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ABSTRACT: 

 

We present a method for object detection in a multi view 3D model. We use highly overlapping views, geometric data, and semantic 

surface classification in order to boost existing 2D algorithms. Specifically, a 3D model is computed from the overlapping views, and 

the model is segmented into semantic labels using height information, color and planar qualities. 2D detector is run on all images and 

then detections are mapped into 3D via the model. The detections are clustered in 3D and represented by 3D boxes. Finally, the 

detections, visibility maps and semantic labels are combined using a Support Vector Machine to achieve a more robust object 

detector. 

 

 

1. INTRODUCTION 

3D reconstruction is becoming more and more common as 
computing power increases and more methods are being 
developed. Standard graphics cards are now strong enough 
to generate photorealistic images of complex scenes in real-
time. Typical data consists of multiple images with large 
overlap, where the camera’s internal parameters and 
location are either known or estimated with SFM methods. 
The model is reconstructed using multiview geometry, and 
may be represented by such means as polygons, voxel space 
or planar disks; it typically contains no high level 
understanding or semantic interpretation.   

A seemingly unrelated problem is the detection of objects in 
2D images. Common object detection methods often use 
sliding windows of different sizes, where each window is 
tested for the existence of an object. Thus (Viola, 2001) 
used a cascade of Haar features classifiers with growing 
complexity, while (Lienhart, 2002) adapted the feature set 
to include diagonal features. (Grabner, 2010) used online 
learning to reduce the labeling needed for the task of 
learning, and only a few false positives are labeled in each 
stage. (Kluckner, 2007) used height information from stereo 
matching to automatically detect false positives, managing 
to learn a very good car detector from a very small initial 
training set. 

While methods for patch based detection and recognition 
are making progress using better descriptors and learning 
methods (Tuermer, 2011), others are seeking to use more 
information than just the pixels in a given patch. This 
includes a variety of context and scene understanding cues, 
in order to boost performance for object detection, see 
review in (Oliva, 2007, Divvala, 2009). Thus (Heitz, 2008) 
learns a few classes to describe the local scene, and uses 
statistical dependence between scene and objects to improve 
performance of object detection. (Hoiem, 2008) combines a 
method for planar approximation and object detection in a 
naive Bayes model, using maximal likelihood and belief 
propagation. 

The use of 3D scene information to enhance object 
detection has been made even more explicit (Rottensteiner, 
2012). Thus (Posner, 2009) used 3D data from laser sensors 
and color data to segment the image into semantic labels. 
Each pixel is assigned a feature vector using HSV 
histogram, 3D normal and image coordinates, and a one-vs.-

all classifier is trained for each pixel. The classification is 
expanded to patches that are spatially and temporally linked 
across a few images. (Douillard, 2007) combined visual 
features from color image and 3D geometric features from 
laser scan in a CRF for the task of multi class labeling. 
Although they link nodes temporally only a few images 
with similar viewpoint can be considered. (Kluckner, 2009) 
use features extracted from an input aerial image and a 
corresponding height map in a randomized forest to learn a 
probability distribution for multiple classes for each pixel, using 
a conditional random field to find a smooth labeling of the 
image classification. (Leberl, 2008) uses graph-based 
grouping, on the 4-neighborhood grid of the image, in order 
to link the best car detections and extract street layer, which 
in turn is used to filter out cars when creating the 
Orthophoto. Although they used overlapping images, the 
process was done independently for each image, followed 
by interpolation obtained by projecting the street layer onto 
the Digital Terrain Map (DTM).  

In this paper we take this research direction a bit further, 
starting from the reconstruction of a full 3D scene model 
from many overlapping views with large baselines. We then 
detect static objects in the model by using detections from 
all images and 3D semantic labeling simultaneously. More 
specifically, the camera location and orientation are 
calculated for each image using Slam (Triggs, 1999), and 
then a dense 3D model is calculated (Seitz, 2006), (Goesele, 
2006), (Curless, 1996). A sliding windows detector in run 
on each image at 6 different rotations, and each image 
detection is translated to a 3D Bounding Box using the 
camera calibration and 3D model. All 3D Bounding Boxes 
are clustered into a smaller set of representative 3D 
Bounding Boxes. This allows us to infer from many images 
while overcoming obstructions and greatly varying 
viewpoints. A multi class semantic labeling of the model is 
performed using geometric information, local planes, and 
color information from all images. We show that using 
multiple overlapping viewpoints and context greatly 
improves the initial performance of the 2D detector. 
 

