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Bayesian Approach
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Medium Resolution Data: 
Markov Random Fields

Prior: Markov Random Field on pixel values

Likelihood: conditional independence assumption
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No contextual information in the likelihood:
1 - uncorrelated noise
2 - no texture



Markov Random Fields
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• Contextual Information Modeling

• Link with Statistical Physics: Gibbs Fields
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From Context to Geometry
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SPOT image © CNES

IKONOS image © Satellite imaging Corporation

IKONOS image © Satellite image Corporation



From Context to Geometry
How to extract structural information from HR images?
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SPOT image © CNES

aerial image © IGN



High Resolution Data: 
From Pixels to Objects

• Goal: To model the observed sceneas a configuration of objects
(roads, rivers, buildings, trees):

• To take into account data at a macroscopic scale.

• To take into account the geometry of objects.

• To take into account relations between objects (macro-texture).

• Unknown number of objects (MRF on graph impossible).
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• Unknown number of objects (MRF on graph impossible).

• Stochastic modeling: Set of objects in the scene  ≡ realization of a 
marked point process, X.

• Optimization algorithm: Monte Carlosampler (e.g. RJMCMC) + 
simulated annealing.

Solution: Marked point processes



Marked Point Processes

• A marked point process X on χ = P x M is a point 
process on χ for which the point location is in P and the 
marks in M.
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M

• We define X by its probability density f w.r.t. the law 
πν(.) of a Poisson process known as the reference 
process (ν (.) is the intensity measure):



Sampling: Birth and Death 
Algorithm (Geyer/Moller-94)

• Birth: with probability ½, randomly propose a new point 
u in χ to be added to the current configuration x. Let y = x 
U {u}. Compute the acceptance ratio:
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• Death: with probability ½, randomly propose a point v to 
be removed from x. Let y = x /{v}. Compute the 
acceptance ratio:

• With probability α
i
= min{1, Ri}, accept the proposition 

xt+1 = y, otherwise accept the proposition xt+1=x.
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Sampling: RJMCMC (Green-95)

• Generalization of Geyer/Moller-94

• Mixture of several proposition kernels:
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• Convergence condition exists.
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Sampling: RJMCMC
• Algorithm:

At time t: 

1) Select randomly a kernel qm using the discrete law (pm(x))

2) Generate a new configuration y with respect to the selected kernel:

11

2) Generate a new configuration y with respect to the selected kernel:

3) Compute the acceptance ratio: 

4) Compute the acceptance rate αααα :

5) With probability • αααα set: 

• (1-αααα) set:



Optimization Algorithm
• Goal: To estimate a configuration maximizing f(.)

• Simulated annealing:

Successive simulations of ft(x) n(dx) using a 
RJMCMC algorithm with:
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• Logarithmic decrease ⇒⇒⇒⇒ global maximum.

• In practice: geometric decrease.
At each step, Tt+1 = Tt ×××× c, where c is a constant close to 1.
(c=0.99999 or c=0.999999 depending on the difficulty of the 
detection)

where (Tt) (≡ temperature) decreases towards zero.



First example: Quality Candy Model 
for road network extraction 

• Objects: segments

• Prior: models the connectivity and the 
curvature 
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curvature 

• Data term

PhDs: R. Stoïca, C. Lacoste in collaboration with IGN and BRGM



First example: Quality Candy Model 
for road network extraction 
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PhDs: R. Stoïca, C. Lacoste in collaboration with IGN and BRGM



First example: Quality Candy Model 
for road network extraction 

• Objects: Segments

• Prior: models the connectivity and the 
curvature 
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curvature 

• Data term

PhDs: R. Stoïca, C. Lacoste in collaboration with IGN and BRGM



First example: Quality Candy Model 
for road network extraction 

• Objects: Segments

• Prior: models the connectivity and the 
curvature 
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curvature 

• First data term: t-test 

PhDs: R. Stoïca, C. Lacoste in collaboration with IGN and BRGM



First example: Quality Candy Model 
for road network extraction 

• Objects: Segments

• Prior: models the connectivity and the 
curvature 
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curvature 

• Second data term: t-test

PhDs: R. Stoïca, C. Lacoste in collaboration with IGN and BRGM



Kernels of the 
RJMCMC algorithm

•Uniform birth and death

•Birth and death in a neighborhood
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•Extension/contraction of a segment

•Translation of a segment

•Rotation of a segment
PhDs: R. Stoica, C. Lacoste



Results
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PhDs: R. Stoica, C. Lacoste © IGN



Results
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PhDs: R. Stoica, C. Lacoste © Ariana / INRIA



Results
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PhDs: R. Stoica, C. Lacoste © ESA



Results
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PhDs: R. Stoica, C. Lacoste © Ariana / INRIA



Second example: tree crown extraction
First method

• Object: disc

• Prior: non-overlappingtrees

23

• Data: Gaussianlikelihood
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PhD: G. Perrin in collaboration with ECP



Result

24
PhD: G. Perrin in collaboration with ECP



Result
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PhD: G. Perrin in collaboration with ECP



Second example: tree crown extraction
Second method

• Marks:ellipsesor ellipsoids.

