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ABSTRACT:

Airborne Lidar system provides the Earth’s topography as 3Dpoint clouds. Many algorithms have been implemented to sortout the
automatic classification problem as well as the Digital Terrain Model generation (DTM). This is mainly due to the variousaspects of
landscapes within a global survey which can include urban, forested or mountainous areas. This paper is focused on the generation of
DTM over rural areas that are composed of open fields and forests. The methodology we propose is based on the joint use of optical
images and Lidar data. It aims at adapting the window size of amorphological-based filtering algorithm to the presence ofvegetated
areas. In this context, Lidar intensity and optical images are combined to generate a Hybrid Normalized Difference Vegetation Index
(HNDVI). A vegetation mask is then calculated with HNDVI andLidar variance information. The window size continuously varies
from a predefined minimum distance to an automatically processed upper boundary. We show with conclusive results the potentiality
of a full combination of Lidar data and RGB optical images forimproving the generation of fine DTMs on rural environments.

1 INTRODUCTION

Airborne Lidar systems are nowadays a popular technique to ac-
quire representations of landscapes as 3D point clouds. Oneof
the first process to be applied to raw Lidar data is a classification
step, providing ground and off-ground points, and a DigitalTer-
rain Model generation step. These two steps have been a research
topic for some years. The generation of DTMs requires efficient
algorithms to process large data volumes on various and complex
landscapes such as urban areas (Dellcqua et al., 2001), forest ar-
eas (Kraus and Pfeifer, 1998) (Haugerud and Harding, 2001) or
mountainous areas (Wack and Stelzl, 2005). Many algorithms
have been implemented and tested so far, but no generic solution
appeared (Sithole and Vosselman, 2003).

Methodologies based on a progressive TIN (Axelsson, 2000) are
popular but parameters highly depend on the terrain slope aswell
as on the relevancy of laser points to belong to the terrain: last
pulse is not always a true ground point, especially in presence of
dense vegetation coverage. In a DTM production context, theter-
rain surface as well as the classification result have to be locally
and manually corrected.

Methodologies based on a local estimation of the terrain (mor-
phological approaches) suffer from the same drawbacks (Eck-
stein and Munkelt, 1995) (Kilian et al., 1996). More specifically,
the potential of morphological filters to provide a good estimate
of the ground depends on the filtering window size and on the dis-
tribution of the buildings and trees in the data. If a small window
size is used, the local topography will be well represented,pro-
vided that there are enough true ground points within the neigh-
borhood. Nevertheless, points belonging to large roof structures
will not be filtered as off-ground points. On the contrary, a large
window size will tend to over-filter Lidar points and to smooth
the final DTM. A solution to overcome these effects is to affine
locally the window size of the filter (Kilian et al., 1996) (Zhang
et al., 2003).

This study is focused on the generation of DTM over vegetated
areas. We propose in this paper a methodology which aims to
adapt the window size of a morphological-based filtering algo-
rithm to the presence of vegetated areas (Bretar et al., 2004).
In this context, Lidar intensity and optical images are combined

to generate a Hybrid Normalized Difference Vegetation Index
(HNDVI). A vegetation mask is then calculated with HNDVI
and Lidar variance information. The window size continuously
varies from a predefined minimum distance to an automatically
processed upper boundary.

After presenting the filtering algorithm, we will describe the gen-
eration of the vegetation mask as well as the adaptive windowsize
strategy. Results are finally presented and analyzed.

2 BACKGROUND

This part briefly reminds the classification algorithm presented
in (Bretar et al., 2004). From an initial location (minimal altitude
of the point cloud), the filtering algorithm propagates within the
point cloud following the processed region frontierF≤, namely
following the steepest local slope over a 4-connexity neighboring
systemV

4c

s . Eligible locations evolve within a sorted (ascending
order) container structure (F≤). At each site∗ s ∈ F≤, a square
neighborhoodVs of dimensionds is extracted.ds is set so that
the overlapping ratio between two adjacent locations should be
at least of 50%. In the previous work,ds is kept constant for
each sites. At site s, an initial estimate of the terrain elevation
is performed by calculating an average value of laser point height
belonging to a rank filtered subset (R0.2(s)). In our case, a ratio
of 0.2 has been defined, but it depends on the data quality.

