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ABSTRACT:

Interest in the automatic production of 3D building models has increased over the last years. The reconstruction of buildings, partic-
ularly their facades, is a hard subproblem, given the large variety in their appearances and structures. This paper discusses building
facade reconstruction algorithms that process single images and exploit expectations about facade composition. In particular, we make
heavy use of the repetitions that tend to occur, e.g. in windows and balconies. But this is only an example of the kind of rules found in
recent architectural shape grammars. We distinguish between cases without and with substantial perspective effects in the input image.
The focus is on the latter case, where also some depth layering in the facade can be performed automatically. We give several examples

of real building reconstructions.
1 INTRODUCTION

The photogrammetry, vision, and graphics communities have al-
ready invested enormous efforts into the creation of 3D models
from images. As a result, much progress has been made already.
And the body of literature is still growing at a fast pace. Yet,
we have to ask ourselves how far pure bottom-up approaches -
and these constitute the vast majority so far - can bring us. Even
when presented with a single photograph, people can often make
stronger statements about the 3D structure of the objects in it than
our best 3D modeling systems can generate from multiple views
of the same scene. Obviously, people have strong expectations
about the world, and an exquisite capacity to recognize the ob-
jects that populate it. Such knowledge is not brought to bear in
most of our 3D acquisition systems. Probably the 3D modeling of
faces is the one and foremost example where researchers have ac-
tually drawn heavily on expectations about that particular object
class (Blanz and Vetter, 1999), and very successfully so.

Hence, there is a case for a wider object class specific extraction
of 3D information. In this paper the focus is on the use of such
strategies for the important class of buildings. Also here, the ben-
efits of using prior knowledge about this class has been demon-
strated already, e.g. in (Debevec et al., 1996, Dick et al., 2001).
With the rampant growth in geo-applications like Google Earth or
Microsoft Virtual Earth and the fast evaluation towards 3D GPS
navigation systems, buildings form a class of objects that does
indeed deserve special attention. The creation of 3D city models
still is a very interactive procedure. Any advance in productiv-
ity for the creation of such models would be extremely timely.
Here we propose methods for the mass production of 3D facade
models, exploiting knowledge about their typical composition.

1.1 Overview of the work

In this paper we propose to rely on architecture-oriented shape
grammars. The first steps of this approach have been laid in
a 2001 paper by Parish and Miiller (Parish and Miiller, 2001).
A more full-fledged grammar for buildings was proposed in our
later work (Miiller et al., 2006). There it was shown that these
shape grammars can be used to efficiently generate models of ex-
isting buildings, or of virtual buildings of a particular style. In
that work we have for instance used the building footprints at
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Pompeii to generate extensive 3D models of the site. This could
be achieved largely automatically, once the footprints had been
delineated manually from archaeological maps. The modeling
of existing buildings required more intensive interaction from the
user though. In more recent work (Miiller et al., 2007), we started
to use photographs to automatically derive grammatical rules that
could be used to re-create the facades of buildings. In that work,
we mainly detected repetitive structures in the facade, and auto-
matically delineated its structural entities like windows or doors.
Moreover, templates were fitted to such entities. The result was a
far more compact 3D representation of the facade, yet with higher
visual quality. A tool was presented to manually displace selected
structures as a group with respect to the main plane of the fa-
cade. As an example, the tool allows the user to jointly select all
windows, and to simultaneously put them a bit deeper than the
facade. The size of the shift is interactively estimated by com-
paring its result with what can be seen in the photographs. In
the work presented here, we exploit the repetition in facades to
actually measure the depth difference for the repeated elements.

Although it would be useful to look into multi-view reconstruc-
tions, as most contributions in this area did (see refs in section
1.2), we stick to single-view analysis as in (Miiller et al., 2007),
because such data is much easier to come by as yet. This said, the
nature of the images we used in (Miiller et al., 2007) and in this
paper are different in nature. Our previous work mainly focused
on the use of oblique aerial imagery, i.e. the type most often used
to create large city models for the moment, and ground-level im-
agery without strong perspective effects. Here we fully focus on
close-range photogrammetry type of data, where images of fa-
cades have strong perspective distortions. The latter are becom-
ing available at a high pace.

This leads to a two-legged strategy. If there is sufficient perspec-
tive in the image, then we propose the fully automatic strategy
as laid out in this paper. If perspective effects are too weak,
we resort to the earlier, slightly interactive strategy of (Miiller
et al., 2007). Camera focal length would tell what to do, or so
could the position of vanishing points. The latter are extracted
for both strategies anyway. Obviously, the vanishing point crite-
rion is more directly related to the appearance of the building in
the image.
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Figure 1: The grammar based reconstruction can convert single facade textures of arbitrary resolution to semantic 3D models of high
visual quality. Left: rectified facade image as input. Middle left: facade automatically subdivided and encoded as shape tree. Middle
right: resulting polygonal model. Right: rendering of final reconstruction including shadows and reflections enabled by semantic

information.