2. OUR METHOD: OBJECT DETECTION FROM 

MULTIPLE VIEWS 

Our method is described in Algorithm 1 below. The input is 
a set of overlapping images {𝑰𝒊}. The 3D scene is 
reconstructed from those images in order to obtain 
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estimated location and orientation for each image, and a 3D 
model – a mesh (𝑉, 𝑇) consisting of vertices and triangles, 
see Section 2.1. Next, we look for objects in the images - 
cars defined by location, orientation and size 𝑑 = (𝑙, 𝑜, 𝑠). In 
Section 2.2 we describe how for each image 𝐼𝑖 a set of cars 
𝑑𝑖𝑗  is detected and assigned weights 𝑤𝑖𝑗 using a cascade of 

weak classifiers. In Section 2.3 we describe how each 
detection 𝑑𝑖𝑗  in image 𝐼𝑖 is mapped to a 3D Bounding Box 

𝐷𝑖𝑗, and how a 3D Bounding Box is projected onto an 

image.  

 

Algorithm 1: object detection in multiple overlapping views 

Input: set of images  {𝑰𝒊}. 

Output: set of object detections in images 

1. (𝑉, 𝑇)  ← Reconstruct the 3D scene and obtain 3D 
model. 

2. For each image 𝐼𝑖 
o {𝑑𝑖𝑗 , 𝑤𝑖𝑗} ←Run sliding window detector in 6 

rotations 
o {𝐷𝑖𝑗 , 𝑊𝑖𝑗} ←Map 2D detections into 3D 

3. {𝐷𝑘 , 𝑊𝑘} ←Cluster 3D detections and choose 

representatives {𝐷𝑘}  ⊂ {𝐷𝑖𝑗} and weights {𝑊𝑘}. 

4. Compute semantic labels for each vertex in the model 
𝑣 ∈ 𝑉 

o {𝑓𝑣} ←compute feature vector containing 3D 
and photometric information 

o {𝑊𝑣
𝑠} ∈ [0,1]|𝑉|×|𝑆| ← compute a semantic 

weight for every semantic class 
5. Classification with Semantic Context 

a. {𝑓𝐷𝑘
} ← compute feature vector containing 

semantic information from all vertices in the 
neighborhood of 𝐷𝑘, local information and 
detection weight 𝑊𝑘 

b. Final car classification using SVM 
 

 
The detections 𝑑𝑖𝑗  are mapped into 3D in order to achieve 

common parameterization and used together to infer about 

the existence of objects. This is crucial because of the 

greatly varying points of view, and without it matching 

between different images with sufficient accuracy would 

not be possible. They are first clustered into a set of 3D 

boxes 𝐷𝑘. The local information around each 𝐷𝑘 is used, 

along with the 2D information, to better understand the 

scene and improve the detection. In Section 2.4 We define 

semantic classes 𝑆: Ground, Wall, Vegetation, Roof, Tiled 

roof and Car; every 3D vertex 𝑣 ∈ 𝑉 is assigned a semantic 

weight, 𝑊𝑣
𝑠, for each semantic class. In Section 2.5 the 

semantic weights and previously calculated information in 

the neighborhood of 𝐷𝑘 are used to construct a semantic 

vector 𝑓𝐷𝑘

𝑠 ; final classification is obtained with SVM 

  

 

