation) and to successively 
estimate the surface primitives of each recognized object 
(classification). For both aims, the algorithm exploits the local 
curvature parameters. Slope discontinuities of the surfaces are 
evidenced by studying the values of the mean curvature (section 
4). The procedure allows to automatically identify the band of 
points corresponding to such edges, since characterised by 
mean curvature values greater than a fixed threshold. 
Within each volumetric primitive, a region growing method is 
accomplished (section 5). Points belonging to the same feature 
model are characterised, first, by a strict correspondence among 
the measured height values and the estimated ones, second, for 
plane surfaces, by a constant value of the first order partial 
derivatives, and third, for curvilinear surfaces, by a constant 
value of the Gaussian and mean curvatures. Finally a forward 
search procedure allows a robust and refined classification of 
the remaining points belonging to the studied primitives. 

Some numerical examples show the proper applicability of the 
proposed method with simulated and real noisy data (section 6). 

2. APPLICATION OF A NON PARAMETRIC 
REGRESSION MODEL 

As already mentioned, the fundamental steps of the cloud 
registration and the shape reconstruction mainly exploit the 
same analytical model based on a nonparametric regression. 
The main advantage of this approach consists in its full 
generality, since it does not require any a priori knowledge of 
the point geometry or the analytical function of interpolation. 

2.1. Estimation of local surface parameters 

Let us consider the following polynomial model of second order 
terms (Cazals and Pouget, 2003): 
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where the coefficients and the parameters are locally related to 
a measured value jZ  by a Taylor’s expansion of the function 

ε+µ=Z  in a neighbour point i of j, as: 
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with ii Y,X  and jj Y,X  plane coordinates of points i and j. 

The parameters ia  (i ≠ 0) are the first and second order partial 
derivatives along X,Y directions in the i-th point of the best 
interpolating local surface, collected in the vector: 

 [ ]T543210 aaaaaa=β  
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where 0a  is the estimated function value at point i. 
The weighted least squares estimate of the unknown vector β  
from a limited number of p neighbour points results as: 

 QzXQXXβ T1T )(ˆ −=  (2) 

where (for j = 1, …, p): 
• X is the coefficient matrix, with p rows as: 

 [ ]22
j vuvuvu1=X  

• Q is a diagonal weight matrix defined by a symmetric 
kernel function centred at the i-th point, with diagonal 
elements as: 

 [ ]33
ijij )bd(1w −=  for 1bdij <  0wij =  for 1bdij ≥  

where ijd  is the distance between the points i,j and b is the half 
radius of the window encompassing the p closest points to i. 
The value of b, rather than the kernel function, is critical for the 
quality in estimating β . In fact, the greater is the value of b, the 
smoother the regression function results, while the smaller is 
the value of b, the larger is the variance of the estimated value. 
As last remark, to apply the second order Taylor expansion (1), 
the coordinate Z must be univocally defined by X,Y 
coordinates. This is always true for aerial laser data, where the 
laser strips are all aligned and geo-referenced e.g. in E,N,H 
coordinates, while for terrestrial data the scans geometry is 
more complex. Each point cloud has a different local X,Y,Z 
reference system, the scans can be panoramic in azimuthal 
plane and, for some laser devices, quasi-panoramic in the 
zenithal plane, i.e. with points in the entire direction sphere. To 
avoid ambiguous cases, it is thus necessary to share the cloud in 
more sub-clouds. Moreover, it could be necessary a permutation 
among X,Y,Z coordinates in order to assume, as Z-axis for (1), 
the direction whose Z values results better expressed as function 
of the X,Y ones. In other words, points displaced onto quasi 
“vertical” surfaces are not well modelled by expansion (1). 

  
Figure 1: Simulated laser points of the curvblock-1 model 
coloured by iZ  values (at left) and by 

i0i ZZ −  (at right). 

Figure 1 reports the simulated scan curvblock-1 as example 
throughout the paper: it comes from the OSU Range Image 
database (Ohio State University) and has been also 
experimented by Alshawabkeh, Haala and Fritsch (2006). In 
Figure 1 at left, the points are coloured by the original iZ  
values, since no coordinate permutation is required. At right, 
the same points are coloured by 

i0i ZZ −  absolute values, 
explainable as the smoothing effect of the regressive 

interpolation: the external edges of the object clearly appear, 
while the internal ones are not significantly recognised. 

