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ABSTRACT: 

 

We present a system for the large-scale automatic traffic signs recognition and mapping and experimentally justify design choices 

made for different components of the system. Our system works with more than 140 different classes of traffic signs and does not 

require labor-intensive labelling of a large amount of training data due to the training on synthetically generated images. We 

evaluated our system on the large dataset of Russian traffic signs and made this dataset publically available to encourage future 

comparison. 

 

1. INTRODUCTION 

Traffic signs are made to be visible and easily distinguishable 

by humans and that makes them good objects for processing by 

automatic algorithms. However these algorithms should be able 

to cope with such problems as intra-class variability, lighting 

changes, viewpoint changes, occlusions and blur. Modern state-

of-the-art traffic sign recognition algorithms rely on machine 

learning techniques (Stallkamp et al., 2012) and require a large 

and representative training set to overcome all these problems. 

To obtain such a training set human operators need to process 

images from hundreds of thousands kilometres of roads. This is 

especially hard for some rarely occurring sign classes. 

Considering the fact that different countries often have different 

signs this process should be repeated for every new set of signs. 

To overcome this problem we evaluate the possibility to train on 

synthetically generated data. 

 

The goal of our system is to take a sequence of geo-located 

images and produce a map with all encountered traffic signs on 

it. Contributions of this paper can be summarized as follows: 

1. We present practically useful automatic traffic signs 

recognition and mapping system that requires only one 

mounted camera with a GPS module. 

2. Our system works with more than 140 classes of signs. It has 

false positive rate that are low enough to use it in practical 

applications. 

3. We systematically explore the possibility to train on 

synthetically generated data. 

4. To measure the accuracy of our system we have constructed 

a large dataset of Russian traffic signs and made it publically 

available to encourage future comparison.  

 
2. RELATED WORK 

There were several works in the literature that describe large-

scale traffic sign recognition systems. In (Baro et al., 2009) a 

system based on an attention cascade is trained with Adaboost 

on dissociated dipoles (Balas et al., 2003). It is able to recognize 

four different types of signs grouped by visual similarity 

(danger, yield, prohibition, command). 50-60% hit ratio 

(counting on per-image basis) is achieved for monocular video 

with the false detection encountered every 13-52 frames. Traffic 

sign recognition performance was measured for a dataset 

consisting of 2000 training and 600 testing images of 31 classes, 

grouped into three types - speed, circular and triangular, with 

recognition rates equal to 91%, 98% and 99% accordingly. 

 

Another multi-view traffic sign recognition system is described 

in (Timofte et al., 2009). It was trained to detect and recognize 

62 classes of signs. In a single-view evaluation it achieved 

96.8% detection rate with 2 false alarms per 2MP image. Such a 

big false positive rate was reduced with the use of information 

from multiple views that allowed achieving 95.3% physical 
signs detection rate with one false alarm per 6000 images.  

 

(Mathias et al., 2013) used soft cascade with channel features 

and presented detection results on two publically available 

datasets of German and Belgium traffic signs consisting of 43 

and 62 classes accordingly. They reach 99% average AUC (area 

under precision/recall curves) on German dataset and 92.56% 

average AUC on Belgium dataset. But false positive counting 

was performed on relatively small number of images: 300 on 

German and 583 on Belgium dataset. 

 

In (Overett et al., 2011) hardware-oriented implementation of 

HOG (Dalal et al., 2005) features allowed building a high-

throughput system with 99% detection rate and 10-10 false 

negatives rate per detector window. This work is the most 

similar to ours, but we are presenting results for more than 140 

different classes of traffic signs (instead of 3 as in (Overett et al, 

2011)) and show that some classes of signs are more difficult to 

detect than others. For example, blue squared signs are harder 

than red circles because of color-similarity with the sky and lack 

of easily distinguishable border. We also systematically explore 

the possibility of training on synthetically generated data and 

present results of the evaluation for a full system consisting of 

detector, recognizer and linker. 

