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ABSTRACT: 
 
In this work, we focus on the detection of buildings, by combining information from aerial images and Lidar data. We applied four 
different methods on a dataset located at Zurich Airport, Switzerland. The first method is based on DSM/DTM comparison in 
combination with NDVI analysis (Method 1). The second one is a supervised multispectral classification refined with a normalized 
DSM (Method 2). The third approach uses voids in Lidar DTM and NDVI classification (Method 3), while the last method is based 
on the analysis of the density of the raw Lidar DTM and DSM data (Method 4). An improvement has been achieved by fusing the 
results of the different methods, taking into account their advantages and disadvantages. Edge information from images has also 
been used for quality improvement of the detected buildings. The accuracy of the building detection was evaluated by comparing the 
results with reference data, resulting in 94% detection and 7% omission errors for the building area. 
 

1. INTRODUCTION 

In this work, we focus on the building detection for airport sites. 
The acquisition of a reliable geospatial reference database of 
airports, and in particular the automatic extraction of buildings 
and obstacles at airports, both have a critical role for aviation 
safety. Often, 3D information of airports is not available, not 
accurate enough, not complete, or not updated. Thus, methods 
are needed for generation of accurate and complete 3D geodata 
with high degree of automation. In particular, buildings and 
trees are considered as obstacles, so they should be correctly 
extracted. In this work, we focus on the detection of buildings, 
as a first step for their 3D extraction. There are several methods 
applied for this purpose, based on image and/or airborne Lidar 
data. In our approach, buildings are detected in aerial images 
and Lidar data through multiple methods using multispectral 
image classification, DSM (Digital Surface Model) and DTM 
(Digital Terrain Model) comparisons and density analysis of the 
raw Lidar point cloud. The detection quality is improved by a 
combination of the results of the individual methods. This paper 
will give a brief overview of the related work on this subject. 
Then, after the description of the test area at Zurich Airport, 
Switzerland, the strategy and methodology will be presented 
and the results will be reported, compared and commented. This 
work is a part of the EU 6th Framework project PEGASE 
(Pegase, 2009). 
 

2. PREVIOUS WORK  

Aerial images and Lidar data are common sources for object 
extraction. In digital photogrammetry, features of objects are 
extracted using 3D information from image matching or 
DSM/DTM data, spectral, textural and other information 
sources. Pixel-based classification methods, either supervised or 
unsupervised, are mostly used for land-cover and man-made 
structure detections. For the classical methods e.g. minimum-
distance, parallelepiped and maximum likelihood, detailed 
information can be found in (Lillesand and Kiefer, 1994). 
 

In general, the major difficulty in using aerial images is the 
complexity and variability of objects and their form, especially 
in suburban and densely populated urban regions (Weidner and 
Foerstner, 1995). 
 
Regarding Lidar, building and tree extraction is basically a 
filtering problem in the DSM (raw or interpolated) data. Some 
algorithms use raw data (Sohn and Dowman, 2002; Roggero, 
2001; Axelsson, 2001; Vosselman and Maas, 2001; Sithole, 
2001; Pfeifer et al., 1998), while others use interpolated data 
(Elmqvist et al., 2001; Brovelli et al., 2002; Wack and Wimmer, 
2002). The use of raw or interpolated data can influence the 
performance of the filtering. The algorithms differ also in the 
number of points they use at a time. In addition, every filter 
makes an assumption about the structure of bare-earth points in 
a local neighbourhood. This assumption forms the concept of 
the filter (Sithole and Vosselman, 2003). The region-based 
methods use mostly segmentation techniques, like in Brovelli et 
al. (2002), or using Hough transformation (Tarsha-Kurdi et al., 
2007). Some researchers use 2D maps as prior information for 
building extraction (Brenner, 2000; Haala and Brenner., 1999; 
Durupt and Taillandier, 2006; Schwalbe et al., 2005). 
Topographic maps provide outlines, classified polygons and 
topologic and 2D semantic information (Elberink and 
Vosselman, 2006).  
 