2.2 Computation of local curvatures values 

For the local analysis of a surface S obtained from a point 
cloud, a great support is provided by geometric quantities 
coming from differential geometry, in particular by local 
Gaussian, mean and principal curvatures values. These ones 
can be obtained from the so-called “Weingarten map” matrix A 
of the surface S (e.g. Do Carmo, 1976), that is given by: 
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where E, F, and G are the coefficients of the so-called “first 
fundamental form”, obtained from the parameters estimated by 
(2) as follows: 
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e, f, and g are the “second fundamental form” coefficients, as: 
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The Gaussian curvature K corresponds to the determinant of A: 
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The mean curvature H can be instead obtained from: 
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The principal curvatures kmax and kmin, corresponding to the 
eigenvalues of A, are given instead from the solution of the 
system 0KHk2k 2 =+− , i.e. from KHHk 2

maxmin, −±= . 

  
Figure 2: Points coloured by K (at left) and by H values (at right). 

Further usable relationships for the curvature values are: 
maxmin kkK =  and 2)kk(H maxmin += . 

It is interesting to observe in Figure 2 how, thanks to the 
different geometrical meaning, the Gaussian curvature K (at 
left) can be mainly exploited for the point clouds registration, 
while the mean curvature H (at right) for the edge detection. 
Summarizing, for each i-th laser point, four local curvature 
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values K, H, kmax and kmin can be automatically obtained as 
functions of the vector β  terms. Furthermore, such curvatures 
are invariant to the reference frame rotations, providing a very 
important property in analyzing the surface shape. 

3. POINT CLOUDS REGISTRATION 

3.1 Vertexes detection by means of the K curvature values 

Once the Gaussian curvature K values are determined by (4) for 
all the sampled points, it is worthwhile to consider those having 
extreme absolute values, represented in Figure 2 at left with 
blue and red dots: they are the “vertexes” of the scanned object. 
Such points, automatically detected, can be exploited as “tie 
points” for registration purposes. More properly, since clusters 
of points with extreme K values will be found, the mean of their 
3D coordinates (the centroid) is considered. The set of thus 
determined centroids constitutes the first point configuration to 
submit to a correspondence search. This process is repeated for 
all the clouds that have to be registered, defining in this way a 
series of centroid configurations. 

3.2 Automatic feature matching and labelling 

The centroids identified at step 3.1 form a set of possible 
candidates to be homologous points of adjacent clouds. The 
next step consists in the recognition of topological relationships 
existing among the clusters (labelling problem). 
Let us consider two partially overlapped point clouds, from 
which two sets p and q, respectively constituted by m and n tie 
points, have been individuated, as represented in Figure 3. 
The problem consists in defining the intersection p∩q, and in 
automatically finding out, within the intersection, the probable 
correspondences between the tie points of the sets p and q. 

  
Figure 3: Vertexes detected for curvblock-1 and curvblock-2. 

First of all, we assume that no scale variation exists between the 
coordinate systems of p and q. This simplified hypothesis is 
correct according to the purpose of this operation. The 
implemented method runs in the following way: 
1. Let us consider { }m1 p  ... p=p  the arbitrary m points 

configuration. The m×m symmetric adjacency matrix pD  
of this configuration contains among its terms the Euclidean 
distance ji

p
j,i ppd −=  between points ip  and jp . 

2. In the same way, for the arbitrary n points configuration 
{ }n1 q  ... q=q , the n×n adjacency matrix qD  is defined. 

3. The row of maximal asymmetry p
max id  is searched in pD  

(or in qD ), whose distinct elements, ordered in terms of 
magnitude, present the “maximal minimal difference”, i.e.: 
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This search minimizes the possibility of ambiguous 
geometrical configurations. 

4. In the row p
max id  of maximal asymmetry, the greatest 

element [ ]p
max i

p
max j,i maxd d=  is identified. Next step 

consists in searching { }kl,k;dd:d p
l,k

p
max j,i

p
l,k <∀∀ε≤−=  

in qD , where ε is a prefixed tolerance. The satisfying 
values k,l are stored into a pointer array, i.e. the list of the 
possible pairs )q,q( lk  corresponding to maxji )p,p( . If 
this set is empty, the search is repeated considering the next 
component to p

max j,id  in terms of magnitude. 