 

Another key aspect of our work is in the usage of synthetically 

generated training data. It was successfully used in many 

applications, such as: human pose recognition (Shotton et al., 

2011), object 3D structure inferring (Grauman et al., 2003), 

shape models learning (Stark et al., 2010), pedestrian detection 

(Marin et al., 2010) (Pishchulin et al., 2011) (Enzweiler et al., 

2008), viewpoint-independent object detection (Liebelt et al., 

2008), text recognition (Wang et al., 2011) and keypoints 

recognition (Ozuysal et al., 2007). 
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There were also some attempts to use pictograms and synthetic 

data for training. (Møgelmose et al., 2012) compare 

performance of sign detectors trained on real and synthetic data 

and come to the conclusion that a detector trained on real data 

performs better. The difference in hit rate was about 50%. For 

our system the difference between real and synthetic data is not 

so big and is equal to 10% on last stages of cascade with 10-9 

false positive rate per detection window. (Larsson et al., 2011) 

used Fourier descriptors to describe a sign and a new 

correlation-based similarity measure to compare it with a 

prototype pictogram. In (Ihara et al., 2009) SIFT-keypoints 

from the input sample were matched with keypoints from the 

sign pictogram. (Paulo et al., 2009) used curvature scale space 

representation to describe image contours and match them with 

the prototype pictogram. (Arlicot et al., 2009) proposed a 

method for circular signs detection, based on color pre-filtering 

and ellipse detection using RANSAC algorithm. Detected sign 

verification was performed using Zero Mean Normalized Cross 

Correlation with pictograms of reference traffic signs. 

 

3. RUSSIAN TRAFFIC SIGNS DATASET (RTSD) 

RTSD1 consists of 9508 images with signs and 71050 

background images. It contains 14360 sign bounding boxes, 

6387 of which are also labelled with a physical sign id. There 

are 863 labelled physical signs, thus each physical sign is 

encountered on average 7.3 times. The dataset is divided into 

training and test part. Training part contains 4754 images with 

signs and 44817 background images. The remaining images are 

in the test part.  

 

4. SYSTEM OVERVIEW  

We are working with a mobile mapping system that consists of 

one camera with a GPS-module. Our camera is capable to 

produce five 0.9 Mpix images per second. Below we have 

defined requirements that should be met in an automatic traffic 

signs mapping system to make it practically useful. 

 

The main parameter that matters in the signs mapping system is 

physical sign detection rate. This means that a sign could be 

detected only on one image out of several that actually contain 

it. So there is no need for detector to have very high detection 

rate per image. In RTSD each physical sign is seen on average 

on 7.3 images. And the majority of signs are seen at least 3 

times. This leads to 70% per image detection rate requirement 

that in theory should allow detecting 97.3% of physical signs. 

The false positive rate should be lesser than 10-9 detections per 

detector window. In our case it means that wrong detection 

would be encountered every 150 frames. This seems quite 

frequent at first but this number could be greatly reduced on 

subsequent stages of the system. For example, during linker 

stage all false positive detections from neighboring frames 

would be linked together. It is also possible to take into account 

recognizer’s confidence to filter out wrong detections. Similar 

requirement on false positive rate was also defined in (Overett 

et al., 2011). 

  

In this paper we present results for four different classes of 

Russian traffic signs, grouped by visual similarity (see Figure 

1). They include more than 140 different classes, some of which 

differ only in a few pixels. 

 

                                                                 
1  Dataset could be found at ftp://anonymous@kiviuq.gml-

team.ru/AnonymousFTP/RTSD/ 

Our system consists of four different modules described below: 

1. Detector. Finds traffic signs on each incoming image. 

2. Recognizer. Assigns a class label with confidence to each 

detected traffic sign. 

3. Linker. Links bounding boxes between neighboring frames 

producing the new physical sign and assigns a class label to 

it.  

4. Localizer. Calculates position of the physical sign in world 

coordinates using camera internal and external parameters 

and information from linked bounding boxes. 

 

5. SYNTHETIC DATA GENERATION 

A traffic sign is a rigid planar object. That makes generation of 

synthetic sign images relatively easy. We applied a series of 

transformations to pictograms2 of traffic signs from Wikipedia 

(some examples are depicted in Figure 1) with intent to generate 

visually appealing synthetic images (see Figure 2). 

 

Here we present the full list of transformations applied to the 

incoming pictogram:  

1. Variation of value (V) and hue (H) components of HSV 

color space. 

2. Rotation, scaling and shifting of a sign in the 3D space. 

3. Addition of Gaussian noise, “salt and pepper” noise and 

“pixelization effect”. 

4. Sign image blurring. 

5. Addition of background from real images with blending on 

sign edges. 

 
Each transformation is parameterized by its probability of 

occurrence and, in case of occurrence, probability distributions 
for each parameter of the transformation. 

                                                                 
2 Pictograms cold be found at http://yadi.sk/d/juSX-WSe6L6Oi 

 

 
Figure 1: Column-wise examples of traffic sign types (red 

triangles, red circles, blue circles, blue squares) processed by 

our system. 