In general, in order to overcome the limitations of image-based 
and Lidar-based techniques, it is of advantage to use a 
combination of these techniques. Sohn and Dowman (2007) 
used IKONOS images to find building regions before extracting 
them from Lidar data. Straub (2004) combines information 
from infrared imagery and Lidar data to extract trees. 
Rottensteiner et al. (2005) evaluate a method for building 
detection by the Dempster-Shafer fusion of Lidar data and 
multispectral images. They improved the overall correctness of 
the results by fusing Lidar data with multispectral images.  
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Few commercial software packages allow automatic terrain, 
tree and building extraction from Lidar data. In TerraSCAN, a 
TIN is generated and progressively densified, the extraction of 
off-terrain points is performed using the angles between points 
to make the TIN facets and the other parameter is the distance 
to nearby facet nodes (Axelsson, 2001). In SCOP++, robust 
methods operate on the original data points and allow the 
simultaneous elimination of off-terrain points and terrain 
surface modelling (Kraus and Pfeifer, 1998).  
 
In summary, most approaches try to find objects using single 
methods. In our strategy, this study suggests complying 
different methods using all available data with the focus on 
improving the results of one method by exploiting the results 
from the remaining ones.   
 

3. INPUT DATA AND PREPROCESSING 

The methods presented in this paper have been tested on a 
dataset of the Zurich airport. The available data for this region 
are: 3D vector data of airport objects, colour and CIR (Colour 
InfraRed) images, Lidar DSM/DTM data (raw and grid 
interpolated). The characteristics of the input data can be seen 
in Table 1. 
 

Image Data RGB CIR 
Provider Swissphoto Swissphoto 
Scale 1: 10‘000 1: 6‘000 
Scan Resolution 14.5 microns 14.5 microns 
Acquisition Date July 2002 July 2002 
Ground Sampling Distance 
(GSD) (cm) 14.5 cm 8.7 cm 
Lidar Data DSM DTM 
Provider Swisstopo Swisstopo 
Type Raw & grid Raw & grid 
Raw point density  &  Grid 
Spacing 

1 pt / 2 sqm & 
2m 

1 pt / 2 sqm & 
2m 

Acquisition Date Feb. 2002 Feb. 2002 
Vector data Only for validation purposes  
Provider Unique Co.  
Horizontal / Vertical 
Accuracy (2 sigma) 20 / 25 cm  

Table 1. Input data characteristics. 
 
The 3D vector data describe buildings (including airport 
parking buildings and airport trestlework structures). It has been 
produced from stereo aerial images using the semi-automatic 
approach with the CC-Modeler software (Gruen and Wang, 
1998). Some additional reference buildings outside the airport 
perimeter were collected using CIR images with stereo 
measurement by using LPS software. The images have been 
firstly radiometrically preprocessed (noise reduction and 
contrast enhancement), then the DSM was generated with the 
software package SAT-PP, developed at the Institute of 
Geodesy and Photogrammetry, ETH Zurich (Zhang, 2005). For 
the selection of the optimum band for matching, we considered 
the GSD, and the quality of each spectral channel based on 
visual checking and histogram statistics. Finally, the NIR band 
was selected for DSM generation. The final DSM was 
generated with 50cm grid spacing. Using this DSM, CIR 
orthoimages were produced with 12.5cm ground sampling 
distance. Lidar raw data (DTM and DSM) have been acquired 
with “leaves off”. The DSM point cloud includes all Lidar 
points (including points on terrain, tree branches etc.). The 
DTM data includes only points on the ground, so it has holes at 
building positions and less density at tree positions. The height 
accuracy (one standard deviation) is 0.5 m generally, and 1.5 m 

at trees and buildings, the latter referring only to the DSM. The 
grid DSM and DTM were interpolated from the original raw 
data by Swisstopo with the Terrascan commercial software. 
 