2.1 3D reconstruction  

A photograph is a two dimensional projection from the 3D 
world, where point 𝑝𝑗 is projected onto image 𝐼𝑖 by the 

camera’s projection matrix 𝑃𝑖. Structure from Motion (SFM) 
usually starts from a bunch of sparse features tracked across 
multiple images, where the goal is to solve for the 3D 
locations of the points and the geometry of the camera 
(matrix 𝑃𝑖  ,which defines the location, orientation and 
internal calibration) at the different views (Triggs, 1999). 
Once the camera calibration is known, dense reconstruction 
algorithms attempt to "fill in the blanks" of the sparse 3D 

map. (Seitz, 2006) presents a simple yet robust method to 
build a depth map for each image, and merge them into a 
mesh. Each pixel is compared against patches in 
neighbouring images along the epipolar lines using 
normalized cross correlation. The depth maps are merged 
using standard volume merging method (Curless, 1996). 
  

 
Figure 1: 2D car detections on image with 3 of the 6 orientations. 

 

 

2.2 2D Detection 

We train a single 2D detector for each oriented object. 
Although there have been many task-specific features 
developed recently (Tuermer, 2011) we use Haar-like 
features (Viola, 2001) and (Lienhart, 2002) which are 
general and not class specific. We first train a cascade of 22 
weak classifiers, retrieving those windows that pass all 
levels of the cascade. The cascade is run on 6 different 

rotations of the image, see Fig. 1. For angle θ ∈ [−
π

2
,

π

2
] the 

image is rotated and the detector is used to find detections 
that are parallel to the image axis. Detection dij in location 

(x, y) in a rotated image is translated to location R(θ)t [
x
y] 

with orientation – θ in the original image.  

As is customary, we perform post processing to overcome 
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multiple detections of the same object in close locations. In 
order to take location, size and orientation into account, we 
define two detections to be "close" if all corresponding 
corners are no more than 𝛼 ⋅ 𝑠𝑖𝑧𝑒 apart. In our experiments 
we set 𝛼 = 0.3. All detections are clustered using disjoint 
sets, i.e. two sets 𝐴, 𝐵 will be joined if they contain items 
that are close. Finally, we set 𝑤𝑖𝑗 = #{𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑖𝑛 𝑐𝑙𝑢𝑠𝑒𝑟}. 

 

2.3 Clustering in 3D 

Each 3D object is visible in many images. The 2D detector 
may fail to detect it in some images but succeed in others. 
In order to collect data from different images and use them 
together, the detections are mapped into 3D. Using the 
calculated camera locations, a vertex 𝑣 ∈ 𝑅3 is projected 
onto the image plane with the projection matrix 𝑃𝑖, and 
conversely a pixel in image  𝐼𝑖  defines a ray that intersects 

the 3D Mesh at point 𝑝. Thus detection 𝑑𝑖𝑗  in image 𝐼𝑖 is 

projected to a 3D box 𝐷𝑖𝑗 by projecting the center 𝑐𝑖𝑗 of 

detection 𝑑𝑖𝑗  onto the mesh at point 𝐶𝑖𝑗, which is used as the 

center point of 𝐷𝑖𝑗. The 3D orientation is calculated by 

projecting the 2D orientation onto the x,y plane (z=0) 
around 𝐶𝑖𝑗. 𝐷𝑖𝑗 is always assumed to be parallel to the x-y 

plane, and is assigned weight 𝑊𝑖𝑗 = 𝑤𝑖𝑗 . 

Next, we seek a subset of all 3D boxes from all images that 
best explains the 2D detections. We use the Jaccard index as 
a measure of similarity between 3D boxes 

𝑠(𝐷𝑖1𝑗1
, 𝐷𝑖2𝑗2

) = 𝑉𝑜𝑙(𝐷𝑖1𝑗1
∩ 𝐷𝑖2𝑗2

)/𝑉𝑜𝑙(𝐷𝑖1𝑗1
∪ 𝐷𝑖2𝑗2

). 

This can easily be calculated since the detections are 
parallel to the x-y plane and can be calculated as the area of 
the intersection and union of 2D rectangles. The z 
dimension is ignored when there is an overlap, otherwise 

𝑠(𝐷𝑖1𝑗1
, 𝐷𝑖2𝑗2

) = 0, to help prevent the distance function 

from diminishing too quickly.  

