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ABSTRACT:

Numerous fields of application effort the detection of pose changes for 3 dimensional objects in six degrees of freedom (6 DoF). 
Automatic procedures that exploit 2D images for the detection of pose changes can be used for example for tracking object 
movements, for quality control or for the verification of the alignment of patients in radiation treatment devices. In this contribution 
we present two different solutions for the detection of pose changes that base on the comparison of two 2D images resulting from the 
projection of an object in the new pose and a 3D volume of the same object in a known reference alignment. Whereas for the first 
solution we use an object where we can clearly extract landmarks useable as reference positions for the determination of the object’s 
alignment, we provide a second solution for objects where these landmarks cannot be extracted, which is involved automatically if 
necessary. In this case grey value based pose estimation is conducted by registering the computationally projected reference 3D 
volume to the 2D images. As reference data for the object with known alignment, CT slices will be used, as they are provided for the 
alignment of patients in radiation treatment devices. Two X-ray images of the same object in an unknown pose can then be compared 
to the reference data to determine the respective pose change, which may consist of 3 rotations and 3 translations. Using both 
approaches to determine patient misalignments in treatment devices shows, that both methods result in highly accurate pose 
detections and that the second method, despite being less accurate and more time consuming, is an appropriate solution in cases 
where landmark detection fails.

1. INTRODUCTION

1.1 Motivation

Modern particle beam based radiation treatment techniques for 
tumours allow accurate application of the treatment dose onto 
carcinogen tissue with an accuracy much better than 1.0 mm 
and therefore require an accurate alignment of the patient in the 
treatment facility (Verhey et al., 1982). Common strategies like 
tracking of external markers or fixation of the patient’s body do 
not suffice the requirement of high set-up precision and are not 
feasible whenever internal tumours are to be irradiated, because 
of possible movements of the treatment target relative to the 
outer body shape.

Today it is common practice in image guided radiotherapy to
align patients manually in the treatment device according to 
visual evaluation of reference images as X-rays and CT volumes 
that allow an estimation of the patient’s misalignment 
(Thilmann et al., 2005).

During this time consuming procedure, the alignment of the 
respective body region may change, which leads to unknown 
set-up errors and degrades the results of the treatment. Besides 
that, a manual alignment correction can hardly be done for 6 
DoF, because rotational misalignments can hardly be detected 
visually in the imaged objects.

To overcome these problems an approach for the automatic 
determination of alignment errors is used, which is based on the 

comparison of the position of internal landmarks whenever 
fiducial markers are available.

The use of fiducial markers can be advantageous in many cases, 
because a marker based procedure allows determining a pose 
correction without being influenced by surrounding tissue, for 
example for pose correction of the eyeball. 

However, fiducial markers are not always present or detectable. 
Because of the invasive character of the maker application, 
marker attachment is not possible for many anatomical regions. 
In these cases, the respective alignment of the target region has 
to be estimated by comparison of either natural landmarks or 
other image properties. Because detection of natural landmarks, 
especially for soft shaped objects, is not very reliable, we use an 
approach that estimates the pose by comparison of the grey 
value distribution in the projected images, which are in the case 
of radiation treatment X-ray images and the reference data 
volume, here a CT dataset of the involved body region. To be 
able to achieve best results for all cases, the second approach is 
involved automatically if the landmark-based procedure is not 
able to deliver acceptable results.

1.2 Aims

Our aim is to provide fast and stable algorithms that allow 
detecting changes of the spatial alignment of an object in 
respect of a reference position, using 2D projections of the 
object. These known changes can be used to realign the object, 
to achieve a correct placement. We do not intend to restrict the 
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procedure to any known object geometry, but limit it to rigid 
transformations, because of the inability of correcting object 
deformations.

Two different solutions are provided, because usage of 
landmarks comes with several advantages, but is not applicable 
in all cases. If the procedure using landmarks does not lead to 
proper results, the alternative approach shall be used to 
accomplish the pose estimation. The decision which of the two 
procedures is to be used shall be automated.