4. BUILDING DETECTION 

Four different approaches have been applied to exploit the 
information contained in the image and Lidar data, extract 
different objects and finally buildings. The first method is based 
on DSM/DTM comparison in combination with NDVI 
(Normalised Difference Vegetation Index) analysis for building 
detection. The second approach is a supervised multispectral 
classification refined with height information from Lidar data 
and image-based DSM. The third method uses voids in Lidar 
DTM and NDVI classification. The last method is based on the 
analysis of the density of the raw DSM Lidar data. The 
accuracy of the building detection process was evaluated by 
comparing the results with the reference data and computing the 
percentage of data correctly extracted and the percentage of 
reference data not extracted.  
 
4.1 DSM/DTM and NDVI (Method 1) 

By subtracting the DTM from the DSM, a so-called normalized 
DSM (nDSM) is generated, which describes the above-ground 
objects, including buildings and trees. As DSM, the surface 
model generated by SAT-PP and as DTM the Lidar DTM grid 
were used. NDVI image has been generated using the NIR and 
R bands. A standard unsupervised (ISODATA) classification 
was used to extract vegetation from NDVI image. The 
intersection of the nDSM with NDVI should correspond to 
trees. By subtracting the resulting trees from the nDSM, the 
buildings are obtained. 83% of building class pixels were 
correctly classified, while all of 109 buildings have been 
detected but not fully, the omission error is 7% . Within the 
detected buildings, some other objects, such as aircrafts and 
vehicles, were included. The extracted buildings are shown in 
Figure 1.   
 

    
Figure 1. Building detection result from method 1. (Left: airport 
buildings, Right: residential area). 
 
4.2 Supervised classification and use of nDSM (Method 2) 

The basic idea of this method is to combine the results from a 
supervised classification with the height information contained 
in the nDSM. Supervised classification methods are preferable 
to unsupervised ones, because the target of the project is to 
detect well-defined standard target classes (airport buildings, 
airport corridors, bare ground, grass, trees, roads, residential 
houses, shadows etc.), present at airport sites. The training areas 
were selected manually using AOI (Area Of Interest) tools 
within the ERDAS Imagine commercial software (Kloer, 1994). 
Among the available image bands for classification (R, G and B 
from colour images and NIR, R and G bands from CIR images), 
only the bands from CIR images were used due to their better 
resolution and the presence of NIR channel (indispensable for 
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vegetation detection). In addition, new synthetic bands were 
generated from the selected channels: a) 3 images from 
principal component analysis (PC1, PC2, PC3); b) one image 
from NDVI computation using the NIR-R channels and c) one 
saturation image (S) obtained by converting the NIR-R-G 
channels in the IHS (Intensity, Hue, Saturation) colour space. 
The separability of the target classes was analyzed through use 
of plots by mean and standard deviation for each class and 
channel and divergence matrix analysis of all possible 
combinations of the three CIR channels and the additional 
channels, mentioned above. The analysis showed that: 
• G and PC2 have high correlation with other bands 
• NIR-R-PC1 is the best combination based on the plot 

analysis 
• NIR band shows good separability based on the divergence 

analysis 
• PC1-NDVI-S combination shows best separability over 

three-band combinations based on the divergence analysis. 
 
Therefore, the combination NIR-R-PC1-NDVI -S was selected 
for classification. The maximum likelihood classification 
method was used. As expected from their low values in the 
divergence matrix, grass and trees, airport buildings and 
residential houses, airport corridors and bare ground, airport 
buildings and bare ground could not be separated. Using the 
height information from nDSM, airport ground and bare ground 
and roads were fused into “ground” and airport buildings with 
residential houses into “buildings”, while trees and grass, as 
well as buildings and ground could be separated. The final 
classification is shown in Figure 2. 84% of the building class is 
correctly classified, while All of 109 buildings have been 
detected but not fully, the omission error is  9% . Aircrafts and 
vehicles are again mixed with buildings.  
 

   
Figure 2. Building detection result from method 2. (Left: airport 
buildings, Right: residential area). 
 