We represent this problem as a multi labeling problem. The 
goal is to choose for each 𝐷𝑖𝑗 a representative that best 

describes it, while requiring that similar Detections have the 
same representatives. We define a graph 𝐺 = (𝑉, 𝐸) whose 
nodes are the 3D detections, and edges are drawn between 
any intersecting detections: 

𝑉 = {𝐷𝑖𝑗}, 𝐸 = {(𝐷𝑖1𝑗1
, 𝐷𝑖2𝑗2

)|𝑠(𝐷𝑖1𝑗1
, 𝐷𝑖2𝑗2

) > 0}. A Labeling 

of the graph is a function 𝐿: {𝐷𝑖𝑗} → {𝐷𝑖𝑗}; it is a mapping 

from each 3D detection to a representing 3D Box. We use 
Graph Cuts to minimize the total energy (Boykov and 
Kolmogorov, 2001). 

 𝐸(𝐺, 𝐿) = ∑ 𝑊𝑖𝑗 ⋅ (1 − 𝑠(𝐿(𝐷𝑖𝑗), 𝐷𝑖𝑗))

𝐷𝑖𝑗

 

+ ∑ min(𝑊𝑖1𝑗1
, 𝑊𝑖2𝑗2

) ⋅ 𝑠(𝐷𝑖1𝑗1
, 𝐷𝑖2𝑗2

)

(𝐷𝑖1𝑗1 ,𝐷𝑖2𝑗2
)∈𝐸,

𝐿(𝐷𝑖1𝑗1
)≠𝐿(𝐷𝑖2𝑗2)

 

The first sum is the data fidelity term - the cost of assigning 
𝐷𝑖𝑗 to 𝐿(𝐷𝑖𝑗). The second sum is the smoothness term - the 

cost of assigning neighboring detection to different labels. 
We use the image of the labeling function as the 

representative set: {𝐷𝑘} ← {𝐷𝑖𝑗|∃𝑖′𝑗′, 𝐿(𝐷𝑖′𝑗′) = 𝐷𝑖𝑗}, and 

each label’s weight is assigned the sum of weights over the 
cluster 

𝑊𝑘 = ∑ 𝑊𝐷𝑖𝑗

𝑊𝐷𝑖𝑗
∈𝐿−1(𝐷𝑘)

 

 

 

 

Clustering Implementation Details 

In our experiments described below, after mapping all 2D 
detections into 3D we got about 80k detections. Building 
the entire graph 𝐺, and running Graph Cuts with Alpha 
Expansion on all possible labeling, would have been rather 
prohibitive even though there has been a lot of research 
improving the runtime of Min cut-Max flow and Graph Cuts 
algorithms. Graph Cut works by running iterations of min-
cut on intermediate graphs 𝐺𝛼 for every potential label 𝛼. 
The run time is controlled by the size of 𝐺𝛼 and the number 
of labels. To improve runtime we divide the problem into 
smaller problems by splitting 𝐺 into sub graphs and run 
Graph cut on each independently. We split 𝐺 using disjoint 
sets with an aggressive distance threshold 𝛼 = 0.4, i.e two 
disjoint sets 𝐴, 𝐵 ⊂ {𝐷𝑘} will be joined if 
max𝑎∈𝐴,𝑏∈𝐵 𝑠(𝑎, 𝑏) > 𝛼. This is done quickly by utilizing a 

KD-tree to search for close neighbors. An aggressive 
threshold can be used since we expect the detections around 
a car to be dense and separating them is unlikely. In our 
experiments this resulted in small graphs that contained at 
most a couple thousand detections. 
To further improve runtime we consider only a small 

portion of the potential labels. For each 𝐷𝑘 we add only the 

4 best representatives 𝑎𝑟𝑔𝑚𝑖𝑛𝐿(𝐷𝑘){𝐷𝑎𝑡𝑎(𝐷𝑘)}. Alpha 

expansion is performed only on these labels, where during 

construction of the intermediate graph 𝐺𝛼 we restrict the 

graph to nodes {𝐷𝑘|𝑠(𝐷𝑘 , 𝛼) > 0}. This greatly reduces 

runtime and guarantees that the representative 𝐿(𝐷𝑘) of 𝐷𝑘 

is not too far from 𝐷𝑘. 

