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ABSTRACT:

This paper presents a stereo-vision based incremental mapping approach for urban regions. As input, we use the 3D representation
called multi-layered Stixel World which is computed from dense disparity images. More and more, researchers of Driver Assistance
Systems rely on efficient and compact 3D representations like the Stixel World. The developed mapping approach takes into account
the motion state of obstacles, as well as free space information obtained from the Stixel World. The presented work is based on the
well known occupancy grid mapping technique and is formulated with evidential theory. A detailed sensor model is described which
is used to determine the information whether a grid cell is occupied, free or has an unknown state. The map update is solved in a time
recursive manner by using the Dempster ‘s Rule of Combination. 3D results of complex inner city regions are shown and are compared

with Google Earth images.

1 INTRODUCTION

Precise ego vehicle localization in urban regions is one of the
major challenges in autonomous driving applications (Kammel
et al., 2008), (Thrun, 2010). For this task, it is not sufficient
to only use GPS information, because well known limitations
like multi-path effects or signal shadowing occur in urban re-
gions. Thus, precise self-localization approaches are often based
on prior map information. Next to the (re)detection of 3D land-
marks (Lategahn and Stiller, 2012), another possibility is the use
of geometrical information of the static environment, like build-
ing facades or traffic infrastructures (Larnaout et al., 2012). With
the help of this information, the accuracy of self localization in-
creases. Furthermore, modern driver assistance systems like lane
change systems or collision avoidance systems (Muffert et al.,
2013) would also benefit from detailed prior map information to
support trajectory planning for the ego vehicle.

In this paper, the focus is on the incremental map building pro-
cess in urban regions given the absolute pose and orientation of
the ego vehicle. The goal is to update the map sequentially to
achieve real time capability in future. For the mapping approach,
the results should contain static environment information (e.g.
building facades) since only this information is useful for further
tasks such as ego vehicle localization. In contrast to the use of
ultrasonic sensors (Pagac et al., 1998) or laser scanners (Thrun,
2010), a stereo camera system is applied which went into series
production in the Mercedes-Benz S- and E-class in summer 2013.
It is assumed that the approximated absolute pose of the experi-
mental vehicle is known, e.g. by using an inertial measurements
unit in combination with a GPS sensor.

For the first time we use the 3D scene representation called
Stixel World (Pfeiffer and Franke, 2011) as input data for the
mapping approach. It is computed from dense disparity images
(Fig. 2(a)) at each acquisition time step. A Stixel is defined by its
2D position and 2D velocity, its width, and its height referring to
the coordinate system of the ego vehicle (Fig. 2(b)). Hereby, the
Stixel World efficiently describes dynamic and static objects, as
well as free space information. In contrast to the raw input data
(up to 500.000 disparity values), the 3D scene is represented by a
few hundred Stixels only. As a result, this step reduces the com-
putational burden for the following steps significantly. Due to
named properties research groups of Driver Assistance Systems
increasingly rely on 3D representations like the Stixel World.

Figure 1: The result of the mapping approach for a 3.000 image
sequence. For the visualization and the data structure the Oc-
toMap Representation (Wurm et al., 2010) is used. The purple
line represents the driven path of the ego vehicle. The height of
the static environment is color encoded.

Subsequently, the multi-layered Stixel World is segmented into
static and dynamic object classes using the approach by Erbs et
al. (Erbs et al., 2012), as seen in Fig. 2(c). This allows to exclude
dynamic objects like driving vehicles or bicyclists, so that static
environment information is only considered for the mapping ap-
proach. In Fig. 2(d), the final set of Stixels used for the mapping
approach is shown.

Because of the fact that the Stixels include height information,
a height layer of the complete 2D occupancy grid map is also
computed. The combination of the 2D map with the height layer
allows to estimate a 3D environment model which is visualized
using the OctoMap framework (Wurm et al., 2010)(Fig 1).
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The remainder of this paper is organized as follows: Section 2
gives a brief overview about related work. Then, Section 3 points
out the mapping process which is based on the idea of Cartesian
occupancy grid maps (Moravec and Elfes, 1985) in combination
with evidential theory (Shafer, 1976). Finally, results are shown
in Section 4 and Section 5 summarizes the paper.

