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ABSTRACT: 
 
Terrestrial laser scanning is becoming a standard for 3D modeling of complex scenes. Results of the scan contain detailed geometric 
information about the scene; however, the lack of semantic details is still a gap in making this data useable for mapping.  In this 
paper we propose a framework for object recognition in laser scans. The 3D point cloud, which is the natural representation of 
scanners outcome, is a complex data structure to process, as it does not have an inherent neighborhood structure. We propose a polar 
representation which facilitates low-level image processing tasks, e.g. segmentation and texture modeling. Using attributes of each 
segment a feature space analysis is used to classify segments into objects. This process is followed by a fine-tuning stage based on 
graph-cut algorithm, which takes into consideration the 3D nature of the data. The proposed algorithm is demonstrated on tree 
extraction and tested on 18 urban scans containing complex objects in addition to trees. The experiments show the feasibility of the 
proposed framework. 
 
 

1.  INTRODUCTION 
 
We address in this paper the problem of object extraction from 
3D terrestrial laser point clouds. Such extraction becomes 
relevant with the growing use of terrestrial laser scanners for 
mapping purposes and for the reconstruction of objects in 3D 
space. Object extraction from terrestrial laser scanners has 
indeed been a research topic in recent years, ranging from 
reverse engineering problems, to building reconstruction, and 
forestry applications. In most cases a model driven approach is 
applied, where domain knowledge about the sought after object 
shape drives the reconstruction and recognition process. 
Rabanni (2006) models industrial installations by making use of 
predefined solid object model properties. Bienert et al. (2006) 
propose an ad-hoc approach for tree detection based on 
trimming the laser data at a certain height to separate the canopy 
from the ground and searching for stem patches. Such 
approaches cannot be generalized to other objects, and usually 
assume well defined shape of the sought after objects.  
 
Alternative approaches, which can still be categorized as model 
driven, involve generating a database consisting of diverse 
instantiations of 3D objects. Upon the arrival of a new unseen 
data, they search for a good matching score between regions in 
the new data and the database objects. The matching score is 
usually calculated via key-features and spatial descriptors. Such 
models are reported in (Huber and Hebert, 2003; Huber et al., 
2004) that show good results while using the spin image based 
descriptors, Frome et al. (2004) that introduce 3D shape and 
harmonic shape contexts descriptors for the recognition, and 
Mian et al. (2006) that present a matching score which is based 
on robust multidimensional table representation of objects. 
These methods require the generation of a massive object 
instantiations databases and are relatively specific to the 
modeled objects. As such they can hardly be considered 
applicable for natural objects and data arriving from terrestrial 
scans. Another approach, which is model driven as well, is 

based on the extraction of primitives (points, sticks, patches) 
and modeling inter-relation among them as a means to recover 
the object class. Pechuk et al. (2005) propose the extraction of 
primitives followed by mapping the links among them as cues 
for the recognition part. This is demonstrated on scenes 
containing a small number of well defined objects with 
relatively small number of primitives (e.g., chair, table).  
 
Differing from model driven approaches we examine in this 
paper the possibility to extract objects form highly detailed 
geometric information using a small number of training data 
and with limited domain knowledge. We demonstrate this 
approach on tree detection primarily because of the shape 
complexity of trees. The approach we propose is based on 3D 
geometric variability measures and on learning shape 
characteristics. The proposed method begins with segmentation 
of the scans into regions which are then being classified into 
"object" and "not-object" segments. This classification 
generates a proposal of candidate objects that are then being 
refined. As we show, the choice of descriptive features makes 
the classification part, which is the core of the proposed model, 
successful even when based on a relatively small training.   
 

2.  METHODOLOGY 
 

2.1 Data Representation 
 
When dealing with range data, most approaches are applied to 
the point cloud in 3D space aiming to recover the 3D 
relationship between scans. The hard task is to calculate the 
descriptive information in the irregularly distributed laser point 
cloud. Nonetheless, as the angular spacing is fixed (defined by 
system specifications), regularity can be established when the 
data is transformed into a polar representation (Equation 1)  
 

( ) ( )TTzyx θρϕθρϕθρ sin,sincos,coscos,, =        (1) 
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with x, y and z the Euclidian coordinates of a point, θ and φ are 
the latitudinal and longitudinal coordinates of the firing 
direction respectively, and ρ is the measured range. When 
transformed, the scan will form a panoramic range image in 
which ranges are "intensity" measures. Figure 1 shows range 
data in the form of an image where the x axis represents the φ 
value, φ∈(0,2π], and the y axis represents the θ value, θ∈(-
π/4,π/4]. The range image offers a compact, lossless, 
representation, but more importantly, makes data manipulations 
(e.g., derivative computation and convolution-like operations) 
simpler and easier to perform. 
 