The filtering algorithm is based on a bipartite voting process.
Laser points will be classificated asground or off-ground points
depending on their height difference to the local terrain estimate
|ĥground(s)− lz| < T , T ∈ R. ĥground(s) is calculated by averag-
ing the altitudes of laser points belonging toVs and classificated
as ground. Considering the overlapping ratio of the neighbor-
hoods, laser points are classificated several times either as ground
(nground

s ) or off-ground (noffground
s ) points.

In order to check the coherence ofĥground(s) with regard to the
DTM values over a3 × 3 window centered ins (DTM3×3(s)),
which is a memory of all previously calculated terrain altitudes,
we integrate a linear correction to the final value of the DTM
at locations. This correction depends on a coefficientα, on

∗In image processing, a site corresponds to a pixel (i,j).
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ĥground and on a mean DTM over a3 × 3 window centered in
s (DTM3×3(s)).

DTM(s) = αĥground(s) + (1 − α)DTM3×3(s) (1)

Finally, for each neighborhood extractionVs, laser points will be
labeled following local criteria. At the end of the propagation, a
laser point will have been labeledn times as ground andm times
as non-ground. We then affect the final label corresponding to
max(n, m), which is the most representative vote. Algorithm 1
summarizes the algorithm.

Algorithme 1: Algorithm for classifying laser points

begin
Input : α ∈ [0, 1], T =0.5m

while F≤ 6= ∅ do
Extraction ofVs of dimensionds

ĥground(s) = R0.2(s)
foreach laser pointl ∈ Vs do

if |ĥground(s) − lz| < T then
l ∈ ground; ++nground

s

else l ∈ off-ground; ++noffground
s

ĥground(s) = mean(lz/l ∈ ground)

DTM(s) = αĥground(s) + (1 − α)DTM3×3(s)
F≤ = F≤\{s}
F≤ = F≤

S

V
4c

s

end

3 METHODOLOGY

3.1 Predicting vegetated areas

This part is dedicated to the generation of a high vegetationmask
including hedges, isolated trees and forest areas, but agricultural
fields. It is a prediction of vegetated areas based on both the
analysis of images and Lidar data.

Typical vegetation has higher reflectance in the near-infrared
wavelengths (700-1350 nm) than in the visible domain because
red light is mostly absorbed by the plant’s chlorophyll (90%).
The contrast in reflectance between the red and the near-infrared
makes possible to create an image that separates vegetated land
cover from non-vegetated land cover by calculating the Normal-
ized Difference Vegetation Index. As usual in a Lidar survey,
Lidar data are very often combined with a RGB image acquisi-
tion, but infrared channel is not always available, such is the case
in this study. We therefore decided to investigate the potential of
Lidar intensity information as infrared channel.

Recorded intensity is a function of many variables such as laser
power, target reflectivity, range, incidence angle, media absorp-
tion (Coren et al., 2005). It also depends on the detection mode
applied in the first/last pulse systems (Wagner et al., 2004). The
intensity values need to be better calibrated by system develop-
ers (Ahokas et al., 2006) or at least to be corrected by scanning
homogeneous targets to compute and validate a backscattering
model (Coren and Sterzai, 2006). However, if these assumptions
are particularly relevant, we decided to investigate the potential
of using raw uncalibrated Lidar intensity in case of a joint in-
dex computation, which is generally derived from image-based
infrared data.

Lidar intensities are therefore resampled at a resolution which
depends on the point density. The resampled intensity is calcu-
lated on a regular grid by extracting a circular neighborhood of
2.5 m diameter. This choice ensures that enough Lidar pointsbe-
long to the neighborhood. The final intensity value is the mean

of the intensities of 3D Lidar points included in this neighbor-
hood (with a point density of 0.7 pt/m2 there are∽ 14 Lidar
points). The dynamic of raw intensity values is low with very
few saturated values (out of the main distribution). Seeingthat
the orthophoto is an 8-byte image, the main distribution of inten-
sity values is stretched between 0 and 255. An Hybrid-NDVI is
then calculated by:

HNDVI =
ILidar − R

ILidar + R
(2)

whereR is the red channel of the optical image andILidar is the
Lidar intensity image.