The radiation therapy field of application is used for the 
implementation and test of the procedures, because high 
accuracy and reliability are of special importance in this scope. 
Using high-resolution images we aim to achieve accuracies 
better than 1.0 mm and 0.5° for the detection of pose changes. 
Besides that, volumetric data as well as projective images of 
respective objects are available in this scope and specific 
fixation devices, as for example stereotactic frames, can be used 
to validate the results in a controlled environment.

1.3 Overview

This contribution consists of two main parts. Part one 
introduces methods for pose estimation that base on fiducial 
markers in two projections of an object and a 3D volume 
dataset. The markers used in this work are tantalum clips 
attached to an eyeball. We use 4 or 5 clips, which are resided in 
a CT dataset of the said eyeball and 2 X-ray images of the eye 
in different alignment. To be able to conduct an automatic 
detection of the pose change, the landmark positions are 
extracted from the 3D and the 2D image data. Then an inverse 
projection of the 2D positions is performed to be able to 
compute the transformation between the resulting points and the 
reference markers from the volumetric dataset. This is done by a 
rigid registration of the point-sets that has to be tolerant against 
single inaccuracies from the landmark detection.

If the first approach fails or leads to inconsistent results, the 
second approach is conducted automatically.

The second approach provides a solution for cases where no 
proper landmarks can be found. Then the volume dataset is 
projected into the imager planes of the X-ray beamlines for 
different virtual object poses. Optimisation of grey value 
distribution based image comparators gives the alignment of the 
reference dataset. The modification of the reference volume 
alignment results in the change of the object’s pose relative to 
the original pose.

1.4 References to related work

A solution for X-ray based pose estimation is given in (Bhunre 
et al. 2007). In this approach, a single 3D model is used to 
estimate the pose of a bone, visible in X-ray images. As the 
optimal shape for the model can vary from patient to patient, a 
single model does not suffice the demand for a highly flexible 
solution. Besides that, the model-based solution requires a 
segmentation of the respective object in the X-ray image. As X-
ray images can be noisy and the same anatomical objects may 
appear different, depending on the X-ray beam’s energy, it is 
not possible to rely on a segmentation, especially if, as in our 
case, the goal is to detect pose changes for any rigid object, 
without restricting the detection to bones.

The approach described in (Frahm et al. 2004) uses a Harris 
Corner Detector to extract features from several images 
obtained from different camera positions. Through comparison 
of these features, the pose of an object can be estimated. This 
approach is not applicable in the case of X-ray images, where 
detected corners may be placed anywhere inside the object, 
because of the nature of the X-ray imaging, not mapping the 
surface onto the image detector, but the integral of absorptions 
of the ray on its way through the object. For X-ray images it is 
not possible to determine whether a visible feature is located on 
the surface, within or at the back of an object.

In (Tang et al. 2000) a feature based method is proposed, basing 
on the comparison of features in one single X-ray image to 
known feature positions in 3D space. Accuracies of about 1 mm 
and 2° could be reached. Using one single X-ray image implies, 
that a point to line registration has to take place. The accuracy 
of the estimation for the distance of the 3D object from the X-
ray source depends on the beam width of the X-ray beam 
pyramid. Because shifts in direction of the beam can only be 
determined by size changes of the projected 2D image, the 
accuracy of the results is restricted on how accurate the image-
scaling factor could be determined. In a typical radiation 
machine device, where the source – detector distance is up to 3 
m and more, much higher accuracies can be reached, using two 
X-ray images.

2. METHODS

2.1 Landmark based pose estimation

The first approach is based on the comparison of artificial 
landmarks.