 

 
Figure 2: Examples of synthetically generated samples. 

 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume II-3/W3, 2013
CMRT13 - City Models, Roads and Traffic 2013, 12 – 13 November 2013, Antalya, Turkey

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 14



 

 

6. TRAFFIC SIGNS DETECTION 

Here we present a brief description of the architecture of the 

detector module and then justify different design choices. As in 

(Baro et al., 2009), (Timofte et al., 2009) and (Overett et al., 

2011) we use an attention cascade to make a detection problem 

tractable. First stages of our cascade consist of AdaBoost 

classifiers trained on dissociated dipoles features (Balas et al., 

2003) that were also used in (Baro et al., 2009). We preprocess 

sign images as described in (Ruta et al., 2011) with filters that 

intend to amplify certain colors and suppress any others (for 

example, we amplify blue color in the case of blue squares sign 

type). On each stage we use for training 10000 synthetic 

samples of signs and 16000 background patches bootstrapped 

from real images. Thirteen dipoles-stages are trained until false 
positive rate become lesser than 10-7. 

 

After that we train a deep convolutional neural network3 on a 

much larger synthetically generated dataset of 200000 positive 

samples and 16000 false positives from real images. Neural 

network is a good choice for training on synthetically generated 

data due to its ability to be trained on a datasets of a large size. 

In our case we increased the size of the training set until recall 
of the detector has stopped changing. 

 

Our network has 5 layers with weights and 2 max-pooling 

layers. It takes as input 30x30 images normalized with 

histogram equalization. First two layer of the network is 

convolutional with 64 kernels of size 5x5 with a stride of 1 

pixel. Each convolutional layer is followed by the max-pooling 

layer with size 3x3 and stride of 2 pixels. Second pooling layer 

is followed by two locally-connected layers with size of 3x3 and 

stride of 1 pixel. The last layer is fully-connected and its output 

is fed into 2-way softmax which produces a distribution over 2 

class labels. Network hyper-parameters were selected via cross-

validation. We repeat bootstrapping rounds until false detections 

rate become lesser than 10-9. We train four detectors for each 
traffic sign type (as depicted in Figure 1). 

 

Here we present results of several experiments to justify design 

choices made in the detector module. 

 

6.1 Usage of color filters described in (Ruta et al., 2011) 

that amplify specific colors. 

We trained two detector cascades for the blue squares sign type. 

First cascade was trained on grayscale images, another cascade 

on images with amplified blue color as in (Ruta et al., 2011). It 

is clear from Figure 3 and Figure 4 that color features are doing 

better job in terms of accuracy and the number of features. 

 

6.2 Training cascade on dissociated dipoles features till 

false positive rate is lesser than 10-7 and training a deep 

neural network after this point. 

Dissociated dipoles are fast and lightweight yet powerful 

features. We use these features on the first stages of the cascade 

to accelerate its performance because almost all detectors’ work 

is done on these stages. But our experiments showed that the 

accuracy of the cascade trained on dipoles features is starting to 

drop rapidly after the point where false positives rate is equal to 

10-7 (see Figure 5 and Figure 6).  Possible solution is to use 

                                                                 
3  We use cuda-convnet library to train the neural network, 

http://code.google.com/p/cuda-convnet/  

Figure 3: ROC curve for cascades trained with gray and color 

features. 

 

 
Figure 4: Number of features on the different stages of 

cascades trained with gray and color features. 

 
Figure 5: Comparison of different features and classifier used 

on the last stages of cascade for the blue squares type. 

 
Figure 6: Comparison of different features and classifier used 

on the last stages of cascade for the red triangles type. 
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more powerful features and classifiers after this point. We 

evaluated two possibilities. First one is to train several stages of 

the cascade with AdaBoost on HOG features and liner SVM as 

a weak classifier. Second possibility is to train a deep 

convolutional neural network with several bootstrapping 

rounds. Figure 5 and Figure 6 show that HOG features do not 

increase the accuracy of the cascade whereas a neural network 

classifier allows reaching the same false positive rate with a hit 

rate better on average by 7%. Final detector accuracies for four 

types of signs could be found in Table 1. 

 

Although performance of our detector meets aforementioned 

requirements we have also tried to train a detector of blue 

squares signs on real data. It could be seen from Figure 7 that 

detector trained on real data has superior performance. But if we 

compare hit rates counted per physical sign difference would be 

relatively small – 96.88%, compared to 92.18%. 

