Marked point processes for object
extraction in high resolution images:
Application to Earth observation and

cartography

J. Zerubia

Joint work with X. Descombes, C. Lacoste, M. Ortner, G. Perrin, R.
Stoica, F. Lafarge

Ariana research group, http://www.inria.fr/ariana
\'

< ~
% W INRIA H 1



Bayesian Approach

X)P{Y | X)

P(Y)

P(X |Y)= P( OP(X)P(Y | X)

Y : observed data
x . unknown variable (objects, features,

P(Y | X): likelihood
P(X) : prior
P(X |Y): posterior

EstimatedX : X" = argmxaxP(X 1Y)




Medium Resolution Data:
Markov Random Fields

Prior: Markov Random Field on pixel values

Likelihood: conditional independence assumpt

P(Y 1X)= 1 P(y, 1)

lon

No contextual information in the likelihoo
1 - uncorrelated noise
2 - NO texture

d:




Markov Random Fields

P(X, [X,,t £ 5) = P(x, [x,,t OV,)
v, bein¢ the neighborhod of s

« Contextual Information Modeling
* Link with Statistical Physics: Gibbs Fields



From Context to Geometry
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SPOT image © CNES

IKONOS image © Satellite image Corporat%n



From Context to Geometry

How to extract structural information from HR images?

aerial image © IGN



High Resolution Data:
From Pixels to Objects

Goal: To model theobserved sceras aconfiguration of objects
(roads, rivers, buildings, trees):
 To take into account data atreacroscopic scale
» To take into account theometry of objects
» To take into accountlations between objedmmacro-texture).
 Unknown numbeof objects (MRF on graph impossib

Solution: Marked point processes

Stochastic modeling: Set of objects in the scer®realization of a
marked point process, X.

Optimization algorithm: Monte Carlosampler (e.gRIMCMC) +
simulated annealing



Marked Point Processes

A marked point processonX =2 X7 1s a point

process orx for which the point location is Ii® and the
marks in7z.

 We define X by itorobability densityf w.r.t. the law
T(,(.) of a Poisson process known as the reference
process ¥ (.) Is theintensity measule



Sampling: Birth and Death
Algorithm (Geyer/Moller-94)

o Birth: with probability ¥2, randomly propose a new point
u inx to be added to the current configuration x. Lety = X
U {u}. Compute theacceptanfe rats

y)

« Death: with probabillity 2, randomly propose a point v to
be removed from x. Let y = x [{v}. Compute the
acceptance ratio R (xy)= fly) nix

() vlx)

e With probabilitya, = min{1, R}, accept the proposition
X.+1 = Y, otherwise accept the propositiqp,xx.




Sampling: RIMCMC (Green-95)

o (Generalization of Geyer/Moller-94
e Mixture of several proposition kernels:

Q(x,.)= Zm: p.(x)g.(x,) with Q(x, N )Sl

e Convergence condition exists.
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Sampling: RIMCMC

« Algorithm:

Attimet:

1) Select randomly a kernel q,,, using the discrete law (p,,(x))

2) Generate a new configuration y with respect to the selected kernel:
y ~ dm(X,.)

3) Compute the acceptance ratio: Rm(x.y)
4) Compute the acceptancerate a: « = min(1,R(x,y))

5) With probability e a set: X¢11 =y

o (1'0’) sef: Xt_|_1 =X 1




Optimization Algorithm
Goal: To estimate a configuration maximizifQ)

Simulated annealing:

Successive simulations of f,(x) n(dx) using a
RIMCMC algorithm with:
1

fi(x) = £(x) Tt

where (T,) (Stemperature) decreases towards zero.

Logarithmic decrease> global maximum.

In practice: geometric decrease.
At each stepJ,,, = T, x c, wherec is a constant close to 1.

(c=0.99999 or ¢=0.999999 depending on the diffycaftthe
detection) 12



First example: Quality Candy Model
for road network extraction

* Objects:segments
* Prior: models the connectivity and the

curvature
 Data term
Circle of radius €
/ ——_—____ - \ ____/___-
Free segment Single segment Double segment
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First example: Quality Candy Model
for road network extraction

Connection with an orientation
' difference smallerthan t,.,.
i @ Encouragement of the pair (sI,52):
' g(s1,52)<0

S

Connection with an orientation
difference greaterthan ¢,

@ Penalisation of the pair (s1,53):
gisl,s3)=0

14
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First example: Quality Candy Model
for road network extraction

Very slight difference Difference of orientation
of orientation Stight difference of orientation close to a right angle
T T
/ B
T T<Y YT
>0
°C
#} Clique forbidden é Clique penalised é Clique not penalised
gl y)=co g, v)>0 glu,v)=0
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First example: Quality Candy Model
for road network extraction

* ODbjects: Segments

* Prior: models the connectivity and the
curvature

e First data term: t-test
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First example: Quality Candy Model
for road network extraction

* ODbjects: Segments

* Prior: models the connectivity and the
curvature
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Kernels of the
RIMCMC algorithm

