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ABSTRACT:

Airborne Lidar system provides the Earth’s topography ag8idt clouds. Many algorithms have been implemented to@atrthe
automatic classification problem as well as the Digital @@rModel generation (DTM). This is mainly due to the vari@spects of
landscapes within a global survey which can include urbamgsted or mountainous areas. This paper is focused on tieeagion of
DTM over rural areas that are composed of open fields andtforéhe methodology we propose is based on the joint use @fabpt
images and Lidar data. It aims at adapting the window sizernbgphological-based filtering algorithm to the presenceegfetated
areas. In this context, Lidar intensity and optical imagesc@mbined to generate a Hybrid Normalized Difference Yéatgm Index
(HNDVI). A vegetation mask is then calculated with HNDVI ahitlar variance information. The window size continuouséries
from a predefined minimum distance to an automatically (ssee upper boundary. We show with conclusive results trengiatity
of a full combination of Lidar data and RGB optical imagesifaproving the generation of fine DTMs on rural environments.

1 INTRODUCTION to generate a Hybrid Normalized Difference Vegetation inde
) . ] (HNDVI). A vegetation mask is then calculated with HNDVI
Airborne Lidar systems are nowadays a popular technique-to a and Lidar variance information. The window size continupus

quire representations of landscapes as 3D point clouds.obne varies from a predefined minimum distance to an automaicall
the first process to be applied to raw Lidar data is a clas8iita processed upper boundary.

step, providing ground and off-ground points, and a Didlel-
rain Model generation step. These two steps have been aaksea
topic for some years. The generation of DTMs requires efficie
algorithms to process large data volumes on various and leamp
landscapes such as urban areas (Dellcqua et al., 20013t &are
eas (Kraus and Pfeifer, 1998) (Haugerud and Harding, 2001) o 2 BACKGROUND
mountainous areas (Wack and Stelzl, 2005). Many algorithm
have been implemented and tested so far, but no generiémsolut
appeared (Sithole and Vosselman, 2003).

After presenting the filtering algorithm, we will descriltbestgen-
eration of the vegetation mask as well as the adaptive wirsitosy
strategy. Results are finally presented and analyzed.

SThis part briefly reminds the classification algorithm preed

in (Bretar et al., 2004). From an initial location (minim#itde
of the point cloud), the filtering algorithm propagates \vitthe
Methodologies based on a progressive TIN (Axelsson, 20@0) a point cloud following the processed region frontik, namely
popular but parameters highly depend on the terrain slopetis  following the steepest local slope over a 4-connexity nigigimg
as on the relevancy of laser points to belong to the terraist | systemVae. Eligible locations evolve within a sorted (ascending
pulse is not always a true ground point, especially in presefi  order) container structureft). At each sité s € F<, a square
dense vegetation coverage. In a DTM production contextgthe neighborhoodVs of dimensiond, is extracted.d, is set so that
rain surface as well as the classification result have totalio  the overlapping ratio between two adjacent locations shbel
and manually corrected. at least of 50%. In the previous worH, is kept constant for
each sites. At site s, an initial estimate of the terrain elevation

Methodologies based on a local estimation of the terrain{mo : -
. A is performed by calculating an average value of laser paigttt
phological approaches) suffer from the same drawbacks (Edi)elonging to a rank filtered subse®{ »(s)). In our case, a ratio

stein and Munkelt, 1995) (Kilian et al., 1996). More speaiiiy, . , X
the potential of morphological filters to provide a goodestie ~ ©f 0-2 has been defined, but it depends on the data quality.

of the ground depends on the filtering window size and on the di The filtering algorithm is based on a bipartite voting praces
tribution of the buildings and trees in the data. If a smaliddw  Laser points will be classificated gsound or off-ground points
size is used, the local topography will be well represenped;  depending on their height difference to the local terratimeste
vided that there are enough true ground points within thghiei |ilground(3) —1L.|<T,T€eR. ilground(s) is calculated by averag-
borhood. Nevertheless, points belonging to large roofcsiires  ing the altitudes of laser points belonging)o and classificated
will not be filtered as off-ground points. On the contraryaege  asground. Considering the overlapping ratio of the neighbor-

window size will tend to over-filter Lidar points and to smbot  hoods, laser points are classificated several times eistgnoaind
the final DTM. A solution to overcome these effects is to affine (p9oundy or off-ground (29" points.