2 RELATED WORK

Elfes and Movarec (Elfes, 1987), (Moravec and Elfes, 1985)
introduced the occupancy grids at first using wide angle sonar
sensors. Thrun ez al. (Thrun et al., 2005) give a detailed overview
about probabilistic methods for 2D occupancy grid mapping tech-
niques given the robot’s pose. At first, Thrun et al. describe an
incremental ad hoc approach which is based on a binary Bayes
filter. A drawback is the assumption that all grid cells are in-
dependent and mostly initialized with a probability of 0.5. Fur-
thermore, the described sensor model is considered unsuitable for
stereo vision sensors in the authors view: It returns fixed proba-
bility values for occupied (e.g. 0.8) or free (e.g. 0.2) which does
not capture the measurement characteristics of a stereo camera
system. In addition, Thrun et al. formulate a maximum a poste-
riori approach with a descriptive sensor model which considers
the dependence of all grid cells. This is a golden standard model,
but the disadvantage is the non incremental map update which is
a requirement for the developed mapping approach. A detailed
discussion of both methods can also be found in (Merali and Bar-
foot, 2012).

To reconstruct the complete 3D environment of urban scenes
Gallup et al. (Gallup et al., 2010) and Zheng et al. (Zheng et al.,
2012) present probabilistic methods using street-level videos or
photo collections. The required depth maps are estimated using
either structure from motion or dense stereo techniques.

Gallup et al. (Gallup et al., 2010) use a n-layer height map which

allows the representation of overhanging structures like balconies
or bridges. Zheng et al. (Zheng et al., 2012) take up this idea and
present an efficient incremental depth map fusion framework us-
ing wavelet based compression techniques.

The developed mapping process is formulated with eviden-
tial theory (Shafer, 1976). We take up the idea from (Moras et
al., 2011) and (Yang and Aitken, 2006) which use ultrasonic and
range sensors in contrast to a stereo camera system.

Yang et al. (Yang and Aitken, 2006) give a detailed overview
of evidential map building techniques: Each grid cell state is de-
scribed by its power set which is defined by the subsets free, oc-
cupied and unknown. Furthermore, the conflict in a cell is de-
scribed. For each subset a probability assignment function is
defined which formulates a detailed characterization of the sen-
sor model. The Dempster‘s Rule of Combination (Shafer, 1976)
makes an incremental cell update possible.

3 MAPPING PROCESS

Assuming a planar surface of the environment, a 2D Cartesian
reference grid map M = {m;},j € {1,..,J} with the cells m;
is given. For each cell hypotheses of free (F) and occupied (O)
are made. As described in (Moras et al., 2011) and (Yang and
Aitken, 2006), in evidential theory the power set is defined by

2" = {@, {0}7 {F}v {OvF}}' (D

The subset 2 = {O, F'} describes the ignorance of a cell and
is denoted as the unknown state U. The subset () is the empty
set. Following the definition of Eq. (1), for each element A of the
power set a belief mass function m; (A) is specified with the prop-
erty m} (0) +mj(O) +mj (F)+mj;(U) = 1. The complete state

(a) The dense disparity image, estimated via SGM (Gehrig et al.,
2009). The color represents the distance. Red stands for near, green

for far away objects.
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(b) The Dynamic Stixel representation (Pfeiffer and Franke, 2011). It
contains free space information and object boundaries. The arrows pre-
dict the Stixel position within the next 0.5 sec.
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(c) The results of the Stixel segmentation (Erbs et al., 2012). The vehi-
cle on the left side is classified as an oncoming object. The correspond-
ing Stixels are red. The static environment is colored in dark grey.
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(d) The input data for the mapping approach: The static Stixels are col-
ored in yellow to highlight the input data. Here, Stixels with a distance
of 25 m to the ego vehicle coordinate system are used.

Figure 2: Pipeline of the generation of the input data.

of a cell is given by the Cartesian information of the center point
(X; and Z;) and the belief mass function: m; = [X; Z; m}(A)]".

3.1 Input data

With the help of the rectified image sequences of the stereo
camera, dense disparity images are estimated using semi-global
matching (SGM) (Gehrig et al., 2009) as seen in Fig. 2(a). Then,
the multi-layered Stixel World (Pfeiffer and Franke, 2011) is com-
puted. The Stixels represent the relevant information of the cur-
rent 3D scene such as free space and dynamic and static obstacles
(see Fig. 2(b)). A single Stixel is a vertically oriented rectangle
with a fixed width in the image (e.g. 5 px) and a variable height.