Uniform birth and death

Birth and death in a neighborhood
sExtension/contraction of a segment
*Translation of a segment

*Rotation of a segment

PhDs: R. Stoica, C. Lacoste
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Second example: tree crown extraction
First method

* Object:disc
 Prior: non-overlappindrees

e Data: Gaussiarikelihood

Ay(S(X)) = ptree(yp) DE! pnotree(yp)

plIS(x) )
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Result

PhD: G. Perrin in collaboration with ECP
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Result i
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Second example: tree crown extraction
Second method

» Marks:ellipsesor ellipsoids

ELLIPSES: 2D modt

ELLIPSOIDS: 3D model

Sparse vegetation (drop shadows)
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Density of the process

» Goal: design the density of the MPP in order to make tree
configurations be the most likely configurations.

* Minimize the energy:U (x) : f (x) = %exp (-U (x))

 Mathematical tools: RIMCMC algorithms + simulated
annealing.

Energy U(X)

Poplars to be extracted with ellipses

27
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Energy of the model

* Regularizing term + data term:
U(x) = U, (x) + Uy (X)
* U, (X): prior term = interactions between objects.

OVERLAFPPING
COEFFICIENT

b
r\\J
N

0

* Uy (X): data term = fitting the object into the image.
Ug(¥) =4 2 Ua(X)

X; LIX
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Data energy term J{X)

 What is typical of the presence of a tree ?
» high reflectance in theear infrared
» shadow.
» neighborhood.

* In dense vegetatiomerged shadows, shadow areal=around the
tree

* In sparse vegetati: drop shadows, shadow arein the directior
of the sunlight

Lk posceds i Uhe Bowmdiry Hx Sun
Sun s
P R / ellipsoid x un /
flr s
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-
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Poplar plantation. 1 ha ©IFN.
PhD: G. Perrin in collaboration with ECP
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Results with the 2D model (2)

more thand.30

2D model
objects. © Ariana / INRIA

Poplar plantation. 7 ha ©IFN
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Results with the 3D model (1)

» Application:sparse vegetatigtrees on the borders of
plantationsmixed height stands

* Hypotheses: the position of the Sun is given, trees close to the
nadir and at ground level (no deformation).

e Results: position, crown diametapproximate heighaf the
tree

© IFN © IFN
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Results with the 3D model (2)

« 3D model extraction igparse vegetation

2.5 ha (Alpes Maritimes) © IFN. 3D model extractio® Ariana / INRIA

PhD: G. Perrin in collaboration with ECP 33



Results with the 3D model (3)

» Application: density of the sparse vegetatoni9%.

o

3D model extraction. © Arian‘a/ INRIA Binary image of the vegetation
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Results with the 3D model (4)

Many objects.
 Information on the timber forest density15%.

Mixed height stand (3 ha) © IFN. 3D model extracfiofiriana / INRIA
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Third example: building extraction

L ong-term goal: Creation of 3D urban
databases

@ public (urban planning, disaster recovery ...)
@ private (wireless telephony, movies ...)
e military (operation training, missile guidance ...)

36



Third example: building extraction

Context
e spatial data (PLEIADES simulations)
@ single type of data: a DEM
@ automatic (without cadastral maps, without
focalisation process)
@ dense urban areas

Towards structural modeling
@ adapted to data (object approach)
@ good compromise generality / robustnes

@ modular A building = an assembly of
simple urban structures

2 stages: 2D extraction, then 3D reconstruction
@ computation is greatly reduced

37
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Stereoscopy

Pair of stereoscopic images 3D Information
example: Digital Elevation Model (DEM)

by [Pierrot-Deseilligny et al.,06]




Stage 1:
2D extraction of buildings

PhDs: M. Ortner, F. Lafarge in collaboration with IGN/CNESAG
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2D extraction of buildings

Outlines of buildingdy marked point processes [Ortner04]
o Energy minimization U = pUc,t + Usjng
» Uezt : data term

+ coherenc between the location of » |
rectangle and discontinuities in the DEM@. ]

/s
» Uint : regularizing term i
+ Introduction of prior knowledge about the
L)

object layouialignment, paving, completion),

40
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2D extraction of buildings

Transformation of rectangles instructural supports
[Lafarge07]

¢ transformation of rectangles into unspecified
guadrilaterals which are ideally connected (without
overlapping, with a common ed;

@ partitioning of rectangles which represent different
urban structures

41
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2D extraction of buildings

Examples © Ariana/ INRIA

i

o -...,__‘_____ ~./ ~J - A

retangular supports “coc” uports structural supports
by [Ortner04] by [Lafarge07] by [Lafarge(07]
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Stage 2.
3D reconstruction of buildings
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3D reconstruction of buildings

Flat Platform

&y
i

Shed
Library of 3D models > o
oL PiIPN

The roof shapes: e et gable "~ Salibon
o :
e 9 forms i . . . . -
¢ 1 to 6 paramete o e ety