locally the window size of the filter (Kilian et al., 1996) (2hg R )
etal., 2003). In order to check the coherence /afound(s) with regard to the

_ ] _ DTM values over & x 3 window centered iz (DT M3*3(5s)),
This study is focused on the generation of DTM over vegetateqyhich is a memory of all previously calculated terrain atties,
areas. We propose in this paper a methodology which aims t@e integrate a linear correction to the final value of the DTM

adapt the window size of a morphological-based filteringalg gt |ocations. This correction depends on a coefficient on
rithm to the presence of vegetated areas (Bretar et al.,)2004

In this context, Lidar intensity and optical images are coret *In image processing, a site corresponds to a pixel (i,j).
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ﬁgmund and on a mean DTM over & x 3 window centered in  of the intensities of 3D Lidar points included in this neighb
s (DT M?3*3(s)). hood (with a point density of 0.7 ptfmthere are-~ 14 Lidar
points). The dynamic of raw intensity values is low with very
DTM(s) = ahgond(s) + (1 — a)DTM3%3(s) (1) few saturated values (out of the main distribution). Seirad
the orthophoto is an 8-byte image, the main distributiomtén-
Finally, for each neighborhood extractidh, laser points willbe ~ Sity values is stretched between 0 and 255. An Hybrid-NDVI is
labeled following local criteria. At the end of the propagat a  then calculated by:
laser point will have been labeledtimes as ground anah times

as non-ground. We then affect the final label corresponding t HNDVI = Liidar — B (2)
max(n, m), which is the most representative vote. Algorithm 1 Tridar + R
summarizes the algorithm. whereR is the red channel of the optical image &g . is the

Lidar intensity image.

Vegetation is detected by thresholding the HNDVI image. Ac-
cording to (Lillesand and Kiefer, 1994), the values of NDI f

Algorithme 1: Algorithm for classifying laser points

begin . vegetation range is from a low 0.05 to a high 0.66. Applieduo o
Input : o € [0,1], T'=0.5m Hybrid-NDVI, these thresholds provided fairly good result
while F< # () do

In order to segregate high vegetation from fields, we crotsed
threshold with a binary standard deviation mask: only sit&sch
aso(s) greater than 1 m are considered. Finally, the vegetation
mask is defined as a st defined as:

Extraction ofV, of dimensiond,
hground(s) = (%0.2(3)
foreach laser point € V, do

if |hground(s) — 1| < T then
| I € ground; «ndon M= {s/HNDVI (s) € [0.05,0.66] (o (s) > 1 m} 3)

elsel € off-ground; +ngfrn

hground (8) = mean(l./l € ground)

and is represented as an image of the same resolution aseoth t
orthophoto and the DTM’s one. Figure 1(b) illustrates a t&ge

DTM(s) = ailground(s) + (1 — &) DTM3*3(s) tion mask calculated for this study.
Fe=F<\{s} . , ,
s Vi 3.2 Adaptingthelocal neighboring system

As mentioned in the introducing part, the window size of
end the neighboring systend, (defined in section 2) in case of
a morphological-based classification process should bdl sma
enough to keep all ground details but large enough to ensure

3 METHODOLOGY the removal of up-ground objects such as trees or/and hggdi
o The section describes an algorithm for adapting the windee s
3.1 Predicting vegetated areas d, of the structural elemenflf is a square window) at site

This partis dedicated to the generation of a high vegetatiask ~ [© Vegetated areas. The adaptative window dizés processed
including hedges, isolated trees and forest areas, butudgmial ~ ©Ve' laser points belonging to madk. By definition, if a laser

fields. It is a prediction of vegetated areas based on both thBOINt is included intoM, it is likely to belong to a vegetated
analysis of ima%es and Lidar dgta. area. d, € [dT", dI'™] should therefore be enlarged to ensure

i ) ) ) ) that enough laser points withia, belong to the true terrain.
Typical vegetation has higher reflectance in the near+iaffa

wavelengths (700-1350 nm) than in the visible domain bezaus di" is a critical parameter and has to be defined so that a mini-
red light is mostly absorbed by the plant's chlorophyll (90% Mum number of laser points should be processed withirBe-
The contrast in reflectance between the red and the nearedfr Sides.d:" ensures the overlapping structure of neighborhoods.
makes possible to create an image that separates vegetated | e therefore constraid; as:

cover from non-vegetated land cover by calculating the Narm dhs o gmin < g < gmax 4)

ized Difference Vegetation Index. As usual in a Lidar survey e

Lidar data are very often combined with a RGB image acquisiwhered?s is a global minimal window size over the entire survey
tion, but infrared channel is not always available, suchésdase  and is independent on site If p (0.2 in this paper as mentioned

in this study. We therefore decided to investigate the fiteof  previously) is the percentage of lowest laser points withinr
Lidar intensity information as infrared channel. the DTM ground resolution andl the global average point den-