Vegetation is detected by thresholding the HNDVI image. Ac-
cording to (Lillesand and Kiefer, 1994), the values of NDVI for
vegetation range is from a low 0.05 to a high 0.66. Applied to our
Hybrid-NDVI, these thresholds provided fairly good results.

In order to segregate high vegetation from fields, we crossedthis
threshold with a binary standard deviation mask: only sitess such
asσ(s) greater than 1 m are considered. Finally, the vegetation
mask is defined as a setM defined as:

M =
n

s/HNDVI(s) ∈ [0.05, 0.66]
\

σ(s) ≥ 1 m
o

(3)

and is represented as an image of the same resolution as both the
orthophoto and the DTM’s one. Figure 1(b) illustrates a vegeta-
tion mask calculated for this study.

3.2 Adapting the local neighboring system

As mentioned in the introducing part, the window size of
the neighboring systemds (defined in section 2) in case of
a morphological-based classification process should be small
enough to keep all ground details but large enough to ensure
the removal of up-ground objects such as trees or/and buildings.
The section describes an algorithm for adapting the window size
ds of the structural element (Vs is a square window) at sites
to vegetated areas. The adaptative window sizeds is processed
over laser points belonging to maskM. By definition, if a laser
point is included intoM, it is likely to belong to a vegetated
area. ds ∈ [dmin

s , dmax
s ] should therefore be enlarged to ensure

that enough laser points withinVs belong to the true terrain.

dmin
s is a critical parameter and has to be defined so that a mini-

mum number of laser points should be processed withinVs. Be-
sides,dmin

s ensures the overlapping structure of neighborhoods.
We therefore constrainds as:

dabs
min < dmin

s ≤ ds ≤ dmax
s (4)

wheredabs
min is a global minimal window size over the entire survey

and is independent on sites. If p (0.2 in this paper as mentioned
previously) is the percentage of lowest laser points withinVs, r
the DTM ground resolution andδ the global average point den-
sity, dabs

min is defined as:

dabs
min = max(

1

p ∗ δ
, r) (5)

In our algorithm,dmin
s depends on two parameters: i) the local

standard deviationσlocal
s calculated on thep% lowest laser points

of Vs and ii) the neighboring laser points that belong toM. The
higher the local standard deviationσlocal

s , the larger the mini-
mum window sizedmin

s . Statistically, low standard deviations of
altitudes are over represented in rural areas. Therefore,dmin

s has
to be highly increasing with low values ofσlocal

s . We then define
the variations ofdmin

s as:

dmin
s = dabs

min + K log(1 + σlocal
s ) K ∈ R (6)

K = 6 was found to be a good compromise for processing our
data. To ensure the regularity of adjacentdmin

s values, a Gaussian
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(a) 2.5 m-Orthoimage.

(b) 2.5 m-Vegetation mask (white pixels) superimposed on the orthoimage.

Figure 1: Generation of a vegetation mask using Lidar data and
optical images.

filter is applied over thedmin
s image providing that equation 4 is

still satisfied.

dmin
s also depends on the neighboring laser points that belong

to M. This criteria discriminates small vegetated regions from
forests. From an initial value calculated in equation 6,dmin

s is
increased by one DTM’s resolution unit until there is at least one
cell of maskM that is not considered as a vegetation point.

dmax
s is set proportional todmin

s . A low value ofdmin
s should cor-

respond to a small vegetated area andd has therefore to vary in
a small interval. On the contrary, a highdmin

s is likely to corre-
spond to a forest area. To ensure terrain points be statistically
represented inVs, d has to vary within a large interval. In this
study, we setdmax

s = 3dmin
s .