2.1.1 Identification of landmarks

Detection of landmarks in 3D data
To enable very fast detection, clips are segmented in the CT 
data using different levels of volume resolution. The CT is 
resampled to a 4D pyramid containing several instances of the 
volume, each with a different resolution. The search for a clip 
starts at a low-resolution level. As soon as a potential clip voxel 
is found the search continues at a higher resolution. To 
determine if a voxel belongs to a clip, two Hounsfield 
thresholds are used. A voxel between those thresholds is 
considered to belong to a clip. As soon as a clip is found, the 
thresholds are adapted, assuming that upcoming clips are of the 
same material and will be represented by similar Hounsfield 
values. If no clip can be found, the thresholds are modified and 
the search continues (Fig. 1).

Figure 1. Landmark detected in consecutive slices

Detection of landmarks in 2D projections
For detecting the landmarks in the X-ray images, two different 
approaches are combined. Using a Harris Corner Detector 
(Harris et al., 1988) potential clip corners are identified. Then 
the convex hulls for the point-sets are determined, as the shape 
of the eye clips will be convex after projection onto the X-ray 
panel plane. The area Apoly of a convex polygon is calculated by 
equation 1:
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where N = number of polygon corners
Pi = ordered corners of the polygon
A = area of the triangle

In a next step, segmentation is performed inside the area of the 
convex polygons. A grey value threshold T is used to identify 
potential clip pixels. The area A of the identified pixels is 
determined by equation (2):
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where y0, y1, x0, x1 = bounding box of the polygon
sx, sy = pixel size on image plane
I(x ,y) = pixel intensity

If the quotient of A and Apoly becomes larger than a certain 
threshold, the polygon is considered to belong to a fiducial 
marker. If the total number of resulting marker objects does not 
correspond to the expected number of markers, the detection is 
resumed, using a modified threshold T (Fig. 2). 

(a) (b) (c) (d)

Figure 2. X-ray with 4 landmarks (a); Iterative refinement of 
areas identified as landmarks (b, c, d)

2.1.2 Back-projection

Inverse projection
To compare the markers detected in the projective images with 
the reference markers from the spatial dataset, an inverse 
projection is performed for corresponding pairs of both images. 
Based on a known geometric set-up of the imaging devices (Fig. 
3), the inverse projection is done by calculating the intersection 
points of rays from the X-ray source to the centre of the 
segmented marker in the respective projection plane.

Z

Y

X

Dist’

Dist

Y

X

Projection plane

Reference position 
of object

X-ray 
Source

Figure 3. Imaging device (left); geometric set-up of imaging 
devices (right)

Handling of redundant results
Because it is not always clear which clips correspond to each 
other, it is possible that one clip becomes a member in several 
back-projection results. This is the case, if several clips are 
projected onto a horizontal line in the plane of one flat panel 
(Fig. 4).

PA0

PA1 PB0
PB1

result 1

result 2

2D clip

X-ray source

X-ray panel

Figure 4. Back-projection with two possible results

All possible resulting point-sets Bi are kept as preliminary 
results. In the following registration procedure only the point-
set, which can be mapped onto the marker positions A derived 
from the volume data is used to derive the final transformation 
for pose detection.

2.1.3 Point-set registration

Registration
Several registrations are performed, one for each possible back-
projection result with the reference positions. In each 
registration, two sets of points in the 3D space are used to 
calculate 3 shifts and 3 rotations, which map one point-set onto 
the other as good as possible. The remaining mapping error can 
serve as an indicator for the quality of the calculated alignment 
deviation. We use a Downhill Simplex optimisation (Press et 
al., 1992) to minimize the error for the misalignment between 
back-projected point-set Bi and the original landmark positions 
A. The error metric bases on the undirected Hausdorff Distance 
H(A,Bi) (Huttenlocher et al. 1993).