The paper is organised as follows. In the remainder of this sec-
tion, we give an overview of related work, to put these contribu-
tions into context. Then, section 2 recapitulates on the first strat-
egy with weak perspective imagery, where the reader is referred
to (Miiller et al., 2007) for a more extensive account. Section
3 continues with the second strategy, where images have strong
perspective effects. Section 4 concludes the paper.

1.2 Related Work

Shape Grammar Shape grammars were introduced by Stiny
(Stiny, 1975) in the 70’s as a formal approach to architectural de-
sign. They were successfully used for the construction and analy-
sis of architectural design (Stiny and Mitchell, 1978, Koning and
Eizenberg, 1981, Flemming, 1987, Duarte, 2002). The strategy of
recent work was to simplify the geometric rules (Stiny, 1982), but
to extend the derivation mechanisms (Parish and Miiller, 2001,
Wonka et al., 2003, Marvie et al., 2005, Miiller et al., 2006).
These shape grammars could be complemented by cellular tex-
tures (Legakis et al., 2001) to generate brick layouts and gener-
ative mesh modeling (Havemann, 2005) to generate facade or-
naments. Many aspects and concepts of procedural architectural
modeling are inspired by by L-systems (Prusinkiewicz and Lin-
denmayer, 1991), such as geometry sensitive rules (Prusinkiewicz
etal., 1994), the incorporation of computer simulation (Mech and
Prusinkiewicz, 1996) and artistic high-level control (Prusinkiewicz
et al., 2001).

Building Facade Analysis Though limited, there is already some
literature on the topic of building facade analysis. In practice,
several systems still resort to semi-automatic methods (e.g. (Lee
and Nevatia, 2003, Takase et al., 2003)). Generally, in these sys-
tems, a user is assisted by computer vision methods (Debevec et
al., 1996) during modeling. This said, some automated processes
have been proposed. Some of these make simplifying assump-
tions to get started. For example, Alegre and Dellaert (Alegre
and Dellaert, 2004) as well as Brenner and Ripperda (Brenner
and Ripperda, 2006) assume that windows basically correspond
to dark rectangles. Others try to fit a limited set of rather com-
plicated, parametrical models (Dick et al., 2001), or use detec-
tors pre-trained for particular elements like windows (Mayer and
Reznik, 2003). Finally, Lee and Nevatia (Lee and Nevatia, 2004)
use a single ground-based image but their goal is restricted to
windows.

Urban Reconstruction Urban reconstruction algorithms make
use of a wide variety of input data, for example: ground-based
facade images (Jepson et al., 1996, Debevec et al., 1996, RE-
ALVIZ, 2007, Lee et al., 2002, Dick et al., 2001, Wang et al.,
2002), interactive editing using aerial images (Ribarsky et al.,
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2002), aerial images combined with ground-based panorama im-
ages (Wang et al., 2006), ground-based laser scans combined with
aerial images (Friih and Zakhor, 2001), ground-based and air-
borne laser scans (Friih and Zakhor, 2003), ground-based laser
scans combined with facade images (Karner et al., 2001), and
laser scans, aerial images, and ground-based images (Hu et al.,
2006). The problem is simplified if 3D data is available as depth
displacements between elements (e.g. windows vs. walls) yield
a strong, additional cue for their segmentation (Dick et al., 2004,
Brenner and Ripperda, 2006, Schindler and Bauer, 2003).

2 STRATEGY 1: WEAK PERSPECTIVE

In this section we describe our strategy in case a facade image
with small perspective effects is provided. Fig. 1 shows an overview
of the procedure, from the input image on the left to the 3D re-
sult on the right. The procedure consists of four parts organized
as stages in a pipeline. This pipeline transforms a single image
into a textured 3D model including the semantic structure as a
shape tree. We use a top-down hierarchical subdivision anal-
ogous to splitting rules in procedural facade modeling (Wonka
et al., 2003, Bekins and Aliaga, 2005, Miiller et al., 2006) (see
Fig. 2). The following sections describe each of the four stages in
this pipeline. Readers are referred to our Siggraph paper (Miiller
et al., 2007) for more technical details.

It is important to note that the facade image is rectified to a fronto-
parallel view as a preprocessing step. We used an automatic rec-
tification tool of our own implementation, which is a variant of
the vanishing point based algorithm by Liebowitz and Zisser-
man (Liebowitz and Zisserman, 1998).