4.3 Building detection using density of raw Lidar DTM and 
NDVI (Method 3) 

Buildings and other objects, like high or dense trees, vehicles, 
aircrafts, etc. are characterized by null or very low density in 
the DTM point cloud. Using the vegetation class from NDVI 
channel as a mask, the areas covered by trees are eliminated, 
while small objects (aircrafts, vehicles) are eliminated by 
deleting them, if their area is smaller than 25m2. Thus, only 
buildings remain (Figure 3). 85% of building class pixels are 
correctly classified, while 108 of 109 buildings have been 
detected but not fully extracted, the omission error is 8% . 
 

    
Figure 3. Building detection result from method 3. (Left: airport 
buildings, Right: residential area). 
 
4.4 Building and tree detection from Lidar data (Method 4) 

As mentioned above, in the raw DSM data the point density is 
generally much higher at trees than at open terrain or buildings. 
On the other hand, tree areas have low horizontal point density 
in the raw DTM data. We start from regions that are voids or 
have low density in the raw DTM (see Method 3). These 
regions represent mainly buildings and trees and are used as 
mask to select the raw DSM points for further analysis. In the 
next step, we used a search window over the raw Lidar DSM 
data with a size of 5 m x 5 m. Neighboring windows have an 
overlap of 50%. The window size has a relation with the 
number of points in the window and the number of the points in 
the search window affects the quality of the detection result. 
The method uses all points in the window and labels them as 
tree if all parameters below have been met. The size of 25m2 

has been agreed to be enough to extract one single tree. A 
bigger size may result in wrong detection especially in areas 
where the buildings are neighboring with single trees. On the 
other hand, the data has low point density: 1 pt / 2 m2, that 
means about 13 pts / 25 m2. A smaller size will contain less 
points and this may not be enough for the detection.  
 
The points in each search window are projected onto the xz and 
yz planes and divided for each projection in eight equal sub-
regions using xmin, xmid, xmax, zmin zmid1 zmid2 zmid3 zmax as 
boundary  values of sub-regions, with xmid = xmin + 2.5m , xmax 
= xmid + 2.5m, zmid1=zmin+(zmax-zmin)/4, zmid2 =zmin+2*(zmax-
zmin)/4, zmid3=zmin+3*(zmax-zmin)/4 and similarly for the yz 
projection. The density in the eight sub-regions is computed. 
The first step is the detection of trees and the second the 
subtraction of tree points from all off-terrain points. The trees 
have been extracted by four different parameters. The 
parameters have been calculated using tree-masked areas of the 
raw Lidar DSM data. The tree mask has been generated by 
Method 2. Then, the calculated parameters (the average of all 
search windows) have been applied to the raw Lidar DSM data 
for detection of trees.  
 
The first parameter (s) is similarity of surface normal vectors. 
We assume that the tree points would not fit to a plane. With 
selection of three random points in the search window, the 
surface normal vectors have been calculated n (number of 
points in search window) times. Then, all calculated vectors 
have been compared among each other. In case of similar value 
of compared vectors, the similarity value was increased by 
adding 1. In the tree masked points, the parameter (s) has been 
calculated as smaller than 2. The second parameter (vd) is the 
number of the eight sub-regions which contain at least one 
point. The trees have high Lidar point density vertically. Thus, 
at trees more sub-regions contain Lidar points. Using the tree 
mask, we have observed that at least 5 out of the 8 sub-regions 
contain points. Thus, the parameter (vd) has been selected as 
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vd>4. The third parameter (z) is the tree height. Using the tree 
mask from multispectral classification, we calculated the 
minimum tree height as 3m. The fourth parameter (d) is the 
point density. The minimum point density has been calculated 
for the tree masked areas as 20points/ 25m2. By applying these 
four parameters to the raw DSM Lidar data, the tree points have 
been extracted and eliminated from all off-terrain points to 
extract the buildings. The workflow can be seen in Figure 4. 
 

 
Figure 4. Workflow of detection of buildings in method 4  
 
The density of point cloud directly affects the quality of the 
result. In addition, some tree areas could not be extracted 
because of the low point density of the Lidar data. The accuracy 
analysis shows that 84% of buildings area are correctly 
extracted, while 100 of 109 buildings have been detected but 
not fully extracted, the omission error is 17% .(Figure 5). 
 