 

2.4 Semantic Labeling 

The mesh is represented by a set of 3D vertices (point 
cloud) and a set of polygons, but it doesn’t contain any high 
level information. It’s not possible to ask questions such as 
“what’s in this area?”, “is there a lot of vegetation here?”, 
or “is there a car here?”. Intuitively we expect to find 
certain objects in a natural context - bears in the forest, 
toaster in the kitchen, etc. Here we represent the context by 
learning semantic classes: Ground, Vegetation, Wall, Roof, 
Tiled roof and Car. We use information from the 
surrounding geometry as well as information from the 
images that view each vertex 𝑣 ∈ 𝑉 to assign weights 
𝑊𝑣

𝑠 ∈ [0,1] for every semantic class. Local geometric 
information is achieved by adapting the methods of (Gallup, 
2010) to 3D models, as opposed to range maps, in order to 
segment the model into planar and non-planar areas. 

We use these planar segments when creating a feature 
vector 𝑓𝑣 as follows: 

1. Vertex Normal: average normal of polygons that 
contain this vertex 

2. Vertex Height: height above Digital Terrain Map 
(DTM); when DTM is not available, Ransac is 
used to obtain one 

3. Planar Segment Normal: the normal of the 
segment 

4. Planar Segment Type (binary): planar or non-
planar 

5. Planar Segment size: the size of the segment 
6. RGB histogram, 15 bins 
7. RGB standard deviation 
8. Hue histogram, 15 bins 

For each semantic class a “One-Vs.-All” classifier was 
learned using AdaBoost (Freund 1995); it is a greedy 
algorithm that learns in every iteration a weak classifier 

hj(x) consisting of a feature fj , a threshold θj and a parity 

pj indicating the direction of the inequality sign: 
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hj(x) =  {
1 if pjfj(x) < pjθj

0 otherwise
 

Each weak classifier and its weight αj are chosen to 

minimize the misclassification error for the current data set 
with the current weights and the previous weak classifiers. 
Finally a strong classifier is defined: 

ℎ(x) =  {
1 ∑ 𝛼𝑡ℎ𝑡(𝑥)

t

≥
1

2
∑ 𝛼𝑡

t

0 otherwise

 

Alternatively, we can define 𝛼𝑗
′ =

𝛼𝑗

∑ 𝛼𝑡t  
 and ℎ′(𝑥) =

∑ 𝛼𝑡
′ℎ𝑡(𝑥)t . In this way ℎ′(𝑥) ∈ [0,1] and ℎ′(𝑥) ≥

1

2
 𝑖𝑓𝑓 ℎ(𝑥) = 1. We use this slight modification to be able to 

compare the confidence of the different classifiers, setting 

𝑊𝑣
𝑠 ← ℎ𝑠

′ (𝑣). In Fig 2 each vertex, 𝑣, was colored with the 

corresponding color of 𝑎𝑟𝑔𝑚𝑎𝑥𝑠(𝑊𝑣
𝑠). 

 

 
Figure 2: original image and semantic labels. Classes are roof, tiled 

roof, wall, ground, vegetation and car in blue, red, yellow, black, green 

and pink respectively 

 

2.5 Boosting Classification with Semantic Context 

When examining a potential detection of a car, it’s 
important to consider its surroundings and not only what 
this location looks like when projected onto different 
images. Thus we may expect the vertices that constitute a 
car and its surroundings to have high scores in the Road and 
Car coordinates of 𝑊𝑣

𝑠, and low scores in its Roof 
coordinate.  