 

7. TRAFFIC SIGNS RECOGNITION 

Our recognition module is based on a deep convolutional neural 

network which recently proved to be the good choice for this 

task (Stallkamp et al., 2012). It has 4 layers with weights and 2 

max-pooling layers taking as input 30x30 images normalized 

with histogram equalization. First two layer of the network is 

convolutional with 112 kernels of size 4x4 with a stride of 1 

pixel. Each convolutional layer is followed by the max-pooling 

layer with size 3x3 and stride of 2 pixels. Second pooling layer 

is followed by two fully-connected layers. First layer has 100 

neurons in it. Second one has as many neurons as there are sign 

classes for this sign type. Its output is fed into a softmax layer 

which produces a distribution over class labels. Network hyper-

parameters were selected via cross-validation on synthetic data. 

We train four classifiers for each sign type using synthetically 

generated data. Results of our classifiers could be found in 

Table 2. 

 

Lower accuracy on red circles and red triangles is due to the 

large number of visually similar classes that differ only in a few 

pixels. For example, “speed limit” signs in red circles or “side-

road ahead” in red triangles (  Figure 8). 

 

 
  Figure 8: Difficult signs for classification. 

We have also compared recognizers trained on real and 

synthetically generated data. For this experiment we have 

selected 42 classes that have more than 15 real samples in the 

dataset. Result from Table 3 show that synthetically trained 

recognizer performs better. We think this is due to the greater 

number of training samples and wider set of transformations 

that could be covered by synthetic data. 

 

8. TRAFFIC SIGNS LINKAGE AND MAPPING 

To link detected traffic signs between frames we use a simple 

algorithm that is working in the image pixels space. It is 

predicting a position of the sign on the next frame using the 

equation of a linear uniformly accelerated motion: 

            
   

 
, where    is the initial position of the sign 

on the image,    is velocity,   is acceleration and   is the final 

position of the sign after the time interval. 

 

To use this equation we should know    and   which are easily 

computed using the finite differences method if we know 

position of the sign on last 2 and 3 frames accordingly. If we 

just encountered new traffic sign and do not have enough 

frames behind then    or   are considered to be equal to zero. 

We select closes detected sign to prediction if the distance is 

small enough. 

 

After linking signs from neighboring frames into one physical 

sign we can obtain its position in world coordinates via 

triangulation. We can also refine sign’s class label using 

recognition results from different frames. Frame recognitions 

are weighted by detector window size, because recognition in a 

large window tend to be more accurate. 

 

9. SUMMARY AND CONCLUSION 

We presented a system for the large-scale traffic signs 

recognition and mapping and evaluated it on more than 140 

 
Figure 7: Comparison of detectors trained on real and 

synthetically generated data. 

Sign type False 

positive rate 

Hit rate per 

image 

Hit rate per 

physical sign 

Blue squares 7E-10 77% 92.18% 

Red triangles 7E-10 73.1% 82.35% 

Blue circles 6E-10 79.2% 83% 

Red circles 2E-9 73.8% 84.7% 

Table 1: Final accuracy of the detection cascade. 

 

 

Sign type Num. of 

classes 

Num. of 

training 

samples 

Percent of 

recognized physical 

signs (among 

detected) 

Blue squares 31 279 000 96.6% 

Red triangles 46 414 000 92.8% 

Blue circles 16 144 000 100% 

Red circles 47 423 000 93.8% 

Table 2: Recognition results for four sign types. 

Data type Num. of 

classes 

Num. of training 

samples per class 

Accuracy 

Real 42 > 15 93.7% 

Synthetic 42 > 9000 94.1% 

Table 3: Comparison of recognizer’s trained on real and 

synthetically generated data. 
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classes of Russian traffic signs. For evaluation we created a 

large dataset captured on the roads of Russia and made it 

publicly available to encourage future comparison. Our system 

is trained on synthetically generated data and does not require 

labor-intensive labelling of the training data. 

 

We show that color features significantly improve the accuracy 

and speed of the detector. Usage of the deep neural network on 

the last stage of the detector cascade allowed training on 

radically larger datasets and improved the hit rate of the detector 

on average by 7% comparing to cascade trained on dipoles 

features. For recognition module we presented results of signs 

classifier trained on synthetic data. We also compared 

recognizers trained on synthetic and real data and showed that 

training from synthetic data yields better accuracy. 
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