The optimisation may suffer from local minima of the error 
function (Fig. 5).
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Figure 5. Comparison of error functions

The correct alignment detection for figure 5 is at 10°. The 
squares of the directed Hausdorff Distances h(A,Bi) and h(Bi,A), 
as well as the square of the undirected Hausdorff Distance 
H(A,Bi), which is the maximum of the directed distances, have 
local minima. To avoid these, we calculate an error ERRi for 
each combination of A with Bi as the square sum of a fractional 
undirected Hausdorff Distance of rank 1 to K, where K denotes 
the minimum of the number of landmarks detected in either the 
reference data or the projected images, as shown in equation 3:
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where N = number of points
hk = directed Hausdorff Distance of rank k

After minimization of the ERRi values only the transformation 
for

( )nbest ERRERRERR ,...,min 1= (4)

is kept for further calculations.

Acceptance of results
The result of the alignment detection is accepted, if the standard 
deviation AB between the closest members of the final point-
sets A and Bbest used for the optimisation lies beneath a 
threshold given in the program configuration as the maximal 
accepted error. If the result is not accepted, grey value based 
pose estimation is conducted.

2.2 Grey value based pose estimation

The grey value based pose estimation is conducted if the 
landmark based approach fails because of the lack of detectable 

landmarks, which lead to a good match with the 3D reference 
data.

2.2.1 The algorithm

The procedure for the grey value based pose estimation projects 
the reference volume A computationally onto the detector 
planes of the imaging devices, using a pose correction C. The 
results are two projections of the volume that depend on a 
current pose correction. For each we calculate a value Q for the 
quality of the match with the respective X-ray image B, 
acquired with the object in the current, unknown pose. The 
quality values are combined. Minimizing the negative combined 
matching quality by modification of the pose correction C gives 
the final pose change (Fig. 6).

Projection 2

Pose correction

Comparison 1

Minimization of -Q

2D Image B1 2D Image B2

Volume A

2D Image A’2

Projection 1

2D Image A’1

Comparison 2

Combined Quality Q

Figure 6. Algorithm for grey value based six degrees of freedom 
registration

2.2.2 Projection of the volume

The volume is projected onto an imager plane by a ray tracing 
technique, where rays to the X-ray source are computed for a 
sub-set of pixels, covering ¼ of the receptor area (Fig. 7). 

Object

Pixel

X-rays

Receptor
area

Sub-set

Figure 7. Ray tracing for volume projection

To speed-up the process, we stop ray tracing as soon as 
summing up the density values of the volume leads to a 
saturation of the respective pixel intensity. The pixel value is 
calculated by summation of the voxels, intersected by the ray. 
The voxels are weighted by their absorption coefficient, which 
can directly be obtained from the CT data. To improve the 
quality of the resulting image, trilinear interpolation can be 
applied as the ray passes through the volume. However, we used 
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nearest neighbourhood interpolation to improve the 
performance and because we did not intend to produce visual 
results of high quality. 

2.2.3 Image comparison and optimisation

There exists a wide range of grey value based image 
comparators in the scope of registration. As methods like cross-
correlation or usage of difference images are not applicable for 
images that differ in much more aspects than contrast and 
intensity, we decided to use mutual information as image 
correlation measure (PLUIM et al., 2003).

Figure 8 shows five different joint histograms, where each axis 
stands for the grey values of one of the images.

(a) (b) (c) (d) (e) gA

Grey values gB

Figure 8. Joined histograms for images A and B: a) identical 
images; b) inverse images; c) A darker than B; d) 
partly different images; e) images without 
correspondences

A joint histogram is built up by reading the grey values of both 
images at the position of two overlaid pixels and incrementation 
of the histogram cell by one at the respective coordinates, 
defined by the two grey values. The mutual information value 
MI is then calculated by equation 5:
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where G = largest grey value
p = probability for occurrence of the grey value in the 
image, based on the distribution in the histogram
H = entropy of either one of the image histograms or 
the joint histogram

Optimisation of the rigid transformation T for the current object 
pose in 6 DoF is done by minimization of a negative quality 
value -Q given in equation 6:
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where MIi = Mutual Information value for the image pair i
N = Number of images (here 2)

We minimize -Q by the downhill simplex method for 6 pose 
parameters (3 shifts and 3 rotations).