2.1 Determination of Facade Structure

The goal of this first stage is to detect the general structure in
a facade and to subdivide it accordingly. The input is a single
image and the output is a subdivision into floors and tiles. Ad-
ditionally, we compute symmetry information so that we know

Floor Tile | Tile | Tile ﬂ ,f_ﬂ, ,H_i
Floor Tile | Tile | Tile [ X X} ﬂ_i .H_i .H_i
Floor Tile | Tile | Tile H E E

Figure 2: Our system computes a hierarchical subdivision of fa-
cades. This subdivision scheme was successfully employed in the

procedural modeling literature by various authors.
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Figure 3: Left: the facade from Fig. 1 after removing the verti-
cal symmetry. Right: further removing the horizontal symmetry
yields the Irreducible Facade. Please note that we use the average
pixel color for display purposes.

for each pixel the location of corresponding pixels in symmetric
tiles.

Firstly, we detect similar image regions using mutual informa-
tion (MI). Secondly, based on the extracted repetitions, we create
a data structure called Irreducible Facade (IF). An IF example
is shown in the right image of Fig. 3). Its construction entails
the determination of the splitting lines shown in Figs. 1(b) and
2 (only the thicker lines delineating the ‘tiles’ are meant here).
The IF reduces the facade image to its essence, taking out all the
repetitions. Although no longer visible, the IF encodes informa-
tion about these symmetries that govern the floors and tiles (see
Fig. 2). The aforementioned splitting lines are found through a
global optimisation across all floors and tiles. This not only im-
proves the robustness of the algorithm, but also guarantees that
similar elements are split at corresponding positions.

2.2 Subdivision of Facade Tiles

At this stage we want to subdivide the detected tiles into smaller
regions. We propose an algorithm which recursively selects the
best splitting line in the region under consideration. See Fig. 4
for an example. This structure subdivision is a concept used in
procedural modeling and will automatically create a hierarchy of
elements. Such a hierarchy will be essential for further analysis,
such as the generation of rules for a shape grammar.

Because individual tiles are noisy, the splitting algorithm exploits
the knowledge about repetitions which is embedded in the IF.
Fig. 5 left illustrates how noise makes the subdivision of indi-
vidual tiles very unreliable. Therefore, the algorithm analyzes
similar structures in other tiles to synchronize the derivation and
in so doing, significantly improves the result (see Fig. 5 right).

2.3 Matching 3D Elements

Subdivision of facade tiles leads to a set of rectangular regions
clustered into groups of similar regions. At this stage we want to
match some of the architectural elements with 3D objects in a li-
brary. This is useful for the generation of high-quality geometric
information and can provide some semantic interpretation. The
solution has to fit the computer graphics modeling pipeline lead-
ing to two constraints: We need fast computation times and a
general solution working for 3D models in a library.

Figure 4: In the second stage of the process, the tiles are hier-
archically subdivided (illustrated as incrementally added lines).
Each image represents one step of the subdivision.
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Figure 5: To make the splitting process more stable, we make use
of the previously detected tile repetitions. Left: subdivided tiles
based on per-tile local split detection. Right: result if global split
synchronization is added.

2.4 Editing and Rule Extraction

At this stage of the pipeline, the resulting facade interpretation is
encoded as a shape tree including fitted templates, but does not
contain depth information for the relative positions of the differ-
ent layers in which the facade and these templates ly. Therefore,
simple editing operations are required to set the depth of the fa-
cade elements. The user can select clusters of elements and adjust
their depth interactively. The added depth information is stored
in the shape tree.

In the final step, we can encode the computed subdivision (i.e. the
shape tree) as shape grammar rules (Bekins and Aliaga, 2005).
The generated rules contain the hierarchical information and cor-
rect dimensions. As example, we present the rule set for the fa-
cade encoded as CGA Shape (Miiller et al., 2006) in Fig. 6.

2.5 Discussion

A strength of this method is that it works well even for low res-
olution facade images, a challenge that has not been tackled pre-
viously. Even though the approach is robust in general, there are
smaller and larger errors depending on the quality of the input im-
age and input image complexity. Fig. 7 illustrates typical failure
cases. The main problems for the fully automatic processing are
heavy image noise or small irregular elements (e.g. several irreg-
ularly placed air conditioners outside of the window boundaries).
In these difficult cases MI might be unable to detect repetitions
(see stage 1). Also ground floors of commercial buildings are of-
ten problematic for MI due to their non-repetitive structure. As
a consequence, vertical symmetries may be left undetected (even
if the floors above consist of the same tiles). Another problem is
posed by windows with prominent, thick frames. Furthermore,
our approach assumes an orthorectified image as input. Strongly

facade foor2
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Figure 6: The extracted shape tree can be automatically con-
verted into a CGA shape grammar rule set.
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Failure cases.