Recorded intensity is a function of many variables suchserla  Sity, i is defined as:

power, target reflectivity, range, incidence angle, mebsogp- 1

tion (Coren et al., 2005). It also depends on the detectiodemo d2® — max(——,r) (5)
applied in the first/last pulse systems (Wagner et al., 2004 p*

intensity values need to be better calibrated by systemlaleve _

ers (Ahokas et al., 2006) or at least to be corrected by sagnni In our algorithm,d;" depends on two parameters: i) the local
homogeneous targets to compute and validate a backsugtteristandard deviation}***' calculated on thg% lowest laser points
model (Coren and Sterzai, 2006). However, if these assomgpti  of Vs and ii) the neighboring laser points that belong\tb The
are particularly relevant, we decided to investigate themtial  higher the local standard deviatier{°°*!, the larger the mini-
of using raw uncalibrated Lidar intensity in case of a jomt i mum window sized}"". Statistically, low standard deviations of
dex computation, which is generally derived from imageecolas altitudes are over represented in rural areas. Thered@f®has
infrared data. to be highly increasing with low values ef°°*!. We then define
the variations ofiT" as:

Lidar intensities are therefore resampled at a resolutibithv
depends on the point density. The resampled intensity @ical d™" = d2 4 Klog(1+ o) K € R (6)
lated on a regular grid by extracting a circular neighbothob
2.5 m diameter. This choice ensures that enough Lidar pbgits K = 6 was found to be a good compromise for processing our
long to the neighborhood. The final intensity value is the mea data. To ensure the regularity of adjacdfi" values, a Gaussian
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The behavior ofl, betweerd?" andd™® is not a linear function
because the window size has to be strongly enlarged in case of
a high vegetated ratio where lowest points are not guardritee
belong to the true terrain. Meanwhile, in case of low ratmse

can expect that lowest laser points belong to the true reenadl
describe it in detailsd, will consequently increase exponentially
with z; following equation 8.

do(zs) = A’ + B 8)
With ‘
d.(0) =dmn
do(1) =dm
we have

max min

A= 8T 20T B ™ A
ef —1

Parameters in equation 8 were chosen sodhahould be highly
enlarged when more than half the structural element sizeaizen
dense vegetation, i.e. when > 0.5. We therefore choose:&
dependency of the exponential function ahe= 3 for two main
grounds (figures 2 and 3):

(a) 2.5 m-Orthoimage.

i. the slope is smaller than a simple exponential when<
AR i 3 TR, 0.5. This ensures a regularizeld map that is not sensitive
; . to low vegetated areas.

ii. the slope is higher than a simple exponential whgn>
0.5. This ensures a quick increase of the window size in
case of dense vegetated areas.

a3 — v — Aexp3x)+B
—+—Aexp(B3x)+B

25
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Window size ds(m)
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X %vegetation in V_

= Figure 2: Comparison of two parametric formsdof
(b) 2.5 m-Vegetation mask (white pixels) superimposed eroitthoimage.

. X i i ) max —a— p=2
Figure 1: Generation of a vegetation mask using Lidar dathh an 4.5 L E=3
optical images. — =5

filter is applied over the™ image providing that equation 4 is A
still satisfied.

d™" also depends on the neighboring laser points that belong 20

to M. This criteria discriminates small vegetated regions from
forests. From an initial value calculated in equationd®)" is
increased by one DTM's resolution unit until there is at teas
cell of maskM that is not considered as a vegetation point.

Window size ds(m)

0.

dT® s set proportional taT"". A low value ofd7" should cor- = 0% 72 07 05 78 To
respond to a small vegetated area driths therefore to vary in X_: % vegetationin V,

a small interval. On the contrary, a higlf" is likely to corre- . o .

spond to a forest area. To ensure terrain points be staflgtic Figure 3: Variations ofl; with 3 € {2, 3,5}.

represented iVs, d has to vary within a large interval. In this
study, we setlT® = 3d7".