Specifically, each 3D detection 𝐷 has 3D volume that 
intersects the model and contains 𝑁𝐷 vertices. The scores 
for all classes are averaged over all vertices in 𝐷 to create a 

six coordinate vector 𝑓𝐷
𝑠 =

1

𝑁𝐷

∑ 𝑊𝑣
𝑠

𝑣∈𝐷 . This vector is 

concatenated to the 3D cluster weight 𝑊𝐷 and 
𝑊𝐷

|{𝐼𝑣𝑖𝑠(𝐷)}|
, 

where {𝐼𝑣𝑖𝑠(𝐷)} is the group of images in which 𝐷 is visible. 

The last coordinate is important since it normalizes the 
grade against areas with higher visibility, such as roofs that 
naturally get a higher grade than obscured areas like cars in 
alleyways. However, it is not sufficient since it will over-
represent a single false detection in an otherwise occluded 
area.  
In summary, each 3D detection D is represented by the 

vector 𝑓𝐷
𝑠, which contains information from all images, the 

surrounding context and its visibility. 

 

Classification Implementation Details 

Here we use the feature vector 𝑓𝐷
𝑠 to learn an SVM 

classifier with RBF kernel 𝑘(𝑥𝑖 , 𝑥𝑗) = 𝑒−𝛾‖𝑥𝑖−𝑥𝑗‖
2

, which 

distinguishes cars from background. 

To aid classification, we uniformly scaled the data to [0,1], 
since 𝑤𝑠 ∈ [0,1] while in some cases 𝑊𝐷 > 103. We used a 
small part of the data and cross validation, in order to find 
good values for the penalty parameter of the error term 𝐶 
and the kernel parameter 𝛾. Specifically, we used grid 
search on exponentially growing values of 𝛾 = 2−4 … 24 and 
𝐶 = 2−4 … 210 and chose the pair that maximized the Area 
Under Curve (AUC) of the PR. Simple percent correct 
wouldn’t work on this unbalanced data set, where a trivial 
negative classifier achieves accuracy of 96%. We chose the 
pair (𝐶, 𝛾) = (0.125,256), although there was a wide range 
of pairs that performed almost equally well. SVM was then 
trained using v-fold cross-validation with 10 groups while 
weighing the positive instances by 25 to overcome the 
unbalanced dataset. 

 

3. EXPERIMENTS 

3.1 Data and 3D reconstruction  

We used a set of 420 aerial images that together cover a 

ground area of 400 × 400𝑚 with a surface resolution of 

15𝑐𝑚/𝑝𝑖𝑥. This is a typical dataset for a detailed 3D 

reconstruction of an urban area. The images were taken at a 

45 − 60° below the horizon. The images have a large 

overlap and every ground point is visible from all angles in 

at least 80 − 100 images (unless hidden by other objects). 

This database is very different from publicly available 

databases for urban reconstruction and object detections, 

such as ISPRA. The high redundancy in overlapping images 

ensures all surfaces are reconstructed for a full 3D model, 

and not just for Orthophotos and DSM. The images came 

with GPS and Inertial Navigation System (INS) 

measurements. They were corrected using Slam techniques 

and a dense 3D model was reconstructed. Stationary cars 

were reconstructed as well and are visible in the 3D model.  
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3.2 Training 

All the data, images and model were split into two groups 
according to the ground area they had covered. A 
geographic area covering a quarter of the entire area, and all 
data associated with it, was designated as training data; the 
remaining data was used for testing. This division, 
according to ground coverage and not choosing pictures at 
random, guaranteed that we won’t have different instances 
of the same car in both the train and test sets. 

We hand labeled the location and orientation of the cars in 
the 3D model and projected them onto the images to create 
a 2D learning and test sets. Each 2D instance was rotated so 
that the wheels are aligned with the x axis of the image, and 
only fully visible instances were used in the training set 
(Fig. 3). Negative examples were selected randomly from 
areas of the image that don’t have any vehicles, even 
partially visible. 

 
Figure 3: Example of multiple views with large baseline and various 

levels of visibility. Images were rotated to align with the x axis and only 

fully visible examples are used during training (marked in red). 

