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ABSTRACT: 
 
Derivation of statistical traffic data is highly dependent on the balance of detection and false alarm rates. In case false alarms have 
not been eliminated in the initial detection phase, they are often subsequently tracked, though, resulting in trajectories that do not 
match the true traffic situation. This finally leads to derivation of erroneous traffic parameters within the individual road segments. 
In this paper, a method is described how to eliminate false alarms by evaluating the trajectories and velocities of a tracking 
procedure. Basically, two types of false alarms are considered which bias the statistics of traffic data: The first type deals with 
redundant detections that lead to multiple trajectories biasing the statistics. The second type comprises false alarms that belong to the 
static background inducing zero-velocity into the statistics. We show that the presented procedure is able to increase the total 
correctness of detection and tracking from 65% up to 95% which allows a much more precise calculation of traffic flow parameters. 
 
 

1. TRAFFIC MONITORING 

The task of collecting wide area traffic parameters plays 
important role in today’s traffic management. Aerial images 
offer a complement source to common measurement systems 
like induction loops and stationary video cameras. Besides 
giving a visual overview, image sequences which cover large 
areas can deliver a time snapshot of a spatially fully covered 
traffic situation of the recorded region. 
In recent years, traffic monitoring using air- and space images 
became more and more attractive mainly due to the availability 
of cost-effective and flexible high-resolution systems mounted 
on aircrafts, i.e. the LUMOS/ANTAR system for traffic 
monitoring (Ernst et al., 2003; Ernst et al. 2005; Ruhé et al., 
2007) or the 3K camera system (Kurz et al., 2007), or on HALE 
platforms and UAVs as presented in the Pegasus project 
(Everaerts et al., 2004). An extensive overview on recent 
developments is given, for instance, in (Stilla et al., 2005; Hinz 
et al., 2006; Lenhart et al., 2008). The following methods are 
especially designed for traffic monitoring with DLR’s 3K 
camera system. This system is able to capture image sequences 
with a frame rate of approx. 3Hz – 7Hz depending on the 
imaging mode (continuous imaging or bursts) with a spatial 
resolution of 20cm – 50cm depending on the flight height. 
Concepts for deriving traffic data from these aerial image 
sequences have been proposed in (Rosenbaum et al. 2008) and 
(Lenhart et al. 2008). The traffic parameters which are 
calculated from image sequences are namely the mean velocity 
and traffic density per road segment. The resulting parameters 
are then integrated into traffic flow models such as the DELPHI 
traffic portal illustrated in (Behrisch et al.). 
 
 

2. INFLUENCE OF FALSE ALARMS 

Detection methods as proposed in (Rosenbaum et al. 2008) or 
(Lenhart et al. 2008) deliver a detection quality of about 60% 
completeness and 65-75% correctness. False alarms are mainly 
caused by structures which appear similar to vehicles, like i.e. 
belonging to shadows, road banks etc.  

 
The influence of the false alarm rate on the calculation of 
generic traffic parameters can be studied using, e.g., Monte-
Carlo simulations. In the following experiment a dense traffic 
scenario on a multi-lane highway was captured with an image 
sequence and all car trajectories were manually measured in 
this sequence, eventually leading to mean velocity profiles for 
each lane of the highway. Then, a predefined percentage of 
detections were selected at random positions along the road and 
contaminated with a specific percentage of random false alarms. 
Based on these data the velocity profiles were calculated for 
each lane again and compared to the reference data. As the 
estimation of the velocity profile depends strongly on the 
randomly selected positions of the cars, these experiments have 
been carried out 10000 times, in order to gain a certain statistic 
about the quality of the estimated profiles. The following table 
summarizes the RMS values and standard deviations for the 
estimated velocity profiles depending on the respective 
detection and false alarm rate. 