5. The various pairs of possible correspondences )q,q( lk  are 

orderly considered. For each row of qD , where one of the 
correspondence pairs is present, the equivalence of the 
remaining elements of the same row with respect to the 
possible elements of p

max id ,within a fixed tolerance, is 

verified. This allows to generate a binary table, of size m×n, 
where the elements express the possible correspondence 
among the points of p and of q, according to the initial 
choice for i max and k, respectively. 

6. If this table has at least two not null elements, a cross-
validation of all the possible correspondences is carried out. 
This is performed verifying the equivalence among all the 
remaining distances defined by point pairs of p and 
analogous point pairs of q, inserted into the table. 

7. This process is repeated for each pair )q,q( lk  identified at 
sub-step 4, adopting the pair generating the largest number 
of valid correspondences between p and q. 

A set of implemented tests, makes it possible to solve 
ambiguous situations. In the next version, to evaluate the 
correspondence point degree, some attributes associable to the 
points (e.g. curvatures), will be employed. 

3.3 SVD pre-registration 

Thanks to the pairs of tie points, identified and related by steps 
3.1 and 3.2, two matrices of corresponding point coordinates 
are obtained. Translations and rotations (without the scale 
factor), to transform the coordinates of a point cloud onto 
another one, are determined by applying the SVD method. 

3.4 Registration refinement by ICP 

Once the pre-registration is obtained, the process is completed 
by ICP. In our case, a basic version of the method proposed by 
Besl and Mc Kay (1992) has been implemented, updated by 
some variants proposed in the literature. 
 
The procedure is here described in the essential way, referring 
to Beinat, Crosilla and Sepic (2006) for the details. 
In performing the registration of three curvblock scans, after the 
detection 3.1 of the tie points reported in Figure 3, the point 
matching 3.2, the pre-registration 3.3, and the refined 
registration 3.4 have provided a global model with a very good 
congruence. It is represented in Figure 4, where curvblock-1 is 
coloured in blue, curvblock-2 in green, and curvblock-4 in red. 
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Figure 4: Resulting curvblock from a three clouds registration. 

4. POINT CLOUD EDGE DETECTION 

Once the laser points have been merged into a unique cloud, the 
incoming problem is the extrapolation of the geometric shape of 
the surveyed objects with the maximum level of automation. 
This topic represents the main challenge dealing with the laser 
scanning technique, namely the maintenance in the data 
processing of the extraordinary automation level of the data 
acquisition. In this sense, the different expressions used in 
literature as edge detection, object recognition, shape 
classification, and surface reconstruction can be considered as 
complementary approaches of the same more general problem, 
defined as “automatic interpretation” of the laser data. This is 
not a trivial topic and the difficulty grows if we consider noisy 
mid-long range laser data rather than precise close range ones. 
In addition, scenes as typical in architectural surveying are 
more complex than in the industrial environments, since lots of 
single objects or irregular surfaces occur. 

4.1 Edge detection problems: kinds of discontinuity 

From the mathematical point of view, the discontinuities of a 
)Y,X(Z f=  surface can be as follows: 

D0: Step discontinuity: the Z values of a significant number of 
points displaced along a certain X,Y direction present a 
jump (i.e. the C0 continuity is not fulfilled); 

D1: Slope discontinuity: the inclination values of a C0 surface 
change locally (C1 continuity is not satisfied); 

D2: Curvature discontinuity: one of the principal curvatures of 
a C1 surface changes locally (C2 continuity is not granted). 

The difficulty in detecting such discontinuities increases with 
the rank, anyway the term “edge detection” is mainly thought as 
the D1 slope discontinuities search. Furthermore, dealing with 
objects surveyed from a lot of scan positions, the happening of 
D0 discontinuities normally disappear. 

4.2 Analytical and geometrical methods of edge detection 

From the methodological point of view, the edge detection 
problem can be carried out by (at least) three methods, 
classified as “analytical direct”, “analytical indirect” and 
“geometrical by decimation”. 
The algorithms involving surface interpolations by any 
analytical function belong to the first class. These have the 
common property to provide one or more local numerical 
values directly revealing singularities in the laser cloud. 
Interesting models have been proposed by the research groups 
of the Technical University of Wien (Briese, 2006) and the 
University of Stuttgart (Alshawabkeh, Haala and Fritsch, 2006). 
The methods belonging to the second family deal instead, first 
of all, with the suitable estimation of continuous surfaces better 
interpolating the laser cloud. Only in a second step, the D1 and 