We built a cascade of weak classifiers. Each weak classifier 
must have a false positive rate smaller than λ and a 
detection rate no lower than 1 − ϵ. Thus a cascade of 𝑁 

weak classifiers will have a false hit rate of λN and 

detection rate of (1 − ϵ)N on the training set. We set 𝜆 =
0.5, 𝜖 = 0.01, 𝑁 = 22. 

To train the semantic classifiers we hand labeled vertices in 
the part of the model that corresponds to the ground area 
designated for training. Classifier ℎ𝑠

′  for class 𝑠 ∈ 𝑆 was 
trained using all vertices with label 𝑠 as positive examples 
and vertices with different labels as negative examples. 
AdaBoost was used with 20 iterations. Fig. 2 was created by 
assigning to vertex 𝑣 the label corresponding to 
𝑎𝑟𝑔𝑚𝑎𝑥𝑠∈𝑆{ℎ𝑠

′ (𝑣)} . We can see that Vegetation is confused 
with ground and with Car but almost never with Roof. Tiled 
roof may be mistaken for Roof or Wall. 

 

3.3 Results 

We show results comparing a pure 2D car detector vs. our 
method both with and without the use of context. It’s 
important to emphasize that our method detects objects in 
3D, while the alternative sliding window method detects 2D 
instances in single images. This means that our method 
detects each car only once, while the 2D method detects all 
instances of the same car in different images as unrelated 
detections. This set is very unbalanced, with only 60 cars in 
the entire test set. This means that only 1:20000 of the 
model vertices are cars. This is greatly visible in the 

Precision Recall (PR) curves, especially in the 2D curve. 

 
Figure 4: confusion matrix for sematic labeling 

 
Figure 5: ROC and Precision Recall Curve. For Recall = 0.5 both 3D 

clustering and Semantic Context have perfect precision. For recall 

above 0.7 Semantic Context improves precision by a factor of 2. 

For this reason we show both the Receiver Operating 
Character (ROC) and the PR. The main difference in these 2 
curves is that in PR the false positives are normalized 
against the true positives, while ROC is normalized against 
the true negatives. For this reason the ROC is much more 
“forgiving” of false positives when the data is unbalanced 
(Davis, 2006). 

2D Detector: The 2D detector is very noisy and never 
achieves 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 > 0.2, where chance detection would 
achieve 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 0.04 on this data set. This can be 
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explained by the angles in which the images were taken. 
Many walls are visible, with box like windows. Haar-like 
features measures gain changes in rectangular areas, and 
therefore many false positives occur on corner/boxy objects 
such as windows and solar panels. We tried using an 
alternative detector (Heitz, 2008) that was trained on 
Google Satellite images from the nadir with similar pixel 
resolution, but its performance was not better than chance.  

Our method with 3D Clustering: After clustering we were 
left with 1500 detections, most with small weights that 
could be discarded without losing any true positives (see 
Fig. 5); we achieve 𝑅𝑒𝑐𝑎𝑙𝑙 = 1, 𝐹𝑃𝑅 < 0.65. 

Our method with Semantic Context: For each detection 𝐷 
found by the clustering stage we constructed the feature 
vector 𝑓𝐷

𝑠 as described in Section 2.4. Each detection 
contained some 2-3 thousand vertices.  

Fig. 5 shows the performance of the 3 methods: 2D 
detector, our method with 3D clustering, and our method 
enhanced by semantic context. We see that clustering 
detections from multiple images achieves 50% recall with 
no false positives. At higher Recall values, using Semantic 
Context can reduce false positives by a factor of 2 and 
more. This is hardly visible in the ROC curve in this 
unbalanced data. In the PR curve a reduction in false 
positives is very noticeable since it’s proportionate to the 
true positives. 

 

4. SUMMARY 

We have described a method for finding static objects in 

multiple overlapping views using 3D reconstruction. Our 

method combines detections from a 2D sliding windows 

detector. The detections from all images are translated into 

3D where they are all considered together. Since true 

detections are stable over multiple images, clustering in 3D 

results in more reliable detections. Using the semantic 

labels of the 3D model as context, and using visibility of 

each object location in the images, further improves the 

detections. 
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