For each sites and a window size ofdmin
s , let us consider the

percentage of predicted vegetation area inVs :

xs =
Vegetated surface ofVs

dmin
s ∗ dmin

s

∈ [0, 1] (7)

The behavior ofds betweendmin
s anddmax

s is not a linear function
because the window size has to be strongly enlarged in case of
a high vegetated ratio where lowest points are not guaranteed to
belong to the true terrain. Meanwhile, in case of low ratios,one
can expect that lowest laser points belong to the true terrain and
describe it in details.ds will consequently increase exponentially
with xs following equation 8.

ds(xs) = Aeβ x2

s + B (8)

With


ds(0) = dmin
s

ds(1) = dmax
s

we have

A =
dmax

s − dmin
s

eβ − 1
andB = dmin

s − A

Parameters in equation 8 were chosen so thatds should be highly
enlarged when more than half the structural element size contains
dense vegetation, i.e. whenxs > 0.5. We therefore choose ax2

s

dependency of the exponential function andβ = 3 for two main
grounds (figures 2 and 3):

i. the slope is smaller than a simple exponential whenxs <
0.5. This ensures a regularizedds map that is not sensitive
to low vegetated areas.

ii. the slope is higher than a simple exponential whenxs >
0.5. This ensures a quick increase of the window size in
case of dense vegetated areas.

Figure 2: Comparison of two parametric forms ofds.

Figure 3: Variations ofds with β ∈ {2, 3, 5}.

4 THE DATA SET

Lidar data have been collected in 2004 by the Institut Français
de Recherche pour l’Exploitation de la Mer (IFREMER) over the
Morbihan’s Gulf, France. It has been funded by the fundation
TOTAL. The entire survey is composed of230.106 points with
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intensities and has been acquired with an ALTM (Optech) system
1210. The point density is 0.7 pt/m2. The Lidar wavelength is
1064 nm.

Optical images are extracted from the BDOrthoR©(French or-
thophoto data basis) of the Institut Géographique National(IGN)
with a nominal resolution of 0.5 m, but resampled at 2.5 m for
the generation of the Hybrid-NDVI image.

5 RESULTS AND DISCUSSION

This part describes the results of the algorithm as well as the
impact of the joint use of Lidar data and RGB images on the gen-
eration of fine DTMs on vegetated areas. The algorithm has been
tested on a large data set described above. We present the results
obtained from two 2km×2km square subset of the Morbihan’s
Gulf calledGM-7-5 andGM-6-5 in figure 7.

DTMs presented in Figures 7(a) and 7(e) have been calculated
with a constantds =10 m with solely 3D Lidar data. We clearly
observe that such value ofds is well adapted to the retrieval of
the terrain over open field areas with a high level of details (field
delineations, roads). However, when comparing figure 7(a) with
the corresponding aerial image in figure 1(a), one can noticethat
forested areas are mis-classificated providing an erroneous esti-
mate of the DTM over these areas as expected. It is also visi-
ble on both profiles presented in figures 4 top and 5 top where
grey curves represent the DTM calculated with a constant win-
dow size. When increasing the structural element sizeds up to
30 m (figures 7(b) and 7(f)), most of vegetated areas have been
filtered off. But, many details were lost during this process, pro-
viding a smooth DTM.

Figures 7(c) and 7(g) show two DTM calculated with the adap-
tive window size strategy using 3D Lidar data, Lidar intensity
and RGB optical image. Both of them have been post-processed
by a Markovian regularization (Bretar, 2007). This post-process
consists of minimizing an energy in a Bayesian context. Thisen-
ergy is composed of a data term and a regularization term. The
first one describes the Euclidian distance between the surface (the
DTM) and the Lidar points classificated as terrain points. The
second one aims to compensate the effect of the data term so that
the final surface should not be too noisy. This term depends on
the intrinsic geometry of the surface. We define the regulariza-
tion termEr as a function of the trace and the determinant of the
Hessian matrixH.

Er = α1tr(H)2 − α2det(H) (9)

with α2 ≥ 0 andα1 ≥
α2

2

The trace describes the local convexity of the surface whilethe
determinant is linked to the shape of the surface with regardto its
tangent plane (parabolic, elliptic, hyperbolic). A steepest gradient
algorithm has been used to solve the optimization problem.