 
50% detection rate
5% false alarm rate

50% detection rate 
10% false alarm rate 

50% detection rate
25% false alarm rate

RMS 
[km/h] 

σ  
[km/h] 

RMS 
[km/h] 

σ  
[km/h] 

RMS 
[km/h] 

σ  
[km/h] 

5.22 2.61 7.03 4.01 10.25 6.27 
 

30% detection rate
5% false alarm rate

30% detection rate 
10% false alarm rate 

30% detection rate
25% false alarm rate

RMS 
[km/h] 

σ  
[km/h] 

RMS 
[km/h] 

σ  
[km/h] 

RMS 
[km/h] 

σ  
[km/h] 

5.97 3.17 8.03 4.66 11.30 6.58 

Table 1: Monte-Carlo simulation of reconstruction of velocity 
profiles depending on detection and false alarm rates 

 
As can be seen, especially the false alarm rate highly influences 
the quality of the estimates. For instance, it is still possible to 
reconstruct the velocity profile up to 6km/h ± 3km/h at a 
detection rate of only 30% when keeping the false alarm rate at 
5%. 
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Figure 1: Detection result with false alarms. The red circle 

indicates redundant objects, the black mark shows 
objects belonging to the background. 

 
There are mainly two ways of how false alarms are being 
tracked (see example in Figure 1): 

• Collinear motion for redundant objects/features 
belonging to vehicles (trailer, car shadow or other). 

• With zero velocity if objects belong to the 
background (road bank, shadows of trees etc.) 

 
It is easy to see that these false alarm objects influence 
statistical traffic data in a manner that may lead to wrong 
conclusions of the traffic situation or to conflicts in model 
calculation. 
 
To demonstrate such influence, two examples shall be 
mentioned: 

• In a traffic scenario of a congestion where one lane 
moves slightly faster than the other (see Figure 2), 
false alarms belonging to (mainly larger) vehicles of 
the faster lane concurrently increase the derived 
density and raise the calculated average velocity. This 
obviously leads to a conflict in the traffic evaluation. 
If the false alarms belong to vehicles of the slower 
lane, the average velocity is lowered and thus 
implying an even higher vehicle density than there 
actually is. 

 
• Let us assume a snapshot of a real situation of free 

flowing traffic with 30 cars moving with an average 
velocity of about 60 km/h (which corresponds to the 
speed limit). By assuming 60% completeness and 
70% correctness, around 18 cars will be correctly 
detected and there will be 8 false alarms. In case that 
the false alarms belong to static background they will 
obtain a speed 0 km/h. This leads to a calculated 
average velocity of 41 km/h which implies rather 
dense traffic and thus feeding the traffic flow model 
with erroneous input data. 

 
 

 
Figure 2: Congested traffic situation with different velocity in 

each lane. 

Therefore, it is desirable to eliminate the false alarms of the 
initial detection to achieve a better quality of the calculated 
average velocity. 
 
 

3. CONCEPT OF REFINEMENT 

To improve the initial detection quality, we include generic 
knowledge about the velocity statistics and geometric layout of 
traffic flow in typical traffic situations (e.g. “free flowing”, 
“congestion”, “traffic jam”). To this end, we first track all 
initial detections and then eliminate the included false alarms 
based on an analysis of geometric layout and velocity of the 
trajectories.    
 
3.1 Summary of tracking procedure 

Initial vehicle candidates are extracted in the neighborhood of 
predefined road axes using a blob detection algorithm tuned for 
color images. Image triplets are then used for tracking, in order 
to gain a certain redundancy allowing an internal evaluation of 
the results. A vehicle image model is created by selecting a 
rectangle around a particular detection. By using the shape-
based matching algorithm (Steger, 2001), car hypotheses are 
found in the successive images. The matching procedure 
delivers matches in Image 2 and in Image 3. Then, new car 
image models are created at all hypotheses positions in Image 2 
and matched to Image 3. Of course, these matches may contain 
multiple match results. Finally, all results obtained in Image 3 
are checked for consistency including a smoothness criterion of 
the trajectory to determine the correct combination of the 
matches. A detailed explanation of this approach can be found 
in (Lenhart et al., 2008). 
  
The described tracking method is a very robust one delivering 
correct matches at about 99%, yet it tracks objects of any kind 
as long as their motion fulfills smoothness constraints similar to 
those of cars. Thus, trajectories of false initial detections are 
potentially tracked and also considered as “correct”. Based on 
the results of the tracking, the refinement is carried out. 
 