For each sites and a window size o™, let us consider the ) . . .
percentage of predicted vegetation arexjn Lidar data have been collected in 2004 by the Institut Frisnca

de Recherche pour I'Exploitation de la Mer (IFREMER) over th
Morbihan’s Gulf, France. It has been funded by the fundation
TOTAL. The entire survey is composed 280.10° points with

4 THE DATA SET

_ Vegetated surface af,

min min
di" x df

€[0,1] @)

s

21



PIAQ7 - Photogrammetric Image Analysis --- Munich, Germany, September 19-21, 2007

intensities and has been acquired with an ALTM (Optechesyst We show on figures 4, 5 and 6 three relevant profiles where Li-
1210. The point density is 0.7 ptim The Lidar wavelength is  dar points are plotted along a transectogkm. The final terrain
1064 nm. elevation values are plotted as a back lines. The secundiztsy p
represent the corresponding adaptative window sizes aluag
profile. These curves show that the structural element diltee
evolves depending on the complexity of the off-gound topegr
phy and is well-adaped to the estimations of the terrairatien.
Sometimes, when the window size is the largest, the teriain ¢
be over-estimated since it results from the averaging ofmah
elevations.

This part describes the results of the algorithm as well es th L

impact of the joint use of Lidar data and RGB images on the gen-
eration of fine DTMs on vegetated areas. The algorithm has bee
tested on a large data set described above. We present titts res
obtained from two 2km 2km square subset of the Morbihan’s
Gulf calledGM-7-5 and GM-6-5 in figure 7.

E

DTMs presented in Figures 7(a) and 7(e) have been calculated
with a constant; =10 m with solely 3D Lidar data. We clearly
observe that such value df is well adapted to the retrieval of
the terrain over open field areas with a high level of detdigdd
delineations, roads). However, when comparing figure 7{#) w .
the corresponding aerial image in figure 1(a), one can ntie O 10 0 W a0 SO w0 W 0 W0 100 100 100 1300 100 500 1000
forested areas are mis-classificated providing an erranest- € o {
mate of the DTM over these areas as expected. It is also visg « 1 3
ble on both profiles presented in figures 4 top and 5 top wheré
grey curves represent the DTM calculated with a constant wing 3
dow size. When increasing the structural element dizep to
30 m (figures 7(b) and 7(f)), most of vegetated areas have be
filtered off. But, many details were lost during this procgs®-
viding a smooth DTM.

Figures 7(c) and 7(g) show two DTM calculated with the adap- ;
tive window size strategy using 3D Lidar data, Lidar inténsi (green—> of-ground, rea- ground). Grey lines are comput.ed
and RGB optical image. Both of them have been post-processeffith @ constants =10 m andd, =30 m. The final terrain is
by a Markovian regularization (Bretar, 2007). This postqess represerjted asa bIacI_< linkown: Adpatative window sizes cor-
consists of minimizing an energy in a Bayesian context. €his responding to the profile.
ergy is composed of a data term and a regularization term. The
first one describes the Euclidian distance between thecauffiae s
DTM) and the Lidar points classificated as terrain points.e Th
second one aims to compensate the effect of the data termtso th
the final surface should not be too noisy. This term depends on
the intrinsic geometry of the surface. We define the regzdari
tion term¢&, as a function of the trace and the determinant of the
Hessian matrix.

Optical images are extracted from the BDO«E@-rench or-
thophoto data basis) of the Institut Géographique NatifiG\)
with a nominal resolution of 0.5 m, but resampled at 2.5 m for
the generation of the Hybrid-NDVI image.

5 RESULTSAND DISCUSsION
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Figure 4: Top: Profiles GM-7-5) of classificated Lidar points

Altitude (m)

& = artr(H)? — azdet(H) 9)
. o 3
with ae > 0 anday > 72 = 4
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determinant is linked to the shape of the surface with regaits
tangent plane (parabolic, elliptic, hyperbolic). A stestggadient
algorithm has been used to solve the optimization problem.
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ptative window size (m)

One can observe that microrelieves calculated with a cohstas | i
ds=10 m are preserved while terrain points are better estunates WANL s LA VY e A
under Vegetated areas. The calculated DTM shows intemstin 0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600

meso-relieves such as shallow valleys covered by dense¢avege Profile (m)
tion. Itis a cross validation of our algorithm since no ex$ta®  Figure 5: Top: Profiles GM-7-5) of classificated Lidar points
field campain have been performed so far. (green— off-ground, red~ ground). Grey lines are computed