   
Figure 5. Building detection result from method 4. (Left: airport 
buildings, Right: residential area). 
 

5. ANALYSIS OF RESULTS 

Each method shows similar performance with differences in 
completeness. The reasons of the failures for correctness and 
completeness of each method can be seen in Table 2. The 
improvement of the results is performed by taking into account 
the advantages and disadvantages of the methods.  

Table 2. The reasons of the failures regarding correctness and 
completeness for each method (M: Method). 
 
Regarding completeness, the reference data has been generated 
using aerial images, and some buildings are in construction 
process. Reference data has been provided from Unique 
Company and they have produced it using aerial images. But, in 
the construction areas, these buildings were measured as fully 
completed, although they were only partly constructed in 
reality. This increases the omission error especially for the 
results of the methods 1 and 2 which use aerial images. On the 
other hand, due to the temporal difference between the 
reference vector and Lidar data, the completeness of Lidar-
based methods (methods 3 and 4) has also been negatively 
affected.   
 
5.1. Combination of the methods 
 
The results from each method have been combined according to 
their failures for different types of objects. Intersection of all 
methods gives the best correctness, while the union of the 
methods gives the best completeness. The combination of the 
results has been performed for achieving the best correctness 
with the best completeness.  
 
(1∩2): While method 2 does not include the errors resulted by 
the shadow on vegetation, the intersection of these two methods 
eliminates the problem of shadow on-vegetation (in Figure 12, 
R1). The correctness of extracted buildings from this 
combination is 86%, and the omission error is 12%.  
 
(1∩2) ∩4: This combination eliminates the airplane objects 
from the detection result (Figure 6). Consequently, another 
advantage of this combination is that it reduces the omission 
errors which arise from the construction process on some 
buildings, i.e. multitemporal differences. The correctness of 
extracted buildings from this result is 96%, and the omission 
error is 20% (in Figure 12, R2).    
 

  Correctness Failure Reasons Completeness Failure 
Reasons 

M1 
Airplanes/Other moving objects 
/shadow on 
vegetation/construction process 

Vegetation on roofs, lack of 
some parts of buildings 
which are being constructed. 

M2 Airplanes/Other moving 
objects/construction process 

Vegetation on roofs, shadow 
on roofs, lack of some parts 
of buildings being 
constructed. 

M3 
Moving objects (esp. car series 
in parking lots)/ other man-
made structures (highways etc.) 

Vegetation on roofs, 
temporal difference with 
reference data  

M4 Tree groups which could not be 
extracted and eliminated 

Non-detection of small 
buildings (problem related  
to low point density),  
detection of walls as 
vegetation,  temporal 
difference with reference 
data  

Tree + building points

DTM 
Raw  

Horizontal density analysis 
on DTM Raw 

•Similarity of surface 
normal vectors (s<2) 
•Vertical density vd>4 
•Point density d≥20 
•Minimum height z ≥3 

Tree points 
Building 
points 

 DSM 
Raw 
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Figure 6. Left: Airplanes which were detected as buildings in 
(1∩2), Right: Elimination of airplanes with (1∩2) ∩4. 
 
((1∩2) ∩4) U 3: Shadow regions on buildings are replaced with 
building regions and by this combination (Figure 7). Since 
method 3 brings the buildings which could not be detected well 
by method 4, and method 3 is not influenced by shadow, this 
combination provides better completeness (in Figure 12, R3). 
 

    
Figure 7. Left: buildings without the regions which covered by 
shadow in ((1∩2) ∩4), Right: more complete roofs with ((1∩2) 
∩4) U 3. 
 
After the union process with the results of the Method-3, the 
vegetation on the roof tops is still a problem. Intersection of the 
nDSM and the NDVI algorithms provides the tree and 
vegetation regions on the roof tops. Intersection of the extracted 
vegetated regions with building polygons of the Method-4 
results in the roof regions which contain vegetation (Figure 8). 
 

 
Figure 8. Roof regions which contain vegetation. 
 