3.2 Elimination of redundant objects 

A first step to eliminate false detections is to remove redundant 
objects from the set of detections. These are the kind of objects 
that belong to vehicles, such as shadows or trailers. 
For each pair of detections, the spatial distance is calculated. A 
search for very small distances delivers candidates for 
redundant objects. Since candidates may also include vehicles 
within a passing maneuver, these candidates need to be 
analyzed for their trajectories. The analysis includes the speed 
and direction of the determined trajectories and relative 
direction between the candidates. Identical trajectories and 
constant relative direction indicates redundant candidates while 
passing vehicles will have at least a slight difference in their 
speed or relative orientation. 
 
It is now tested which of the redundant candidates is the car and 
which is the object to be eliminated. Therefore, a quick test of 
the gray or color value in the center of the objects is carried out. 
The darker and less colored object is assumed to be the shadow 
and is therefore eliminated from the set of detections. In case 
that both objects have a similar gray or color value, the trailing 
object is eliminated. 
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3.3 Knowledge representation of traffic situations 

In order to evaluate the velocities of the vehicles we need to 
formulate our knowledge and expectations about the typical 
traffic situations such as “free flowing traffic”, “congestions” or 
“traffic jams”. In dependence of the state of traffic and the 
location with respect to intersections or traffic lights, different 
interactions between vehicles occur. 
A well substantiated statistical concept like Bayes’ theorem 
would provide a sound basis for evaluation. However, 
determining the probability density functions is hardly feasible 
because extensive and sufficient samples are missing. Hence, it 
is advisable to avoid a concept that claims statistical integrity. 
In contrast to Bayes’ theorem, fuzzy logic offers an intuitive 
method to represent knowledge of classes by easy 
parameterization (Zadeh, 1965). It is also frequently applied for 
modeling car following behavior (Brackstone and McDonald, 
1999). Therefore, we decided to use fuzzy logic to describe our 
knowledge about traffic. 
 
3.3.1 3D fuzzy membership function for active vehicles 
Let us define a fuzzy set A that describes vehicles which are 
actively involved in traffic. Besides normally moving cars, 
these may be standing vehicles in traffic jams or waiting at red 
traffic lights or other crossroads. 
Since we are only interested in the possibility of an object 
belonging to A, we neglect the alternative set Ā of inactive 
objects which may be false alarms of the detection, parking 
vehicles or erroneous tracks. 
 
For the fuzzy set A, a membership function needs to be defined, 
indicating the possibility μA that a car belongs to A in 
dependence of its velocity v. However, μA also strongly depends 
on the traffic density D and the distance d from intersections. It 
is quite obvious, that in a free flowing situation in the middle of 
road segment the possibility that a car stands still is 0. In 
contrast to that, zero speed has a rather high possibility near 
intersections or in jam situations. In order to meet these 
different traffic situations, we have to consider the conditional 
possibilities μA(v|D,d). In the sequel, the units for the measures 
given shall be v [km/h], D [cars/km per lane] and d [m]. 
 
First, we should outline the ranges of D and d where μA may 
change significantly. A density of lower or equal to D = 30 
corresponds to free flowing traffic while a density of D = 180 
represents the maximum density of a traffic jam when there is 
almost no motion at all (Hall, 1999). Below 30, μA(v,D|d) 
remains constant. 
The interesting range for d is approximately between 150 
meters before an intersection because this describes the range 
where drivers start to brake and 50 meters behind the 
intersection where drivers accelerate until they reach their 
desired travel speed. Outside of the range of [-50m;150m], 
μA(v,d|D) is constant for all values of d. 
 
Over the entire space of v, D and d, this results in a 3D 
membership function μA(v,d,D). Please note that the values also 
depend on the road type, speed limits intersection layout. For 
different road conditions, different functions have to be 
developed. The mentioned example function refers to a major 
city road with multiple lanes with a speed limit of 60 km/h and 
an intersection with a road of equivalent type controlled by 
traffic lights. 
 