D2 edges are detected by considering the space intersection of 
such surfaces or simply analyzing to which surface each point 
has been assigned. An analytical procedure proposed by the 
authors for the classification and the segmentation of laser data 
(Crosilla, Visintini and Sepic, 2005, 2007) belongs to this class. 
As general consideration about direct or indirect methods, their 
most critical characteristics are the requirement of high quality 
laser data, falling down the efficiency in presence of noisy data, 
and the modeling complication when a large numbers of 
parameters have to be estimated. 
With a geometric approach, implemented in many commercial 
software of solid modelling, a TIN mesh is engaged. In this 
way, the numerical processes applied, as the smoothing and the 
decimation, regards the optimization of the mesh and does not 
involve the coordinate points; so this method can be defined as 
“geometrical”. For this reason, the D1 edge detection is not thus 
a straight goal of this approach, anyway the edges are strongly 
correlated with the result of a process of vertex decimation: in 
fact, they well correspond to the so-called “feature edges” of 
the triangles remaining after the decimation. Interesting 
methods are reported in computer vision literature (e.g. 
Garland, 1997). 
As reported before, the analytical indirect method proposed, 
allows detecting the surface primitives from an undistinguished 
laser cloud. It proceeds in the four following steps: 
1. Estimation of a local surface by a non parametric Taylor’s 

expansion (as seen in subsection 2.1); 
2. Computation of Gaussian K, mean H and principal kmax and 

kmin local curvatures (as reported in subsection 2.2); 
3. Raw segmentation of the cloud in homogeneous clusters by 

a region-growing method considering also curvature values; 
4. Refined segmentation of the raw clusters by a robust 

parametric regression for each cluster, so estimating the 
parameters of the various interpolating surfaces. 

Focusing the attention to the detection of the three kinds of 
discontinuity, the following strategy is proposed: 
• D0 edges: by checking if the 

i0i ZZ −  absolute value is 
greater than a fixed threshold, as seen in Figure 1 at right. 

• D1 edges: by evaluating if the H absolute value is greater 
than a fixed threshold; the threshold value, as for D0, is 
fixed considering the noise and the density of the data. 

• D2 edges: by estimating the surfaces and by considering the 
sign and the values variation of K and H. 

Nevertheless, the points detected in the previous way must be 
geometrically significant, that is a certain number of points 
displaced within a small buffer volume lengthened in one 
direction should be found. Furthermore, to transform such 
points in a vector 3D polyline, a suitable chaining or a space 
interpolation has to be applied. 
A rearrangement of the four steps method is now proposed. To 
detect D1 edges, one more analysis is performed after the 
second step (see subsection 4.3). In this way, the procedure 
becomes a direct method of edge detection. Steps 3. and 4. are 
instead carried out to detect D2 edges, since these curvature 
discontinuities are found in indirect mode by applying a robust 
parametric model (see section 5): thanks to this approach, the 
reliability of the achieved detection should be satisfactory. 

4.3 D1 detection by means of the H curvature values 

The attention is now focused onto the estimated values of the 
local mean curvature H. The analysis of H values, proposed by 
the Stuttgart School (Alshawabkeh, Haala and Fritsch, 2006) 
exploits the property that such index is closely related to the 
first variation (slope) of a surface area that locally well reveals 
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possible D1 edges. Since H is the average of kmax and kmin, it is 
numerically slightly less sensitive to the noise with respect to K 
curvature, which is instead the product of kmax and kmin. 
Extreme absolute values of H are therefore searched: this point 
buffer volume so reveals the D1 edges we are looking for. 

Figure 5: Extreme values H corresponding to possible edges. 

This criterion has been implemented in a routine that paints by 
pink colour the points with H absolute value greater than a 
threshold, so evidencing the D1 edge zones, as in Figure 5. 

5. SURFACE SEGMENTATION AND CLASSIFICATION 

As mentioned before, D2 edges are the most difficult elements 
to automatically detected, especially with noisy data. To this 
aim and when the main interest of the surveyor is anyway about 
the overall surface rather than its local discontinuities, efficient 
methods for its segmentation and classification assume the main 
importance in the whole flow-chart of data processing. 

5.1. Raw surface segmentation by a region-growing method 

Analyzing the sign and the values of K and H, a preliminary 
clustering of the whole cloud is made possible. Each surface 
can be classified into one of the following basic types (see 
Table 6): hyperbolic (K < 0), parabolic (K = 0 but H ≠ 0), 
planar (K = H = 0), and elliptic (K > 0). 