2.2 Segmentation  
 
The transformation of the data panoramic range image allows 
the segmentation of the data using common image segmentation 
procedures. Recent works (e.g., Russell et al., 2006) have 
demonstrated how the application of segmentation processes for 
recognition tasks yields promising results both related in 
relation to object class recognition and to correct segmentation 
of the searched objects. Before segmenting the range images 
comes a data-cleaning phase that concerns filling void regions 
and the removal of isolated range measurements. Void regions 
are mainly the result of no-return areas in the scene (e.g., the 
skies) or object parts from which there is no reflectance. 
Isolated ranges appear detached from the ground and will relate 
to noise, leaves, or other small objects. No return regions are 
filled with a background value (maximal range), and for "no-
reflectance" regions, ranges are assigned by neighboring 
objects. In Figure 1 the "no return" and the "no-reflectance" 
pixels marked with red. 
 
For segmentation we use the Mean-Shift segmentation 
(Comaniciu and Meer, 2002), an adaptation of the mean-shift 
clustering algorithm that has proven successful for clustering 
non-parametric and complex feature space. The mean shift 
segmentation performs well in identifying homogeneous 
regions in the image. As can be seen in Figure 2, because of 
surface continuity and the general smoothness that characterize 
range data a tendency to join bigger regions into a single surface 
may exist. The algorithm can be controlled by two dominant 
parameters, the kernel size and permissible variability (range) 
within the segment. Tuning the variability to a small magnitude 
was useful in extracting "tree" segments (which are vertically 
dominant objects) as independent segments in the data. We note 
that even though under-segmented regions can be seen in other 
parts of the scan, this has little relevance to us.  
 
2.3 Feature Space  
 
The current part concerns isolating the tree related segments 
from the rest via classification. To perform the segment 
classification, a set of descriptive features for each of the 
segments should be computed. To keep the framework as 
general as possible we limit our search to low-level features. 
The sought after features should describe both the internal 
textural characteristics of the segment and characteristics of its 
silhouette shape. To keep the description simple, we seek a 
small set of descriptive features for characterizing the object. 
Limiting the set of features is useful for avoiding dimensionality 
related problems as well as overfitting concerns. The features 
we choose, consist of i) the sum the first-order derivatives, ii) 
absolute sum of the first-order derivatives, iii) the cornerness of 
the segment.  These features (denoted f1, f2 and f3) are 
computed per segment (Li) as follows 
 
 

( ) ( ) ( )( )∑ += iii LdLdLf θϕ1
   

           ( ) ( ) ( )( )∑ += iii LdLdLf θϕ2   (2) 

           ( ) (∑ )= ii LcornernessLf3    
 
with dφ and dθ the first-order derivatives of the polar image in 
the directions of its two axes. Since all three features involve 
summation and therefore are area dependent, they are 
normalized with respect to the segment area.  
 
Analyzing the chosen features, the following observations can 
be seen. The first two features measure texture characteristics 
within the segmented area. Since trees have high range 
variability in all directions, the first feature should have low 
values (positive and the negative values cancel one another), 
while the second feature yields high values. The third feature, 
measures "cornerness" value for the area of the segment and its 
silhouette. For cornerness measure we use a corner operator we 
term min-max.  The min-max operator considers points as 
corners when having "strong" gradients in all directions. In 
another formulation this can be stated as – a point is considered 
a corner even if the strength of the smallest gradient projection 
is big enough. With this formulation, corner detection can be 
seen as a min-max problem, by looking for the gradient 
projection in the minimal direction as the measure for the point 
"cornerness" (Cn). We leave the full mathematical development 
outside this text, due to space limitations, and present the 
formula for the cornerness measure in Equation (3) 
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and W, a Gaussian window. The weighting function can be 
applied by simple convolution over the image and derivatives 
by φ and θ can be easily computed numerically. Generally, 
because of their complex shape and depth variability, tree 
related segments will tend to have high cornerness values.  

In computing gradients, the need to control the varying object-
to-background distances arises. The potential mixture between 
object and background may arise from the 2D representation of 
the 3D data, and may lead to very steep gradients when the 
background is distant, or shallower ones for closer ones. To 
handle this we erode the border pixels and do not sum their 
derivative value, thereby keeping the texture measures to 
"within" the segment only. Additionally, we trim the magnitude 
of possible derivative by a threshold to eliminate background 
effects, so that backgrounds that are closer and farther from the 
object (which is irrelevant for the classification task) will have 
the same contribution to the derivatives related features.  