Figure 7:
tion cannot handle asymmetric patterns like mezzanines or non-
aligned tiles. Middle: Thick window frames are wrongly inter-
preted as a split and the user has to reverse the split manually.
Right: Worst case scenario consisting of a blurry texture with
low contrast, a chaotic ground floor disturbing the MI-based rep-
etition detection, and image noise caused by vegetation (left).

Left: The facade structure detec-

protruding elements, such as balconies, violate this assumption
and lead to incorrect tile subdivisions. To summarize, if our
approach is applied on less repetitive architectural facades, we
lose the structural support and run into the classic difficulties of
edge detection i.e. the operations in section 2.2 will be less stable.
Hence, we suggest using our technique only in urban areas with
buildings of multiple storeys. Also, strong perspective effects
complicate rather than help matters, as repetition detection will
suffer more from differences due to multiple depth layers. Our
second strategy, described next, exploits those very differences to
automate the depth layering in stage 4 of the first strategy.

3 STRATEGY 2: STRONG PERSPECTIVE

Similar to the first strategy, the second one uses a single uncali-
brated image and exploits the repetitions in typical facade struc-
tures. Different from the first strategy, the image here is sup-
posed to show sufficient perspective effects and instead of inter-
actively depth layering structures like windows, this is done au-
tomatically. First we summarize the main ideas and contributions
behind the strategy. Then, we discuss them in more detail.

Relying on perfectly repeated elements would render the system
fragile, especially in the presence of strong perspective effects.
Nevertheless, we can hope that traces of repeated elements are
found at some feature locations, if the spatial extent of these fea-
tures is limited. Our method is based on a chain-wise similarity
measure to robustly group these feature points. Each group pro-
vides evidence for potential repetitions. A group of feature points
is also assumed to lie on a plane parallel to the facade to be re-
constructed.

A new formulation is proposed to encode the interplay between
repetition detection and shape recovery, i.e.the former provides
clues for the latter, while the latter in turn produces 3D informa-
tion (occlusion and depth differences) for the former. An energy
functional captures the consistency between shape and image, the
quality of repetition, and the smoothness. A graph-cut minimiza-
tion globally optimizes the solutions for both the repetition detec-
tion and 3D shape recovery problems.

In contrast to the prior art, we are capable of reconstructing both
windows and balconies, and we try to avoid using strong models
for them, in order to keep the method sufficiently generic. The
goal is also to deal with larger variations in appearance than what
has been demonstrated so far.

3.1 Formulation and Overview

Given a single uncalibrated ground-based image I(x) of a build-
ing facade, our goal is to reconstruct a three-dimensional shape
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Figure 8: Overview of the three stages of the proposed algorithm.

z(x) that is consistent with this input image. We assume that the
facade contains multiple elements of the same type (e.g.similar
windows or balconies) and that their appearances repeat in the
horizontal and/or vertical directions along the facade plane. These
two assumptions hold for most buildings. The exceptions are be-
yond the scope of this paper. Please note that we make no as-
sumption on repeated element appearance or frequency.

Let P = K|[RJt] be the 3 X 4 camera matrix, where K and
[R|t] are the internal and external parameters. We can choose
the world coordinate system such that [R|¢] is equal to [I|0], thus
we have P = [K|0]. Let p denote a unit vector representing
the orientation of the facade plane, then the fact that repeated
elements share the same depth layer parallel to the facade can be
expressed in terms of z(x), K and p as the following implicit
function:

pTK™! (< )il >z(xl) - ( x{ >z(x,«)> =0, €))

where the pair (x;,X,) are two arbitrary corresponding image
points of the repeated elements.

In general, Eq. (1) is not easy to solve for those depths, as p, K,
z(x) and point correspondences are all unknown. However, the
following facts simplify the computation of this equation:

e Repetition is ubiquitous in facades and finding at least part
of the repetitions ought to be feasible. We propose a robust
matching method to provide several reliable corresponding
pairs for Eq. (1);

o Considering the lines that link all pairs in the same group,
two main vanishing points can be obtained corresponding to
the vertical and horizontal directions of the facade plane.

e K can be determined by orthogonal vanishing points assum-
ing that K = diag(f, f,1). This is acceptable under condi-
tions specified later.

e p can be determined by a vanishing line and K;

e Once K and p are known, Eq. (1) becomes a linear equation
in terms of z(x), which can be optimized via a graph-cut
minimization technique.

Based on these clues, we divide the whole system into the follow-
ing three steps: In the first step (Sec. 3.2), repeated feature points
are robustly detected and matched in groups; In the second step
(Sec. 3.3), these groups are used to ease the computation of p and
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Figure 9: Groups of feature points: (a) All detected feature points (Crosses with different intensities are used for visibility); (b)-(d) Three
biggest groups by the chain-wise similarity measure. Although some feature points (e.g.see squares in (b)-(d)) are hard to match due to
the different photometric or geometric transformations, they can be linked through additional evidence from intermediate patterns.