X= {X 1,X2,…,Xn}

ELLIPSES: 2D model
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Dense area: plantation (merged shadows)

Sparse vegetation (drop shadows)

ELLIPSES: 2D model

ELLIPSOIDS: 3D model

PhD: G. Perrin in collaboration with ECP



Density of the process
• Goal: design the density of the MPP in order to make tree 
configurations be the most likely configurations.

• Minimize the energy:

• Mathematical tools: RJMCMC algorithms + simulated 
annealing.

Energy U(x)
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More likelyLess likely

Poplars to be extracted with ellipses

PhD: G. Perrin in collaboration with ECP



Energy of the model
• Regularizing term + data term:

U(x) = Ur (x) + Ud (x)

• Ur (x): prior term = interactions between objects.
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• Ud (x): data term = fitting the object into the image.
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Data energy term Ud (x)
• What is typical of the presence of a tree ?

� high reflectance in the near infrared.
� shadow.
� neighborhood.

• In dense vegetation: merged shadows, shadow area = all around the 
tree.

• In sparse vegetation: drop shadows, shadow area = in the direction 
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• In sparse vegetation: drop shadows, shadow area = in the direction 
of the sunlight.

PhD: G. Perrin in collaboration with ECP



Results with the 2D model (1)
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Poplar plantation. 1 ha ©IFN. 2D model extraction. © Ariana / INRIA 

PhD: G. Perrin in collaboration with ECP



Results with the 2D model (2)
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Poplar plantation. 7 ha ©IFN 2D model: more than 1300 
objects. © Ariana / INRIA

PhD: G. Perrin in collaboration with ECP



Results with the 3D model (1)
• Application: sparse vegetation, trees on the borders of 
plantations, mixed height stands.

• Hypotheses: the position of the Sun is given, trees close to the 
nadir and at ground level (no deformation).

• Results: position, crown diameter, approximate heightof the 
tree.
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tree.

© IFN © IFN © IFN

PhD: G. Perrin in collaboration with ECP



Results with the 3D model (2)
• 3D model extraction in sparse vegetation.

33

2.5 ha (Alpes Maritimes) © IFN. 3D model extraction© Ariana / INRIA

PhD: G. Perrin in collaboration with ECP



Results with the 3D model (3)

• Application: density of the sparse vegetation  ≈ 19%.
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3D model extraction. © Ariana / INRIA Binary image of the vegetation.

PhD: G. Perrin in collaboration with ECP



Results with the 3D model (4)
•Many objects.

• Information on the timber forest density  ≈ 15%.
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Mixed height stand (3 ha) © IFN.             3D model extraction © Ariana / INRIA

PhD: G. Perrin in collaboration with ECP



Third example: building extraction

public (urban planning, disaster recovery …)
private (wireless telephony, movies …)
military (operation training, missile guidance …)

Long-term goal: Creation of 3D urban 
databases
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Context 
spatial data (PLEIADES simulations)
single type of data: a DEM 
automatic (without cadastral maps, without 

focalisation process)
dense urban areas

Third example: building extraction
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PhDs: M. Ortner, F. Lafarge in collaboration with IGN/CNES/DGA

Towards structural modeling
adapted to data (object approach)
good compromise generality / robustness
modular

2 stages: 2D extraction, then 3D reconstruction
computation is greatly reduced

A building = an assembly of 

simple urban structures



Stereoscopy
Pair of stereoscopic images 3D Information

example: Digital Elevation Model (DEM)

by [Pierrot-Deseilligny et al.,06]
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©IGN

©IGN



Stage 1:
2D extraction of buildings

39
PhDs: M. Ortner, F. Lafarge in collaboration with IGN/CNES/DGA



2D extraction of buildings
Outlines of buildingsby marked point processes [Ortner04]

Energy minimization:

: data term
coherencebetween the location of a 

40

coherencebetween the location of a 
rectangle and discontinuities in the DEM

: regularizing term
introduction of prior knowledge about the 

object layout (alignment, paving, completion)

PhDs: M. Ortner, F. LafargePhDs: M. Ortner, F. Lafarge in collaboration with IGN/CNES/DGA



Transformation of rectangles into structural supports
[Lafarge07]

transformation of rectangles into unspecified 
quadrilaterals which are ideally connected (without 
overlapping, with a common edge)

2D extraction of buildings
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overlapping, with a common edge)

partitioning of rectangles which represent different 
urban structures

PhDs: M. Ortner, F. Lafarge in collaboration with IGN/CNES/DGA



Examples

2D extraction of buildings

© Ariana / INRIA
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rectangular supports 

by [Ortner04]
“connected” supports

by [Lafarge07]

structural supports

by [Lafarge07]

PhDs: M. Ortner, F. Lafarge in collaboration with IGN/CNES/DGA



Stage 2:
3D reconstruction of buildings
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PhDs: M. Ortner, F. Lafarge in collaboration with IGN/CNES/DGA