After adding the roof regions which contain vegetation into the 
detection result (in Figure 12, R4), the correctness and 
completeness values are 85% and 7%. As mentioned before, 
since method 2 have detected all buildings although not fully, 
the final building polygons should overlap the results from 
method 2. If the building polygons of result (R4) do not overlap 
with the results of method 2, they are eliminated. The 
correctness of the results is improved to 91% and the omission 
is 7% (Figure 12, R5). 
  
5.2. Using edge information for improvement of correctness 
 
Image data provide edge information, and this can be used to 
find the precise outlines of the buildings. Firstly, the Canny 
edge detector (Canny, 1986) has been applied on the 
orthoimages. The edges have been split into straight lines using 
corner points which were detected by corner detection (Harris 
and Stephens, 1988). This has been performed using the 
Gandalf image processing library (Gandalf, 2009). The straight 
lines which are smaller than 1 m. have been considered as noise 

and they have been deleted. The straight lines which may 
belong to building outlines have been selected using the outline 
of the detection result (which comes from the combination of 
methods) and a 2m buffer zone (1m inside, 1 m outside of the 
building outline). If the straight lines are neighbours in the 
buffer zone, the longest straight line has been selected. There is 
an exception for this neighboring criterion: the start or end point 
of a straight line should not be the closest point to the 
neighbouring line. With this exception, we avoid the 
elimination of lines, which are almost collinear (Figure 9). 
  

  
Figure 9. Left: the straight lines which may belong to the 
building outline (yellow) and Right: long lines (red). 
 
After selection of the straight lines, they have been converted to 
closed polygons. For the conversion to polygons, a sorting of 
the lines in clock-wise direction is used. To perform sorting, the 
travelling salesman convex hull algorithm (Deineko et al., 
1992) has been applied.  After closing the polygons, we 
separate the lines into those that were detected from the images 
(red) and the ones added by this algorithm (blue) (see Figure 
10). The red straight lines, which are shorter than 10 m. and 
form an acute angle (between 1 and 80 degrees), are eliminated 
(Figure 10), as well as all blue lines. 

 
Figure 10. Line elimination procedure when the line length is 
shorter than 10 meters and has acute angle with its 
neighbouring lines (red: eliminated lines, blue: lines added by 
the travelling salesman algorithm, yellow: acute angle). 
 
If two red lines form an acute angle and are shorter than 10 m., 
then both lines are eliminated. After this elimination, the 
travelling salesman convex hull algorithm has been applied 
again using the non-eliminated red lines and generated the 
refined building polygons (Figure 11).  
 

     
Figure 11. Final building polygons (yellow)., and reference data 
(red). 
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After this process, the correctness has been improved to 94% 
with remaining 7% omission error (Figure 12, R6). However, it 
has not been applied on all 109 buildings of this test yet, due to 
time restrictions, while it has shortcomings, as the travelling 
salesman algorithm does not use any input data information for 
forming closed polygons. 
 
5.3 Final results 
 
The rule-based system for the combination of methods can be 
seen in Figure 12.  
 

 
Figure 12. Combination of the methods. R: result from 
combination, M: Method.   
 
Table 3 gives a summary of the correctness and omission 
percentages of the various detection methods.  

 
Table 3. Summary of the correctness and omission percentages. 
 

6. CONCLUSIONS 

In this paper, different methods for object detection (mainly 
buildings) in Lidar data and aerial images have been presented. 
In each method, the basic idea was to get first preliminary 
results and improve them later using the results of the other 
methods. The methods have been tested on a dataset located at 
Zurich Airport, Switzerland, containing RGB and CIR, Lidar 
DTM and DSM point clouds and regular grids and building 
vector data for accuracy assessment. The results from each 
method have been combined according to their error 

characteristics. Edges have been used for further improvement 
of the detected building outlines. Finally, the correctness of 
detection has been 94% with remaining 7% omission error that 
mostly comes from construction process on airport buildings. 
Future work will focus on the improvement of use of edges, 
using the Lidar DSM to eliminate lines which don’t belong to 
buildings and 3D building roof modeling. 
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