K; In the last step (Sec. 3.4), an energy minimization scheme is
designed to optimize both repetition {(x;,x,)} and shape z(x)
densely. An overview of the whole system can be found in Fig. 8.

3.2 Repeated Feature Grouping

The first step is to define a feature detector and a robust similarity
measure C'(X;, X, ). We choose corners and a small square region
around them (11 x 11 in the experiments) as our features. These
regions are smaller than the areas matched with mutual informa-
tion in our first strategy. The reason to keep the regions smaller is
to make the matching more robust against the perspective effects
dealt with here. Zero-mean normalized cross-correlation (ZNCC)
can deal with some intensity changes (e.g. due to shadows), but is
more stringent than MI, leading to fewer false matches between
small regions. Thus we take C'(x;,x,) = ZNCC(xi,X;).

However, in order to group feature points into several types, the
use of a robust pair-wise measure like ZNCC does not suffice.
For effective grouping, a similarity measure is required to be an
equivalence relation satisfying the following requirements:

e Reflexivity: x; is similar to itself;

o Symmetry: If x; is similar to x;, x; is similar to x;;

o Transitivity: If x; is similar to x;, and if x; is similar to xz,

X; 1s similar to xg.

Unfortunately, the third requirement is not guaranteed to hold for
the pair-wise similarity C'(x;, x).
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‘When comparing two feature points x; and x, of the same type,
C(x1, %) may fail to achieve a high score due to the differ-
ent photometric or geometric transformations. But important,
additional evidence may come from intermediate patterns that

are found, i.e. there exists a chain XoX1 - - - X, (X0 = x; and
X, = X,) in which subsequent elements have high similarity

scores, even if the end nodes do not. This should encourage the
system to group x; and x, into the same type.

3.21 Chain-wise Similarity The above observations have mo-
tivated us to introduce a chain-wise similarity C'(x;, x; ). The ba-
sic idea is to link up two feature points with the most gradually
changing chain of elements, such that the pair-wise similarities
between adjacent elements are high. This chain-wise similarity is
then expressed as:

C’(xl, Xr) = max  {min{C(x;,xi+1)}}
XO “ e Xn 7
with X0 = X[, Xn = Xr. 2)

In order to compute such a similarity measure, we embed the
problem into a complete graph with the nodes being the feature
points x; and the edges among them having C|(-) as weights. We
then consider the spanning tree (ST), which is a graph containing
all the nodes, but having no loops. With the maximal sum of
its edge weights, the “maximum spanning tree” (MST) leads to
an efficient computation of the chain-wise similarity C'(x;, %)
for all pairs of nodes x; and x,, i.e. to the path that leads to
the maximum chain-wise similarity as just defined. Please note
that this maximum spanning tree is similar to the usual minimum
spanning tree but aimed at high edge weights.

With the chain-wise similarity C'(x;,x,), the transitivity prop-
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Figure 10: Detected vanishing points: (a) With pair-wise similarity measure C (x1,%r) and all feature points in Fig. 9(a), vanish-
ing points are wrongly detected; (b)-(d) With chain-wise similarity measure C(x;,X,) and the three biggest groups in Fig. 9(b)-(d),
vanishing points are correctly detected. The pairs consistent with vanishing points are linked with the superimposed lines.

erty is satisfied as C’(xl, X)) > min{C‘(xl, Xi), C’(xi, xr)}, and
thus the grouping process of elements into types can be based on
it. Given a threshold 7, if C(x;,x,) > 7, x; and X, are sup-
posed to be of the same type, otherwise of different types. In the
graph, this is equivalent to breaking certain branches of the MST,
resulting in a subtree per element type.

Fig. 9 shows an example with its three biggest groups as detected
by the chain-wise similarity measure. In general 7 can be cho-
sen more conservatively than the threshold used with a pair-wise
measure. In all the experiments, we set 7 = 0.9.

3.3 Camera Calibration

Given a set of feature groups, the next step is to compute /K and
p. Observing Eq. (1), it is interesting to examine the pair set,

St = {(x1, %) : < )il ) 2(x;) — ( Xlr ) 2(x,) = kKt},

3
where k is a scaling factor and varies for different pairs and where,
in the world coordinate system we use St to describe a set of vec-
tor pairs (K ! ( )il ) 2(x)), K! X{
a common direction t for their difference. Once St is obtained,
Eq. (1) can be converted into the form p”'t = 0. Two such equa-
tions are sufficient to solve p.

z(xr)) that share

On the other hand, in the image plane S¢ manifests itself as a set
of pairs (x;, x,) that share a common vanishing point K't. Van-
ishing points in turn can be used to solve for K: Two vanishing
points v and vy with perpendicular directions satisfy

VlvaQ =0, “4)
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where w = (K KT)~! is the absolute conic in the image.