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 56



ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume 11-3/W3, 2013
CMRT13 - City Models, Roads and Traffic 2013, 12 — 13 November 2013, Antalya, Turkey

Referred to the 3D Cartesian space, each Stixel §; = [s, s, H, W7
with ¢ € {1,..,I} is parametrized by its position vector s =
[X, Z]T with the lateral and longitudinal components X and Z,
its height H and its width W. Consequently, obstacles are de-
scribed by planar, vertical oriented surfaces which is a common
assumption in urban regions. As a result, facades behind parking
vehicles can be mapped, as shown in Fig. 5.

A well known challenge in mapping approaches is that dy-
namic objects have to be detected to be not taken into account in
the fusion step. To overcome this problem, the Stixels are tracked
over time which is achieved by the 6D-Vision principle (Franke
et al., 2005). This scheme uses Kalman filter to estimate both the
position and velocity of each Stixel. Performing this step makes
it possible to obtain a motion state § = [X, Z]7.

The separation of the scene into moving or stationary obsta-
cles is achieved by a multi-class traffic scene segmentation (Erbs
et al., 2012) which is based on a conditional random field frame-
work. With the help of this segmentation, from now, S; describes
only the static Stixels which are used as input data. An example
is shown in Fig. 2(d).

With the help of the pinhole camera projection equation (pro-
jection from the disparity(d)-column(u)-space to the 3D space
with given variances o2 and o2) and using Gaussian error prop-
agation it could be shown that the covariance matrix EE” of the
position §; of a Stixel is estimated by

22X S(X2)
E(S) _ 1 1
Z(XZ) U?(Z)
Z\2 2 Z\2 2 xz3 2 @
(F)out+ (5F) oa  F5z0a
o 3 2,2 ’
Sact  (B)a

including the baseline b and the focal length f of the stereo rig.

Due to the assumption that the ego vehicle’s position and ori-
entation is known the Stixels are transformed into the reference
coordinate system of the map M at each acquisition time step.

3.2 Sensor Model

The sensor model describes in which way the Stixel position
s; influences a set of cells My, € M. Due to the fact that each
Stixel obtains information about free space and obstacles (see
Section 3.1), the cells M, are partitioned into cells which sup-
port a set of occupied cells /\/l( ) and a set of free cells M(F)
as seen in Fig. 3. Additionally, cells which are not 1nﬂuenced by
a Stixel (i.e. M\Mj,) are defined with an unknown state U.

To formulate the mapping process with evidential theory, at
first, the belief mass function of the subset m} (O) has to be de-
fined. Next to the cell which is directly hit by a Stixel a region of
cell neighbors is considered in Ms(,io). The size of the region de-
pends on the estimated uncertainties of s;. With the help of ZES),
the belief mass function for the subset O is defined by

m;(0) =

,iftm; € M{P )

{ o(m; | Na(si, 2))

0 , else .

The function f, (m; | Na(si, EES))) returns an occupancy value
of evidence given the 2D normal distribution A5 (s;, %) as long
as the current cell m; is an element of ./\/ls(f) ),

As shown in Fig. 3, the space between the ego vehicle and the

Stixels §1 € S; which represents the first obstacles in the image

rows is free space. A set of K rays R5, = {r]C Y5, with k €
{1, .., K} from the ego vehicle to the Stixel are defined where
K depends on the width of the Stixel W;. All cells intersecting
with those rays are defined as M(F) Subsequently, the rays are
partitioned into ray segments as 1llustrated in Fig. 3.

In a more mathematical way, the intersection m; N r* of an
arbitrary cell m; with a ray r* returns the adequate ray segment
with its length | m; Nr* |. The assumption is made that the more
a cell includes rays segments, the greater is the evidence of free.

With the summarized length L = 3 | r{_ | of all rays the

K

belief mass function m; (F') for the subset F is defined by

m’(F) =
LYY [mynrk |  ifm; € MY )
K
0

, else.