@ includes curved roo ' .‘ . .T ' .JI
The variants: ’ ’ '

Variant - Variant V Variant 2V

@ ends and junctions
¢ orientation of the object . ‘ .
Variant L Variant T Variant +

PhDs: M. Ortner, F. Lafarge in collaboration with IGN/CNESAG




Inverse problem

Notations

o Q, a configuration of structural supports associatgd the DEMA
o 7, the data such thiy = (99)icq Wil ={A(s) €I/s € §;}

@ x, a configuration of 3D objecX = (Xzf)ieQ whereX; = (mzt,ei)
IS an objet specified by a moc/7; of thedrgrand a parameter
seto,

e C, the set of 3D object configurations
Inverse problem

@ to find the optimal configuraticX  from the obssionsY
@ a posteriori densityh(x) = h(x/9) o< h,(x)£ (7 /x)
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Likelihood

Likelihood £ (9 /x)

@ to measure the coherence of the observal)' nsth aniobject
configuration x

@ hypothesis of conditional independence of data:

L(r/x)=1]<i/x)

I1€Q,

@ use of an altimetric distance between object anMDE

wheresy, corresponds to the roof altitude of cibje
I is the distance (Lp norm)
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A priori

A priori A ,(x)

@ to introduce knowledge w.r.t. the assembling efabjects
» t0 compensate for the lack of information contaimethe DEM
» t0 have realistic buildings

@ must be simple (avoid too many tuning parameters)

== Solution: a unique type of binary interactions

» Neighboring relationshiP><  between 2 supparté(mon edge)
» assembling relatio~, between 2 objects

» use of a Gibbs energ/,(x) = exp—U,(x)
47



A priori
e theassembling relatio~, between 2 objects is true If:
» two objects have the same roof form

» rooftop orientations are compatible
» the common edge is not a roof height discontinuity

e A priori expression: U, ( BZ [ximar; 18 (Xi5 X;)

>

wheref € R is a tuning parameter
8 measures the distance between parameters of thet®bj

.

W P

48




Optimization

MAP estimator xmap = argmax /1(x)
xcC

@ Non convex optimization problem in a large statcsp
@ (IS a union of spaces of different dimensions

RIMCMC sampler[Green95]

@ consists in simulating Markov chait (Xi)ien on C whick
converges toward target measurT specified by h

Ay 7Y
v*vcvt“

Exploration stage Adjustment stage




Results

Reconstruction with automatic support extraction

PLEIADES
simulations
©CNES

Ground truth
©IGN

Buiding
Extraction
©Ariana/INRIA

3D -
Reconstruction |
©IGN/CNES ./
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Results

PLEIADES simulations Building Extraction 3D Reconstruction
© CNES © Ariana / INRIA © IGN / CNES
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Results

Reconstruction witlnteractivesupport extraction

Reconstruction of urban areas (Amiens downtown&tndichel prison in Toulouse) © IGN/CNES
52



Results

Reconstruction witlnteractivesupport extraction

Better
reconstruction of
superstructures:
chimneys, dormer
windows, glas:
roofs...

© IGN/CNES

Reconstruction of buildings with superstructuresa(eille) from 0.1 meter resolution aerial DEM c3



Remarks

@ Interesting characteristics

» Original and difficult contextsatellite data — a single DEM — automatic
without cadastral maps — dense urban areas

» evolutive proces@ifferent roof models, various data resolutions)

» possibility of using thextractionandreconstructiorprocesses
separatel

@ Limits
» restricted us¢possible problems if discontinuities in DEMSs,
vegetation, inner courtyards)
» computing time

» N0 2D correctiorbetween extraction and reconstruction stages
54



General conclusion

 Themarked point procesramework
extends the application domafiMarkov
Random Field approach

— Data taken into account at the object level
— Geometrical information taken into account

e Markov random fieldgrestill an efficient
tool (depending on the imagesolutior)
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Future work

Point process with marks/ing in a shape space
— More accurate definition of the geometry

— Computing issues

Multiple objectdetection [Lafarge0!

New optimization dynamics

— Diffusion processe@in progress at Ariana, in
collaboration with IIPT, Moscow, RAS)

Parameter estimatidim progress at Ariana, in
collaboration with CNES)
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For more information:
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Hammersley-Clifford Theorem

A MREF verifying a positivity constraint can be written
as a Gibbs field:

P(X)= %exp— {ZVC(XS, sO] S)}

cLIC

S =all thepixels
C =all thecliguesassociatedo theneighborhodv
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Markov process

* A point process densityf : N - [0,0]

IS Markovian under the neighborhood relation ~nidl a
only if there exists a measurable functigm * - [0,

such tha
f(x)=a []ay)

cliquesyllx

forall xONf
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Stability

« Condition required for proving the convergence of Markov
Chain Monte Carlo sampling methods.

A point process defined by its f(.) w.r.t. a reference measure
n,(.) is locally stable if there exists a real number M such

f(x O{ul) < Mf (x),OxON",0ul
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