Table 6. Classification of surfaces according to the values of 
Gaussian K and mean H curvatures (from Haala et al., 2004). 

This allows to classify the various volumetric primitives and to 
define a priori the polynomial degree of the parametric model to 
apply for the refined segmentation (step 5.2). 
Hence, to classify and segment the dataset, a region growing 
method is applied, starting from a random point not yet 
belonging to any subset. The surrounding points having a 
distance less than the bandwidth b are analysed, by evaluating 
the values of the estimated height i0Z  and the values of K and 
H. If the neighbour points present difference values within a 
threshold, fixed according to the noise level, then they are 
labelled as belonging to the same class and putted into a list. 
The same algorithm is repeated for each list element, till this is 
fully completed. Afterwards, the procedure restarts again from a 
new random point, ending when every point has been analysed. 
Summarising, a first raw segmentation of the whole dataset is 
carried out in this way: hence, each cluster represents an initial 
subset to submit to the next refining segmentation step 5.2. 

5.2. Refined surface segmentation by a parametric model 

Previous authors papers report in detail this step (Crosilla, 
Visintini and Sepic, 2005, 2007): it is based on the application 
of a Simultaneous AutoRegressive (SAR) model to describe the 
trend surface of each point cluster, and on an iterative Forward 
Search (FS) algorithm (Cerioli and Riani, 2003) to find out 
outliers. Starting from a cluster detected as in step 5.1, the FS 
approach allows a robust estimation of the SAR unknown 
parameters. At each iteration, one or more points are joined 
according to their agreement with the surface model. If some 
statistical diagnostics reveal an incoming outlier, the growing 
process is interrupted: the surface is so bounded, hence a 
refined segmentation is achieved. 
Figure 7 shows for curvblock point cloud the correct result of 
the classification, that is one cylinder face (K=0, H>0), twelve 
planes (K=0, H=0), and the refined segmentation of the model. 

Figure 7: Classification and refined segmentation of the 
different surfaces: cylinder in red, plane faces in other colours. 

6. NUMERICAL EXPERIMENTS 

The numerical testing of the proposed procedures has been 
carried out with satisfactory results for the curvblock model 
scans and for other synthetic objects of the OSU Range Image 
database. Only some brief comments about the two models 
depicted in Figure 8 are reported in this paper. 

  
Figure 8: D1 Edges detected for block2 and for bigwye model 

The block2 model (at left) has been joined by registering five 
partial clouds, exploiting its various vertexes detected by K 
values analysis. The global point cloud results correctly 
registered, anyway a central part without points remains for the 
incompleteness of the data, so yielding a D0 discontinuity. The 
detection of D1 edges by evaluating H values is completely 
fulfilled and, since all the surfaces are planes, steps 5.1 and 5.2 
have not been carried out. 
Model bigwye (at right) is instead constituted by curved 
surfaces: the D1 detection has been correctly accomplished as 
well as the classification 5.1 as cylinders with values H < 0. 
Last but not least, to test the method in noisy conditions, some 
experiments have been performed onto real data acquired with a 
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Riegl Z360i laser system onto the façade of the baroque Church 
of Saint Ignatius in Gorizia (Italy). Figure 9 evidences, within 
more than 500.000 laser points, those having extreme K values, 
well corresponding to vertexes of the architectonic elements of 
the façade, and exploitable for registration purposes. 

Figure 9: Real points with extreme K values (blue < 0, red > 0). 

Figure 10 shows instead the points with extreme H values, well 
congruent with the vertical and horizontal edges of the façade. 

Figure 10: Real points with extreme H values (blue < 0, red > 0). 

The results of this D1 edge detection appear quite satisfactory, 
particularly in comparison with those geometrically achieved 
by commercial software implementing TIN decimation tools. 

7. CONCLUSIONS 

The paper reports a sequential non parametric procedure, 
mainly based on local estimation of second order Taylor’s 

expansion partial derivatives, to automatically perform 
registration, segmentation and classification of laser clouds. 
The estimated curvature values allow the automatic detection of 
singularities in the clouds: registration tie points are evidenced 
by analyzing the local Gaussian curvatures, while segmentation 
edge points result by evaluating the mean curvatures. 
The obtained results, for synthetic and real noisy laser data, 
emphasize the capability of the method proposed for the 
processing of terrestrial laser surveys. 
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