Library of 3D models

The roof shapes:

9 forms
1 to 6 parameters

3D reconstruction of buildings
PlatformFlat Shed

Gable Dissymetric gable Saltbox

Semi-ellipticEllipticMansard

44

1 to 6 parameters
includes curved roofs

The variants:

ends and junctions
orientation of the object

Variant - Variant V Variant 2V

Variant L Variant T Variant +

PhDs: M. Ortner, F. Lafarge in collaboration with IGN/CNES/DGA



Inverse problem
Notations

, a configuration of structural supports associated with the DEM 

, the data such that  with 

, a configuration of 3D objects                      where
is an objet specified by a model        of the library and a parameter
set 
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set 

, the set of 3D object configurations

Inverse problem

to find the optimal configuration     from the observations

a posteriori density:



Likelihood
Likelihood

to measure the coherence of the observations     with an object 
configuration

hypothesis of conditional independence of data:
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use of an altimetric distance between object and DEM:

where      corresponds to the roof altitude of object xi

is the distance (Lp norm)



A priori
A priori

to introduce  knowledge w.r.t. the assembling of the objects

to compensate for the lack of information contained in the DEM

to have realistic buildings
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must be simple (avoid too many tuning parameters)

Solution: a unique type of binary interactions

Neighboring relationship       between 2 supports (common edge)
assembling relation        between 2 objects 
use of a Gibbs energy:



A priori
the assembling relation        between 2 objects is true if:

two objects have the same roof form
rooftop orientations are compatible
the common edge is not a  roof height discontinuity

A priori expression:
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where               is a tuning parameter
measures the distance between parameters of the objects



Optimization
MAP estimator:

non convex optimization problem in a large state space
is a union of spaces of different dimensions

RJMCMC sampler[Green95]

consists in simulating aMarkov chain on       which 

49

consists in simulating aMarkov chain on       which 
converges toward a target measure      specified by h

Exploration stage Adjustment stage



Results

PLEIADES 
simulations
©CNES

Ground truth 
©IGN

Reconstruction with automatic support extraction
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©IGN

Buiding
Extraction
©Ariana/INRIA

3D 
Reconstruction
©IGN/CNES   



Results
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PLEIADES simulations
© CNES

Building Extraction
© Ariana / INRIA

3D Reconstruction 
© IGN / CNES

PhDs: M. Ortner, F. Lafarge in collaboration with IGN/CNES/DGA



Results
Reconstruction with interactivesupport extraction
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Reconstruction of urban areas (Amiens downtown and St Michel prison in Toulouse)     © IGN/CNES

Click here



Results
Reconstruction with interactivesupport extraction

Better 
reconstruction of 
superstructures: 
chimneys, dormer 
windows, glass 
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Reconstruction of buildings with superstructures (Marseille) from 0.1 meter resolution aerial DEM 

Click here

© IGN/CNES

windows, glass 
roofs...



Remarks
Interesting characteristics

original and difficult context: satellite data – a single DEM – automatic 
without cadastral maps – dense urban areas

evolutive process(different roof models, various data resolutions)

possibility of using the extractionand reconstructionprocesses 
separately

54

separately

Limits

restricted use(possible problems if discontinuities in DEMs, 
vegetation, inner courtyards)

computing time

no 2D correctionbetween extraction and reconstruction stages



General conclusion

• The marked point processframework 
extends the application domainof Markov 
Random Field approaches:
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Random Field approaches:
– Data taken into account at the object level

– Geometrical information taken into account

• Markov random fieldsare still an efficient 
tool (depending on the image resolution)



Future work

• Point process with marks living in a shape space:
– More accurate definition of the geometry

– Computing issues 

• Multiple object detection [Lafarge09]
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• Multiple object detection [Lafarge09]

• New optimization dynamics
– Diffusion processes(in progress at Ariana, in 

collaboration with IIPT, Moscow, RAS)

• Parameter estimation(in progress at Ariana, in 
collaboration with CNES)



Thanks to: 

• CNES, IFN, IGN, Spot Image Corporation, Satellite Image
Corporation, for providing the data.
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• DGA, MAE, CNES, IGN, BRGM, ECP and INRIA, for partial
financial support.
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For more information:

http://www.inria.fr/ariana

60

http://www.inria.fr/ariana



Hammersley-Clifford Theorem

A MRF verifying a positivity constraint can be written
as a Gibbs field:
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Markov process

• A point process density

is Markovian under the neighborhood relation ~ if and 
only if there exists a measurable function                              
such that:

[ [∞→ ,0: fNf

[ [∞→ ,0: fNφ
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such that:

for all  
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Stability
• Condition required for proving the convergence of Markov
Chain Monte Carlo sampling methods.

• A point process defined by its f(.) w.r.t. a reference measure
π (.) is locally stable if there exists a real number M such that: 
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πν(.) is locally stable if there exists a real number M such that: 

{ }( ) ( ) χ∈∀∈∀≤∪ uNxxMfuxf f ,,