Due to the properties of the belief mass function, m}(U) and
mj (0) are defined as

pm; (U) =
1—fo(m; | Na(si, £0)) | ifmj € ML
)]
1-L7'Y [mynrek | itm; € M
K k3
1 , else

and py,. (0) = 0.
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Figure 3: The sensor model of the mapping approach. The cell
which is directly hit by a Stixel is dark red, the immediate cell
neighbors are bright red. For these cells an evidential value of
occupied is estimated which is based on a two dimensional Gaus-
sian distribution. The distribution is defined by the position of a
Stixel s; = [X, Z]; and the covariance matrix EES) which in-
cludes the variances o; 2(%) and 02(Z> The cells which support
free regions are green. The more rays pass through a cell the
greater is the evidence of free. Cells which are not influenced
have an unknown state (blue).
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3.3 Incremental Map-Updating via Dempster’s Rule of Com-
bination

Up to this point, the sensor model and the definition of the be-
lief mass function are described. Now, an incremental map update
between consecutive time steps ¢ — 1 and ¢ is realized to recur-
sively merge new Stixel measurements into the existing map. The
Dempster‘s Rule of Combination is used which combines two
independent states mj ;(A) and mj;_;(A) at consecutive time
steps. The general formulation is defined by

m;,t (A)o m;,tfl(A) =

ﬁ > omi(B)ymj,_1(C)if A#0 (6)
BN C=A
0, else
with
K= > m(B)mj, .(C).
BAOC=0

In this contribution, the fusion step is formulated as

(%)

m;yt(F')m;’tfl(F)+m;yt(F)m;f,t71(U)+m;yt71(F)m;’t(U)
(1-x)

NG

my (U)m} 4 (U)

(1)

w3 (U) =

and
K =m}(O)m} 1 (F) +mj_1(O)m] . (F) .

For a better understanding of the update step from Equation 7,
results of a simulation are shown in Fig. 4:

At the beginning (¢ = 0), all cells are initialized with an un-
known state which is visualized by a dark blue map. Because of
this, the power set of a cell is defined as mj o (O) = m} o(F) =
m} (@) = 0and m}o(U) = 1.

At the next time step (¢ = 1), the figure points out the integra-
tion of one Stixel measurement into the map. The evidence for
occupied grows in these cells which are directly hit by the Stixel.
In the cells between the ego position (black cross) and the Stixel
the subset of free grows slowly, visualized by the color green.

The influence of an additional measurement and the recur-
sive filter characterization can be seen at the following time step
t = 2: In overlapping areas the evidence of free and occupied
grows which is particularly shown by the free space area.

During the update step K is not equal to zero, as long as a
conflict occurs in the cells.As an example, this case happens if a
current Stixel measurement overlaps free space area from the last
time step. Specifically, the conflict is significant if Stixel outliers
occur. This effects a robustness of our algorithm.

As seen in Eq. 7 the subsets O, F and U are normalized by the
term (1 — K) at each time step to satisfy the properties of the
belief mass function.

To obtain the mentioned height layer, the Stixel height H; ; is
taken into account. For each cell a height H; ; is estimated over
time by
H;om;(0) + Hj 1

L+m3, (0)

Hj, = @®)

Note that the height Hj o is initialized by zero. For the visual-
ization of the 3D environment model, the open source framework
OctoMap (Wurm et al., 2010) is used which is based on a 3D
Octree representation (see Fig. 1).

occupied

unknown free

t=1 t=2

Figure 4: Example of the time recursive update step: Att =
0, the map is initialized as unknown (dark blue). At time step
t = 1 the integration of one Stixel into the map is shown. The
cell which is directly hit is red, the immediate cell neighbors are
purple. The field of view between ego position (black cross) and
the Stixel position is free space which is encoded with the color
green. With an additional Stixel measurement at time step ¢t = 2
history and current measurements are merged. The stronger the
color saturation the stronger the evidence of free, occupied or
unknown.

4 RESULTS

In this work, mapping results of a 3.000 image sequence of
an urban drive (see Fig. 1) are presented. The used stereo cam-
era system is mounted behind the windshield of the experimental
vehicle. It has 1024 x 440 px image sensors and records with
25 Hz. With the help of an inertial measurement unit from iMar'
in combination with a GPS sensor, a global vehicle ego motion
was determined. An image Stixel width of 5 px and a grid cell
size of 0.04 m? is chosen. We assume a disparity uncertainty of
o4 = 0.5 pzx and a column uncertainty of o4 = 0.25 pz. To re-
duce the number of outliers only Stixels with a distance less than
25 m to the ego vehicle’s position are used.