The three features as calculated for the segments of the 
demonstration scan are presented in Figure 3. One can see that 
tree related segments have average values with f1 (in this sub-
figure the most negative values is black and the most positive is 
white), and relatively high values both in f2 and in f3 (bright).  
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2.4 Classification 
 
The computation of the features for each segment in the training 
set allows the creation of the feature space.  Such feature space 
is illustrated in Figure 4 via three projections and an isometric 
view. The four views show the separablity of the tree and non-
tree classes as achieved through these features. Green dots are 
segments that were marked as "trees", red dots are "not-tree" 
segments. As can be seen in Figure 4 even tough the two classes 
are separated, the data do not follow the classical form of two, 
well separated, hyper-Gaussian distributions. We therefore 
apply a non-parametric method for classification, using the k-
Nearest Neighbors (k-NN) algorithm. Our choice is motivated 
by its simplicity and efficiency, but we note that other methods 
may prove suitable as well. The k-NN model is based on 
evaluating cardinality of a sample (unseen data) compared to 
the neighborhood in the training data. Following the extraction 
of the k nearest neighbors for the data sample, a voting 
procedure among them is performed. If more than h class I 
segments are within this subset, the unseen segment is recorded 

belonging to class I if not, class II is recorded. The k-NN model 
is greatly affected by the distance measures between elements, 
particularly when the different axes measure quantities in 
different units and scales. Because of the different measures we 
use, great differences are expected in scale and distribution, 
motivating the need to normalize the data. For normalization we 
use the whitening (Mahalanobis) transformation (Duda et al., 
2000) that transforms data into the same scale and variance in 
all dimensions. If X is a training set of size Nx3, with N the 
number of segments distributed with ~{μ, Σ}; using the SVD, Σ 
can be factored into Σ=UDVT, where U is orthonormal, UVT=I, 
and D a diagonal matrix. The transformed X is calculated by: 
 

X' = (D-1/2UTXT)T   (4) 
 
with X' the transformed set. Following the whitening 
transformation the data is distributed with zero mean and unit 
variance in all three dimensions of the feature space. Distance 
measures in this space become uniform in all directions. 

 

 
 

 
Figure 1. Top: Polar representation of terrestrial laser scans; the horizontal and vertical axes of the image represent the values of φ, θ 
respectively and intensity values as distances ρ (bright=far). "No-return" and "no-reflectance" pixels are marked in red. Bottom: 
panoramic view of the scanned scene acquired by a camera mounted on the scanner. 
 

 

Figure 2. Results of the data segmentation using the mean-shift algorithm. 
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Figure 3. Segments weighted score for the three proposed features. Top: sum the first-order derivatives, middle: absolute sum of the 
first-order derivatives, bottom: the cornerness of the segment.  
 

   

 
Figure 4. Four views of the feature space. The experiment contained 12351 segments that were manually classified. In green tree 
related segments and in red non-tree related segments.  
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The k-NN framework depends on number of neighbors checked 
(k), and on the cardinality parameter (h). Bigger k will make the 
model more general (when more samples are used to decide 
more information is weighted in) but less accurate (the extreme 
is where all samples are always used as neighbors). The choice 
of h affects the accuracy of the classification model. Setting h to 
a too small value, the model can become error prone, setting h 
too strictly, the number of false positives will decrease but on 
the expense of a large number of false negatives. An optimal 
value for h can be based on many considerations; our choice is 
based on finding a value that leads to the highest level of 
accuracy (ACC) as defined by  
 

True-Positive + True-Negative
Positive + Negative

ACC =   (5) 

 
Such values can be derived by experimenting with different 
values for k and h. For each such trail a confusion matrix, C, is 
recorded  
 

⎥
⎦

⎤
⎢
⎣

⎡
≡

negativetruepositivefalse
negativefalsepositivetrue

C   (6) 

 
and the one with the highest accuracy value (Eq. 5) determines 
both the h and k parameters. 

 
Figure 5. The ROC curve of the K-NN classifier. 
 