One can observe that microrelieves calculated with a constant
ds=10 m are preserved while terrain points are better estimated
under vegetated areas. The calculated DTM shows interesting
meso-relieves such as shallow valleys covered by dense vegeta-
tion. It is a cross validation of our algorithm since no exhaustive
field campain have been performed so far.

Figure 7(d) shows the related distance image based on the
Hybrid-NDVI mask (see section 3.2). Inverse grey levels arere-
lated to distance values included in [5m,130m]. Darker pixels
correspond to large structural elements and are linked to vege-
tated areas, while brighter pixels correspond to open fields. When
looking closely to the image of distances, one can observe the
strip-like parallel pattern of the Lidar acquisition survey. The
higher point density of overlapped areas are visible as slightly
darker vertical strips on figure 7(d). This effect can be explained
by the definition ofdabs

min in equation 5 where the density is taken
into account.

We show on figures 4, 5 and 6 three relevant profiles where Li-
dar points are plotted along a transect of∼ 2km. The final terrain
elevation values are plotted as a back lines. The secundary plots
represent the corresponding adaptative window sizes alongthe
profile. These curves show that the structural element of thefilter
evolves depending on the complexity of the off-gound topogra-
phy and is well-adaped to the estimations of the terrain elevation.
Sometimes, when the window size is the largest, the terrain can
be over-estimated since it results from the averaging of minimal
elevations.
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Figure 4: Top: Profiles (GM-7-5) of classificated Lidar points
(green→ off-ground, red→ ground). Grey lines are computed
with a constantds =10 m andds =30 m. The final terrain is
represented as a black line.Down: Adpatative window sizes cor-
responding to the profile.
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Figure 5: Top: Profiles (GM-7-5) of classificated Lidar points
(green→ off-ground, red→ ground). Grey lines are computed
with a constantds =10 m andds =30 m. The final terrain is
represented as a black line.Down: Adpatative window sizes cor-
responding to the profile.

In this study, we have not given any physical interpretationof
Lidar intensity. The distribution of the Lidar intensity image has
been artificially stretched for coherence purpose with regard to
the orthophoto red channel. As future work, we plan to com-
pare optical infrared channel with Lidar intensity in orderto give
more physical content of the Lidar intensity image as well asto
calibrate both infrared sources.
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The vegetation mask results from the coarse thresholding ofthe
Hybrid-NDVI image (equation 3). The vegetation areas may be
punctually under-detected leading to non-dense vegetatedregions
(figure 1(b)). Indeed, the Lidar survey and the aerial optical im-
ages have not been acquired at the same time. Moreover, Lidar
intensity is not as reliable as an optical infrared channel.Nev-
ertheless, the overlapping constraint as well as the regularity of
the window size of adjacentVs ensure that under-detected vege-
tation areas are treated as they were. Therefore, there is noneed
to process a finer vegetation mask.

6 CONCLUSION

The paper presents a full methodology for using jointly 3D Li-
dar data, Lidar intensity and RGB images within the context of
DTM generation on vegetated areas. We showed that mixing Li-
dar intensity values together with RGB optical images in an Hy-
brid Normalized Vegetation Index is a promising approach for
processing rural landscapes with open fields and high vegetation
even if both data sets have not been acquired simultaneously. Be-
sides, we showed that, in a typical acquisition framework ofRGB
images with Lidar data (point cloud and intensity), it is possible
to highly improve the classification process for generatinga fine
DTM.
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(a) DTM from Lidar data withds =10 m. (b) DTM from Lidar data withds =30 m.

(c) DTM from Lidar data and RGB images with adaptiveds (d) Imageds coded in inverse grey level scale.

(e) DTM from Lidar data withds =10 m. (f) DTM from Lidar data withds =30 m. (g) DTM from Lidar data and RGB images with
adaptiveds

Figure 7: Results of DTM processing over the areaGM-7-5 (figures a, b, c, d) andGM-6-5 (figures e,f,g).
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