In order to obtain vanishing points with perpendicular directions,
we consider a group of feature points detected in Sec. 3.2. The
feature points are corresponding points on the repeated elements.
Searching these is based on our assumption facade structures re-
peat in the horizontal and vertical directions along the facade
plane. This however, also implies repetitions in diagonal direc-
tions, which are of no further import to our analysis. For the de-
tection of the horizontal and vertical vanishing points, we prefer
using the repetition groups with the highest number of matched
features. Within such group, we look for the two vanishing points
supported by largest number of feature pairs. Fig. 10 shows an
example of vanishing point detection with (b-d) and without (a)
grouping information. The chain-wise similarity measure links
the feature points in groups even if their appearances differ, and it
produces more consistent pairs than the pair-wise ZNCC measure
does. Hence, vanishing point detections with groups are more re-
liable than those without groups. Fig. 10(b-d) show the dominant
vanishing points for the corresponding feature groups in Fig. 9(b-
d).

In general, three couples of vanishing points with perpendicular
directions are sufficient to solve K with the assumptions of no
skew and square pixels. However, for a building facade image,
the vanishing point for the third, perpendicular direction — the
depth direction of the building — is often very difficult to extract,
if possible at all. As a result, we simplify the internal camera
model further to K = diag(f, f,1). This model assumes square
pixels, as before, but adds the assumption that the principal point
is known. Based on Eq. (4), the only unknown parameter f can
then be solved.
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Once K is obtained, p can be easily computed by the vanishing
line that connects the two vanishing points, p? = (vi x VQ)TK ,
where X represents the vector or cross product.

3.4 Facade Reconstruction

Given K and p, Eq. (1) becomes a linear equation in terms of
z(x). The last step is to design an energy minimization scheme
to optimize z(x). In order to achieve the goal, we first define a
consistency measure to describe “how good z(x) is”.

We consider the group with the most feature points. Based on
our assumption, the points in this group lie on a plane parallel
to the facade. To fix the scale, we let (p”, 1) denote this plane.
Note that the resulting 3D construction will therefore come at a
certain scale, which probably is not the correct one. Our final
result is only defined up to an unknown scale. Thus, for each
feature point x; in this group, its depth value Z; can be estimated.
Please note that these {Z;} will not act as hard constraints when
optimizing z(x) (i.e.Z; = z(x;) does not always hold). {Z;} are
only used to estimate the 3D transformation vectors introduced
in the following paragraphs.

Suppose we are given a pair of corresponding feature points (xz, X).

Corresponding points close to these two corresponding feature
points can be joined by identical 3D transformation vectors:

< le >Z(XL) _ ( le >Z(XR)
;(’il)zl (Xl)z 5)

Considering the inverse problem, the corresponding point ¢;  (x)
of x and its depth value z(c;,-(x)) can be determined from this
3D transformation vector, i.e.

c(x) = xz(x) — x1Z; + %X+ Zy
br N 2(x)—Z1+ Z,
z(er(x) =

2(x) — Zi+ Z. (6)
Based on these equations, we define two measures to describe
the consistency with the input image and the quality of repetition,
respectively:

1= [C(x,c,r(x))],
l2(x) = z(c1,r (%)) = Zi 4+ Z¢|- (T)

€image,l,r (X) =

€repeat,l,r (X)
3.4.1 Energy Minimization We minimize an energy functional
of the form:
Etotal(z) = Eimage(z) + /BErepeat (Z) + 'VEsmooth (Z) (8)

The first term enforces the consistency between the observed im-
age and the synthesized shape

Eimage(z) = Z Hll%”n 6image,l,r(x)7 (9)

where min; , takes the minimum value from all potential match-
ing points, i.e. all points found at a displacement corresponding
with one of the 3D transformations coming out of repetition de-
tection.

The second term assesses the quality of the repetition

Erepeat (Z) = Z Z ‘C(X, Cl,r(x))|erepeat,l,7“(x)a (10)

x Il,r
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where |C(x, ¢;,-(x))| gives more weight when the repetition qual-
ity is high.

The third term imposes smoothness. Since p is known, an intu-
itive idea is to measure the variation along p. We define zp(x)

as
(x) =p K~ ( i )z<x>,

which is the distance to the plane (p”, 0) in the world coordinate
system. Thus the third smoothness term can be defined as

(1)

Eamootn(2) = > _|[Vzp(x)|[- 1 = [[VI®)]),  (12)

where V = (8%, 8%) is the gradient operator and V represents
normalised gradient magnitude, i.e. the maximum gradient value
in the image is put to one and the other values are scaled accord-
ingly. The effect of multiplying with 1 — ||VI(x)|| is to make
the smoothing edge-preserving. Smoothing is stronger in homo-

geneous regions than near intensity boundaries.