2.5 Fine Tuning  
 
So far, regions that have been identified via segmentation in 2D 
space have been classified as either trees or non-trees. Some of 
these segments are in fact sub-segments of the same tree 
(different part of the canopy or the stem), some segments may 
be a mixture of tree the background, and some segments may 
hold tree characteristics but are in fact non-tree objects. The 
fine-tuning phase aims linking segments that are part of the 
same tree, reducing to a minimum the number of false alarm 
detections, and separating mixture segments into object and 
background. Generally, this can be described as a split and 
merge problem among segments. We approach it differently by 
weighting the inter-relation between the individual points, so 
that neighboring points (by 3D proximity measures) will 
indicate potentially tight relations and therefore stronger utility 
in their link. The refinement phase revolves around an energy 
function of the form: 

 
E = Edata(labeling) + Esmooth(labeling)  (7) 

 
with E the total energy, Edata the energy related to the "wish" of 
laser point to maintain its original classification, and Esmooth the 

"wish" of highly connected points to have the same label. 
Labeling here refers to the binary value of the classified point in 
the point cloud and not to the outcome of the classification 
process. This energy function can be modeled by a graph, where 
each point in the cloud, i, is a vertex (Vi), and additionally, two 
more vertices, a source (s) and the sink (t) are added. The Edata 
elements are modeled through the weights assigned to edges 
linking each point and the source and each point and the sink. 
Each point (Pi) can have values of 0 or 1, depending on the 
output of the classification process. The weights on the edges 
are set according to 
 

( )
( )

,

, 1
i i

i i

w s v p

w v t p

α

α

= −

= − −
  (8) 

 
with α the possible error in assigning a point. For representing 
the Esmooth part we search for the nearest neighbor point, j, for 
each point i in the cloud, and for each such pair (i,j) we build a 
link between the vi and vj whose weight is the inverse to the 3D 
Euclidian distance between the two points (the search for the 
nearest neighbor is performed via the Approximate Nearest 
Neighbor (ANN) method, (Arya et al., 1998)). Following the 
preparation of the graph, a graph-cut algorithm (Ford and 
Fulkerson, 1962) is applied to find the minimal cut (and the 
maximal flow) of the graph which also minimizes the energy 
function. The outcome of the graph cut refinement algorithm is 
separating between "tree" and "non-tree" points. 
 

 
Figure 6. Fine tuning results, top: before, the arrows show areas 
that are not related to the object but lay on the background of it, 
bottom: the result of the execution of the algorithm. One can see 
how unwanted regions are filtered out. 
 

3. RESULTS AND DISCUSSION 
 
The algorithm was tested on 18 scans that were acquired in 
urban environment and, in addition to trees, contain cars, 
buildings, and other complex objects (see Figure 1). Each of the 
scans was segmented using the mean-shift segmentation; results 
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of a typical segmentation can be seen in Figure 2. For the 
experiment tree objects in those scans were manually marked 
and all related points were assigned as the ground-truth. In all, 
the eighteen scans generated 12351 segments (~700 segments 
per scan). 

As was noted the k-NN classification model depends on the 
choice of k and h. Following the formation of the feature space 
those parameters were studied by letting k vary between 1-11 
while for each k, potential values for h ranged from 1-k. The 
highest accuracy value that was recorded was found to be 
ACC=0.87 when using k=9 and h=5. The corresponding 
confusion matrix was 

⎥
⎦

⎤
⎢
⎣

⎡
=

1547.00977.0
0347.07129.0

C  

All confusion matrices resulting from this experiment (for all k's 
and h's) were plotted on a ROC curve (Figure 5). The area under 
the ROC curve is 0.9192, which is an evidence for good 
classification. 
Learning by example models usually require a large training set 
data. Because of the relatively limited number of the available 
scans we used leave-one-out cross validation experiments. For 
each scan the training feature space was recovered from the 
remaining 17 scans. In this experiment, the algorithm is tested 
in its holistic form, including the refinement phase. As a 
performance metric we use the percentage of correctly 
recognized tree points (true-positive), correctly recognized 
background points (true-negative). The performance of this 
procedure is 

⎥
⎦

⎤
⎢
⎣

⎡
=

913.0005.0
029.0053.0

C  

leading to ACC=0.966. One can see that the results both the 
high level of success of the complete algorithm and the 
contribution of the refinement phase. This improvement is also 
demonstrated in Figure 6. Figure 7 offers the tree classification 
results in the range image. From Figure 6 one can see how the 
background objects that were wrongly classified as trees are 
now eliminated from the results. In addition to the filtering out 
of wrongly classified points, new points which are highly 
connected to the tree were added. The results also show how 
trees in different distances (resolution) and ones that are 
partially occluded were detected by the algorithm. 
 

4. CONCLUDING REMARKS 
 

The paper has demonstrated that detection of objects with high 
level of accuracy can be reached by learning object 
characteristics from a small set of features and a limited number 
of samples. The detection scheme has managed identifying trees 
both in different depths (scales) and ones that were partially 

occluded. The small number of false alarm detections indicates 
the appropriateness of the selected features for the recognition. 
Using additional features and slight adaptations, the proposed 
approach can be further extended to detect different objects like 
buildings, cars, and others as well.  
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Figure 7. Results of the tree recognition algorithm. 
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