2.3 Results

2.3.1 Landmark based pose estimation

For all tests a standard PC has been used. Tests have been 
performed using CT datasets (0.2 mm slice distance, 250 slices) 
and X-rays of a pig’s eye attached with 4 and 5 tantalum clips 
of 2.5 mm in diameter (Fig. 9).

Figure 9. Images of pig’s eye with 4 clips: X-rays (left); Fused 
(centre); DRRs (right)

The X-ray equipment has been calibrated with geometric 
accuracy of about 0.25 mm. In all cases it was possible to detect 
all landmarks and to perform a correct mapping of the back-
projected marker positions to the reference data (Tab. 1).

Pose change Calculation errorNumber of 
Landmarks shift rotation shift rotation Time

4 2.0 mm 2.0° 0.2 mm 0.1° 1sec
4 5.0 mm 10° 0.3 mm 0.1° 1sec
4 10 mm 20° 0.2 mm 0.2° 2sec
5 2.0 mm 2.0° 0.2 mm 0.1° 2sec
5 5.0 mm 10° 0.1 mm 0.1° 3sec
5 10 mm 20° 0.2 mm 0.2° 3sec

Table 1. Pose estimation errors for landmark based approach

2.3.2 Grey value based pose estimation

In this case, tests have been performed using a CT dataset with 
295 slices of 0.8 mm slice distance and X-ray images of a 
human scull. No landmarks have been attached to the scull (Fig. 
10).
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Figure 10. Images of a human scull: X-rays (left); Fused 
(centre); DRRs (right)

Starting with the landmark based approach the procedure 
recognized that it was not possible to find a consistent set of 
landmarks. The automatic procedure for the grey value based 
pose estimation was started.
For all used X-ray images the grey value based method was able 
to detect the respective pose change. In table 2 the results are 
shown for a number of given pose deviations (for better 
comparability, we chose the same initial poses as for the 
landmark based procedure).

Pose change Calculation error
shift rotation shift rotation Time

2.0 mm 2.0° 0.9 mm 0.4° 62sec
5.0 mm 10° 1.1 mm 0.7° 98sec
10 mm 20° 2.3 mm 0.9° 113sec

Table 2. Pose estimation errors for grey value based approach

3. DISCUSSION

Both presented methods are able to provide reliable and 
accurate detection of pose changes. The major disadvantage of 
the landmark-based method is that it is only applicable if some 
detectable markers are present.

Regarding the results in tables 1 and 2, the advantages of the 
landmark based approach become apparent:

� Pose estimation is much more accurate even if we 
consider that the CT resolution was higher in the case 
of the landmark based approach;

� The calculation can be done in a few seconds on a 
standard PC;

Performance of the grey value based approach could be 
improved, if faster rendering algorithms would be used for the 
volume projection. However, combination of the two 
approaches is an ideal solution to exploit the advantages of 
either method, whenever it is possible.

For the radiotherapy field of application, each method provides 
an enormous advance in accuracy compared to manual 
alignment methods.

4. CONCLUSIONS

We presented two different procedures for image based pose 
estimation. A landmark-based approach has been tested with 2.5 
mm tantalum clips, which could be detected relatively easy. 
Further efforts have to be done to assure a correct detection for 
the wide variety of applicable metal clips. Under adverse 
circumstances, as when clips are occluded by other clips or by 
bony structures of the skull, not all clips can be detected, which 
results, depending on the total number of clips used, in results 
less accurate.

If the landmark-based approach failed, grey value based pose 
detection is started automatically and leads to acceptable results. 
However, the grey value based approach was less accurate and 
more time consuming, but whenever no landmarks can be 
detected, the grey value based approach is an optimal solution 
to this problem.
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