Fig. 5 shows the occupancy grid results of a 20 mx 30 m exam-
ple map which reveals occupied (red), free (green) and unknown
(blue) grid cells. The stronger the color saturation the stronger
the evidence of free, occupied or unknown. On the right side of
the map an entrance gate, two parking vehicles and the building
facades are visualized. The area between the vehicles up to the
building facade is unknown because this area is not visible. On
the left side the poles of the parking area are mapped correctly
which underlines the high level of detail of the Stixel World.

Lhitp://www.imar-navigation.de/index.php/en.html
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Figure 5: An exemplary mapping result is shown. On the left side the original images with the input data of three time steps are
presented. The map in the center shows the results using the described approach. The color reveals occupied (red), free (green) and
unknown (blue) areas of the environment. The stronger the color saturation the stronger the evidence of free, occupied or unknown. On
the right side of the map an entrance gate, two parking vehicles and the building facades are mapped correctly. Furthermore, poles on
the left side are presented, too. The cells “behind” the vehicle have an unknown state. On the right side of the figure the height layer is
shown. There, the color encodes the height from zero (dark blue) to about 4 m (dark red). The facades are about 4 m high; vehicles, the
entrance gate and the poles have heights between 0.5-1.5 m.

Figure 6: The first detailed example of the 3.000 image sequence is shown. The original images with the input Stixels (left), the
2D mapping results overlaid on Google Earth images (center) and the 3D representation (right) using the OctoMap representation are
shown. Due to the segmentation of the multi-layered Stixel World into stationary and moving objects, the oncoming vehicle is not taken
into account for the mapping approach. Furthermore, walls behind walls are represented. Because of the limited field of view the right
building in this scene could not be mapped.
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Figure 7: The second detailed example of the 3.000 image sequence: Traffic infrastructures like poles are mapped precisely into the
map which is shown on the right side of the driving corridor. Because of the fact that the vehicle at the intersection is still waiting, it
is classified as a stationary object. As a result, the vehicle is represented in the map. The mapped corners of buildings, the facades and
the parking areas are consistent with the Google Earth images. Note that uncertainties in the ego vehicle’s position have not been taken
into account.
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In addition, Fig. 5 shows the height layer for the map. The
building facades are about 4 m high; vehicles, the entrance gate
and the poles have heights between 0.5-1.5 m which are conclu-
sive results.

In Fig. 6 and Fig. 7 detailed results from the complete image
sequence are shown. For a consistency check of the pipeline of
the mapping approach the results are overlaid on Google Earth
images. Both figures point out that mapped corners of buildings,
facades and parking areas are consistent with the Google Earth
images. Note that we have not take into account uncertainties in
the ego vehicle’s position.

As shown in Fig. 6, the oncoming vehicle is ignored for the
mapping approach thanks to the fact that the named Stixel seg-
mentation step (Erbs et al., 2012) allows to ignore moving ob-
jects.

Fig. 7 points out that the poles next to the right driving corridor
are mapped correctly. Because of the fact that the velocity of the
waiting vehicle at the intersection is zero, the vehicle is classified
as a static object.

In addition, the comparison with the Google Earth images
points out a drawback using a stereo camera system: Due to
the limited field of view the complete right building in the scene
of Fig. 6 was not recorded and, as a consequence, can not be
mapped. To overcome this drawback wide angle lenses should be
used in future work.

5 SUMMARY

In this work, a stereo vision based incremental mapping ap-
proach for urban regions was presented. For the first time the 3D
environment representation multi-layered Stixel World is used as
input data. For reliable mapping results the Stixel World was
segmented into static and dynamic objects. Thus, only static en-
vironment information is used for our technique.

The mapping approach was formulated with evidential the-
ory which allows the explicit representation of free, occupied and
unknown regions. A detailed sensor model describes how Stixel
measurements influence the state of the cells. To fuse new Stixels
into the map incrementally, the Dempster‘s Rule of Combina-
tion was used. In a further step, a recursive height layer for the
map was estimated. Detailed mapping results of a 3.000 image
sequence were shown. Furthermore, the mapping results were
compared with Google Earth images for a consistency check of
the pipeline of the mapping approach.
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