3.4.2 Graph Cuts The success of graph-cut optimizations in
similar domains has motivated us to embed our energy mini-
mization problem (in Eq. (8)) into a graph, and use the classic
max-flow/min-cut algorithm to obtain the optimal solution. Kol-
mogorov and Zabih (Kolmogorov and Zabih, 2004) give a char-
acterization of what energy functions can be minimized using
graph-cuts, and they also provide a graph-construction method.
Readers are referred to their paper for more detailed information.

In the following paragraphs, we follow their approach and fo-
cus on the proof that validates our energy minimization problem,
i.e. we convert the energy functional in Eq. (8) into a binary form
which is graph-representable, i.e. each term E%7 satisfies the fol-
lowing condition

E“(0,0) + E“/(1,1) < E“7(0,1) + E“/(1,0).  (13)

a—expansion  Although z(x) is a continuous function and can-
not be represented by binary variables, we can convert it for the
a—expansion operation: Any configuration z, (x) within a sin-
gle a—expansion of the initial configuration z(x) can be encoded
by a binary function

0, ifza(x) = 2(x);
Nz(x) = { L if za (%) = 2(x) 2% (14)
Given Eq. (11) the « label defines a plane
p'K™! ( ’1‘ )Za(x) =a (15)

with orientation p and distance to the origin «.. Let za (x) denote
a configuration defined by Az(x). Then, we have the energy of
binary variables,

A-E|to7tcl,l(AZ) = AEi’ma,ge (AZ) + aAErepeat(Az)

+ BAEsmooth (AZ), (16)
where
AEi'mag"i(Az) Eimage(ZA)
AFErepeat(Nz) = Erepeat(za) a7
AESmOOth(AZ) - Esmooth(zA)~

The first term AEimagE(Az) depends on only one variable, and
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Figure 11: Experimental result: (a) Input image; (b) Optimal shape by the graph-cut minimization; (c) Final shape after the refinement

step.
thus it is graph-representable.

For the second term A Eyrepeqt (A 2), let’s consider a single term
|C(x, c1,r(X))|€repeat,i,(x) in equation (10). Based on the fact
that €repeat,i,r(x) = 0 when (z) and c¢;(x) have same la-
bel, we have AE<C™) (1,1) = 0, and it can be proven that

repeat

AESSC0,0) < AESSC(0,1) + AESES)(1,0). There-

repeat repeat repeat

fore, condition (13) holds.

For the third term A Espmootn (A z), we have AESS™) (1,1) =

smooth
0and AELC (0,0) < ABZ(0,1) + AELS, (1,0).

It is also graph-representable.

3.4.3 Shape Prior Windows and balconies often have rectan-
gular shapes. It is not straightforward to directly add such prior
constraints into the graph-cut minimization, since we have no in-
formation on the element locations before the minimization pro-
cess starts. Therefore, we enforce the shape prior in a second
refinement step. The element locations can then be based on the
optimal shape produced with graph-cuts. The goal is also to align
vertical and horizontal boundaries. Moreover, since the facade
orientation p is known, we can add connecting planar patches
orthogonal to the facade at steep transitions between different
depths.

In practice, this refinement can be easily done by first summing
up zp(x) (in Eq. (11)) along the vertical and horizontal directions
and then taking the positions of maximal variation of the sum as
the element boundary positions. Figs. 12(b)-(c)&13(b)-(c) com-
pare the element shapes before and after the refinement. Please
note the connection between the balconies (in black) and wall (in

gray).
3.5 Results

Implementation Details Feature points have been selected with
the Harris corner detector. The threshold, 7, for classifying the
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feature points in Sec. 3.2 was fixed to 0.9. The § and -y parame-
ters in Eq. (8) are set to 0.125 and 0.25, resp. The other parame-
ters are all determined automatically by the system.

Experimental Results We show four experimental results to
demonstrate the quality of the repetition detection and facade re-
construction. The first two are shown in Fig. 11. They contain
windows with reflections. The first example has both open and
closed windows of the same type, while the second example has
two window types with different width as shown in Fig. 11(a).
Such variations make the repetition detection harder. By combin-
ing repetition detection and shape recovery into the same frame-
work and performing joint optimization via the graph-cut mini-
mization, the proposed algorithm robustly detects the window re-
gions by repeated feature points and depth differences as shown
in Fig. 11(b). In the first example a window is missing due to the
lack of depth difference. Although the window blind is a clue for
a human, it can be regarded as wall texture and thus is hard to
detect. The second example demonstrates the ability of our algo-
rithm to handle different ratios between width and height. Please
note the two partially open windows. By adding the prior knowl-
edge of element shapes and layout, the boundaries of the final
results are more accurate as shown in Fig. 11(c). The running
time of the whole process for these two experiments are about
300 seconds on a Pentium4 3.2GHz machine.