Figure 7(d) shows the related distance image based on thaith a constantd; =10 m andds =30 m. The final terrain is
Hybrid-NDVI mask (see section 3.2). Inverse grey levelsrare represented as a black lineown: Adpatative window sizes cor-
lated to distance values included in [5m,130m]. Darker Igixe responding to the profile.
correspond to large structural elements and are linked ge-ve
tated areas, while brighter pixels correspond to open fislétsen In this study, we have not given any physical interpretatbn
looking closely to the image of distances, one can obseme thLidar intensity. The distribution of the Lidar intensity &age has
strip-like parallel pattern of the Lidar acquisition suyveThe  been artificially stretched for coherence purpose with necga
higher point density of overlapped areas are visible asitjig the orthophoto red channel. As future work, we plan to com-
darker vertical strips on figure 7(d). This effect can be aixd  pare optical infrared channel with Lidar intensity in ordeigive
by the definition ofd22 in equation 5 where the density is taken more physical content of the Lidar intensity image as welicas
into account. calibrate both infrared sources.
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The vegetation mask results from the coarse thresholditigeof Kraus, K. and Pfeifer, N., 1998. Determination of terraindels
Hybrid-NDVI image (equation 3). The vegetation areas may be" wooded areas with airborne laser scanner data. ISPR8alour
punctually under-detected leading to non-dense vegetegiohs ~ ©f Photogrammetry and Remote Sensing 53, pp. 193-203.
(figure 1(b)). Indeed, the Lidar survey and the aerial optiva  Lillesand, T. and Kiefer, R., 1994. Remote Sensing and Image
ages have not been acquired at the same time. Moreover, Lidaterpretation. John Wiley & Sons.

intensity is not as reliable as an optical infrared chanméty- Sithole, G. and Vosselman, G., 2003. Comparison of filtering

erthelless, thg overlap.ping constraint as well as the ragutaf algorithms. In: Proc. of the ISPRS Workshop 111/3 3D Recon-
thg window size of adjacent, ensure that under-detecteq V€€~ struction from Airborne Laserscanner and InSAR’, IAPRS), Vo
tation areas are treated as they were. Therefore, thererieet XXXIV, Dresden, Germany, pp. 71-78 ' )

to process a finer vegetation mask.

Wack, R. and Stelzl, H., 2005. Laser DTM generation for Seuth
Tyrol and 3D-visualization. In: Proc. of the ISPRS Lasersiag
2005, IAPRS, Vol. XXXVI-3/W19, Enschede, the Netherlands,
The paper presents a full methodology for using jointly 3D Li pp. 48-53.
dar data, Lid".’“’ intensity and RGB images within the COF“FM O.Wagner, W., Ullrich, A., Melzer, T., Briese, C. and Kraus, K.
DTM gengratlon on vegetated areas. we s.how.ed that mixing L2004, From single-pulse to full-waveform airborne lasearsc
dar intensity values together with RGB optical images in 82 H o1 potential and practical challenges. IAPRS, Vol. 3§t P
brid Normalized Vegetation Index is a promising approach fo B3, pp. 201—206
processing rural landscapes with open fields and high vegeta e ‘ )
even if both data sets have not been acquired simultanedsly Zhang, K., Chen, S.-C., Whitman, D., Shyu, M., Yan, J. and
sides, we showed that, in a typical acquisition framework@B  Zhang, C., 2003. A progressive morphological filter for reing
images with Lidar data (point cloud and intensity), it is gibte nor]ground measurements from airborne I.|dar data. |IEEEsfran
to highly improve the classification process for generatifipe ~ actions on Geoscience and Remote Sensing 41(4), pp. 872-882
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6 CONCLUSION
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(a) DTM from Lidar data withd; =10 m. (b) DTM from Lidar data withds =30 m.

(c) DTM from Lidar data and RGB images with adaptie (d) Imaged; coded in inverse grey level scale.

(e) DTM from Lidar data withd; =10 m. (f) DTM from Lidar data withd, =30 m. (g) DTM from Lidar data and RGB images with
adaptived

Figure 7: Results of DTM processing over the a@&d-7-5 (figures a, b, ¢, d) an&M-6-5 (figures e,f,q).
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