 

To create this 3D function, support points have to be selected. 
I.e., given an open traffic situation (D = 30) and long distance 
from an intersection (d = 150) the possibility of a vehicle 
moving with a speed between 0-20 km/h in shall be 0, while the 
possibility at the same position in the same traffic situation shall 
be 1 for velocities between 50-70 and becoming 0 again at v = 
100.  
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Figure 3: 1D membership functions given a traffic density D = 

0 and D = 180 respectively and distance d = 150 
with support points (black dots) 

 
 

 
Figure 4: 2D membership function at distance d=5, with 1D 

support functions (black lines) 
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A second function depicts a dense traffic situation at the same 
distance. The possibility for zero velocity shall be 0.5 (since 
jam cues more likely move slowly forward), while speeds of 
10-30 shall be most likely and speeds larger than 50 simply 
impossible. By linear interpolation between the support points, 
this results in the functions depicted in Figure 3. 
 
Assuming that the possibilities evolve linearly over the 
dimension of density, we can derive 2D functions given a 
certain distance. The function for a position right in front of an 
intersection is shown in Figure 4. 
 
By linear interpolation along the third axis d, we receive a cubic 
membership function (Figure 5). 
 

 
Figure 5: 3D membership function with slices at v=10, v=70, 

D=80, d=0 and d=100 
 
 
3.3.2 Evaluation of velocity information 
Before the evaluation of the speed, the road is split into sections 
of length 50m and, near to intersections, of only 20m (sees 
Figure 6). Every detected object is assigned to one section and 
contributes to the section density. After the determination of the 
section density, the possibility μA is derived from the above 
described 3D membership function for each object. 
 
The fuzzy possibility serves a weight in the calculation of a 
weighted average velocity for each section: 
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By applying a minimum threshold on the summed up weights 
of a section, we meet the circumstance that there are only false 
alarms in a free flow section. If the sum of the weights of a 
section is below the threshold, all detections of this section are 
removed. 
Finally, objects with a velocity 2i vv v σ< − ⋅  are regarded as 

outliers and eliminated. Then, a refined and unweighted average 
velocity is determined from the remaining detections. The 
resulting distribution is unbiased under the assumption that all 
false alarms have been eliminated. 
 

 
Figure 6: Velocity distribution and cutting-off criteria (red) per 

road section for each lane  
 
 

4. RESULTS 

The concept has been tested on two different sets of image data 
so far. The results are shown in Figure 7. One image shows a 
highway section with free flowing traffic. Here, the detection 
was carried out by a blob detection algorithm as explained in 
(Lenhart et al.). In this case, the refinement was able to 
eliminate all false alarms and redundant objects that arose from 
the automatic detection. 
The second image shows a more complex scene with an urban 
highway section and an exit leading to an intersection with a 
traffic light. In this case, the detection has been carried out 
manually, however, considering a reasonable detection 
characteristic and quality. In this example, 12 objects have been 
correctly removed, leaving only one false alarm that could not 
be eliminated due to faulty tracking.  
In both examples, the correctness of the detection could be 
significantly increased by approximately 30%. 
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Figure 7: Results of the refinement process. Green: detected and tracked vehicles; Black: redundant objects eliminated by trajectory 
analysis; Red: false alarms by velocity evaluation. Blue circle: false alarm which has not been eliminated. 

 
5. DISCUSSION AND OUTLOOK 

The presented concept shows a possibility to refine detection 
and tracking results by velocity and trajectory evaluation. 
This allows a more precise derivation of the average velocity 
which is fed into traffic models. The benefit of this concept 
affects exclusively the calculation of the average velocity. It 
is not possible to counter the problem of low completeness, 
since missed hits cannot be recovered. However, as has been 
shown by the simulation in Sect. 2, a low false alarm rate is 
essential for extrapolating the detection results. For low 
detection rates, traffic flow parameters can still be estimated 
with reasonable quality if the false alarm rate is small 
enough. 
Still, many more test scenes have to be evaluated in order to 
give a more precise measure for the potential of this method. 
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