Fig. 12 shows a third experimental result. Again, the windows
vary greatly in their appearance and their detection is far from
trivial. Moreover, balconies present another kind of building ele-
ments and often occlude other elements (e.g.windows or doors).
Fig. 12(b) shows the optimal depth by the graph-cut minimiza-
tion. Almost all of the windows are detected, except the top-left
and top-right ones, due to the strong occlusions in both cases.
There are some noticeable errors on window frames, i.e.the win-
dow frames are sometimes wrongly detected due to their thin
shapes. Fig. 12(c) shows the final depth by adding shape pri-
ors. Please note the correction of the two missing windows and
the added connections between the balcony fronts and the wall.
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Figure 12: Reconstruction result: (a) Input image; (b) Optimal shape zp(x) obtained by the graph-cut minimization; (c) Final shape
after the refinement with rectangular shape priors; (d) 3D surfaces in new viewpoints; (e) 3D surfaces with texture in the same
viewpoints.
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Figure 13: Reconstruction result: (a) Input image; (b) Optimal shape zp(x) obtained by the graph-cut minimization; (c) Final shape
after the refinement with rectangular shape priors; (d) 3D surface in a new viewpoint; (e) 3D surface with texture in the same viewpoint;
As comparison, the yellow lines in (a) shows the results of the state of the art repetition detection by Hays et al. (Hays et al., 2006 ).
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Fig. 12(d)&(e) show the 3D shape without and with texture from
two new viewpoints.

Fig. 13 shows a fourth experimental result with many windows.
The balconies are vertically connected. It contains several light-
ing effects, such as shadows, highlights, transparency and so on.
Plants, window curtains, and blinds let the windows appear quite
different from each other. Fig. 13(b) shows the optimal depth by
the graph-cut minimization. There are some small errors on win-
dows although the main parts are robustly detected. Fig. 13(c)
shows the final depth by adding shape priors. The errors are all
corrected, and occluded windows are detected. Fig. 13(d)&(e)
shows the 3D shape without and with texture from a new view-
point. The running times of the whole process for the two latter
experiments are about 700 seconds.

Finally, we show a comparison with the state of the art in repeti-
tion detection. One of the detected groups of Hays et al. (Hays et
al., 2006) is shown in Fig. 13(a). Their approach exploits the reg-
ular distribution of repeated elements (or texture). It is a generic
method and has been designed for general purposes. The detected
result contains almost all windows on the right hand side, but no
connection is established with the similar windows on the left,
as elements are supposed to be contiguous. Also, since neither
3D information nor shape knowledge is encoded, a meaningful
element is often separated into parts, which belong to different
repeated patterns. Compared with this work, our method is de-
signed for the special purpose of repetition detection of building
elements. Repetition detection provides information for shape
recovery, while the latter in turn produces additional information
for the former. Our detected results in Fig. 13(b)&(c) contain
both sides of windows although they are not connected. The
boundaries and depths are determined, and occlusions are also
handled.

3.5.1 Discussion The proposed approach has been tested with
various images of different qualities and conditions. We summa-
rize the issues raised from these experiments as follows: Firstly,
in order to speed up the whole process, we need to resize the im-
age into 640 x 480 for all our experiments. A high resolution
image requires too long a time for optimization. On the other
hand, too small a resolution cannot provide sufficient informa-
tion to distinguish different depth layers.

Secondly, readers may have noticed some errors in feature point
grouping in Fig. 9. The situation is a bit like with RANSAC. Too
many outliers or too many missing inliers - difficult to quantify
in general terms - may cause failure to recover from such flaws.

Finally, the images should be taken with short focal lengths, so
that there are strong perspective effects, conveying good depth
information. This said, keeping a complete building in the field
of view often imposes such choice.

4 CONCLUSION

In this paper, we have proposed two strategies for the efficient 3D
modeling of facades. Both relied on prior knowledge of architec-
tural structures and used a single image as input. The first could
deal with single images, even if they show little perspective. But
the price to pay is a need for limited interaction. In the second
strategy, the full process is automatic, but it requires sufficiently
strong perspective effects to be present in the image.

The automatic selection between the strategies still remains to
be implemented. In the future, we would also like to extend the
strategy further, and deal with multiple views in case they are
available. Again, such system would then have to automatically
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adapt its strategy to the nature of the input.

For the moment, we have mainly considered simple repeat rules
of the CGA Grammar. In the future we hope to extract more so-
phisticated rules from the imagery, and to describe the result of
the image analysis as a set of CGA grammatical rules. This will
lead to very compact building representations.
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