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ABSTRACT: 
 
The update of databases – in particular 2D building databases – has become a topical issue, especially in the developed countries 
where such databases have been completed during the last decade. The main issue here concerns the long and costly change 
detection step, which might be automated by using recently acquired sensor data. The current deficits in automation and the lack of 
expertise in the domain have driven the EuroSDR to launch a test comparing different change detection approaches, representative of 
the current state-of-the-art. The main goal of this paper is to present the test bed of this comparison and the results that have been 
obtained for three different contexts (aerial imagery, satellite imagery, and LIDAR). In addition, we give the overall findings that 
emerged from our experiences and some promising directions to follow for building an optimal operative system in the future. 
 
 

1. INTRODUCTION 

The production of 2D topographic databases has been 
completed in many industrialised countries. Presently, most 
efforts in the National Mapping and Cadastral Agencies 
(NMCAs) are devoted to the update of such databases. As the 
update process is generally carried out manually by visual 
inspection of orthophotos, it is time-consuming and expensive. 
As a consequence, its automation is of high practical interest for 
the NMCAs. The update procedure can be split into two steps: 
change detection, in which the outdated database is compared 
to recently collected sensor data in order to detect changes, and 
vectorization, i.e. the digitization of the correct geometry of the 
changed objects. Given the state-of-the-art in automatic object 
detection (Mayer, 2008), only the automation of the change 
detection step seems to be possible at this time. The key idea is 
to focus the operator’s attention on the areas that may have 
changed. Work is saved because the operator needs not inspect 
areas classified as unchanged by the automatic procedure.  
 
The current deficits in automation and the lack of expertise 
within the NMCAs have driven the EuroSDR (European Spatial 
Data Research - http://www.eurosdr.net) to lauch a project 
about change detection. It also aims at evaluating the feasibility 
of semi-automatically detecting changes in a 2D building vector 
database from optical imagery or LIDAR. Three subtopics are 
investigated in detail, firstly the impact of methodology; 
secondly, the impact of the type and spatial resolution of input 
data; lastly, the impact of the complexity of the scene in terms 
of interfering objects such as roads. The methodology consists 
in comparing four different algorithms representative for the 
current state-of-the-art in the field of change detection. First 
results, achieved for the cases where only aerial and satellite 
images are used, were presented in (Champion et al., 2008). The 
results obtained there showed the limitations of change 
detection methods, especially in relation to the quality of input 

data. The main goal of this paper is to present the final results of 
the project, including a LIDAR dataset, and to give a detailed 
evaluation of the outcomes delivered by the approaches 
compared here. 
 
After describing the datasets and the evaluation procedure 
(Section 2), the methods compared in the test are concisely 
introduced (Section 3). In Section 4, a thorough evaluation is 
carried out, including an analysis of the performance of change 
detection with respect to the update status of the buildings and 
the building size. The weak and strong points are then identified 
both for the datasets and the methodologies, and they used to 
give overall findings and recommendations for building an 
optimal operative system for change detection in the future. 
 
 

2. INPUT DATA AND TEST SET-UP 

Three test areas are used for the comparison: Marseille (France), 
Toulouse (France), and Lyngby (Denmark). The area covered 
by the test sites is 0.9 x 0.4 km2 in Marseille, 1.1 x 1.1 km2 in 
Toulouse, and 2.0 x 2.0 km2 in Lingby. The test areas differ 
considerably regarding topography, land use, urban 
configuration and roofing material. The terrain is hilly in 
Marseille and Toulouse and relatively flat in Lyngby. Marseille 
features a densely built-up area consisting of small buildings of 
variable height, all connected to each other and mostly covered 
with red tile. Toulouse and Lyngby feature a suburban area, 
mostly composed of detached buildings and characterised by a 
large variety of roofing materials such as slate, gravel, or 
concrete. Colour Infrared (CIR) orthophotos and Digital 
Surface Model (DSMs) are available for all test areas. In 
Marseille and Toulouse an image matching algorithm (Pierrot-
Deseilligny and Paparoditis, 2006) was used to derive the DSM 
from input images. In Marseille, these images are multiple aerial 
images having a forward and side overlap of 60%. The Ground 
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Sample Distance (GSD) of all input data is 0.2 m. In Toulouse, 
these images are Pléiades tri-stereoscopic satellite images. The 
GSD of all input data is 0.5 m. Lastly, the DSM used in Lyngby 
was derived from first pulse LIDAR data, and the digital 
orthophoto was generated from a scanned aerial image, both 
with a GSD of 1 m. For the three test areas, up-to-date vector 
databases representing the 2D outlines of buildings were 
available. They served as a reference in the test. In order to 
achieve an objective evaluation, the outdated databases were 
simulated by manually adding or removing buildings Thus, 107 
changes (out of 1300 buildings in the scene) were simulated in 
Marseille (89 new and 18 demolished buildings); 40 (out of 
200) in Toulouse (23 new, 17 demolished) and 50 (out of 500) 
in Lyngby (29 new, 21 demolished). The outdated databases 
were converted to binary building masks having the same GSD 
as the input data and then distributed to the participants along 
with input data. 
 
Each group participating in the test was asked to deliver a 
change map in which each building of the vector database is 
labelled either as unchanged, demolished or new. Because the 
methods have been developed in different contexts, their 
designs noticeably differ, for instance regarding the definitions 
of the classes considered in the final change map – e.g. four 
classes for (Champion, 2007) and six classes for (Rottensteiner, 
2008) – and the format of the input data – e.g. vector for 
(Champion, 2007) and raster for (Matikainen et al., 2007). As a 
work-around, it was decided to use the building label image 
representing the updated version of the building map (cf. 
Section 3) for the evaluation of those methods that do not 
deliver the required change map in the way described above. 
Only the method by (Champion, 2007) delivered such a change 
map, which was also directly used in the evaluation.  
 
In order to evaluate the results achieved by the four algorithms, 
they are compared to the reference database, and the 
completeness and the correctness of the results (Heipke et al., 
1997) are derived as quality measures: 
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In Equation 1, TP, FP, and FN are the numbers of True 
Positives, False Positives, and False Negatives, respectively. 
They refer to the update status of the vector objects in the 
automatically-generated change map, compared to their real 
update status given by the reference. In the case where the final 
change map is directly used for the evaluation, i.e. with 
(Champion, 2007), a TP is an object of the database reported as 
changed (demolished or new) that is actually changed in the 
reference. A FP is an object reported as changed by the 
algorithm that has not changed in the reference. A FN is an 
object that was reported as unchanged by the algorithm, but is 
changed in the reference. In the three other cases, where a 
building label image representing the updated map is used for 
the evaluation, the rules for defining an entity as a TP, a FP, or 
a FN had to be adapted. In these cases, any unchanged building 
in the reference database is considered a TN if a predefined 
percentage (Th) of its area is covered with buildings in the new 
label image. Otherwise, it is considered a FP, because the 
absence of any correspondence in the new label image indicates 
a change. A demolished building in the reference database is 
considered a TP if the percentage of its area covered by any 

building in the new label image is smaller than Th. Otherwise, it 
is considered to be a FN, because the fact that it corresponds to 
buildings in the new label image indicates that the change has 
remained undetected. A new building in the reference is 
considered a TP if the cover percentage is greater than Th. 
Otherwise, it is considered a FN. The remaining areas in the 
new label image that do not match any of the previous cases 
correspond to objects wrongly alerted as new by the algorithm 
and thus constitute FPs. 
 
The quality measures are presented in the evaluation on a per-
building basis (rather than on a per-pixel basis), as the 
effectiveness of a change detection approach is limited by the 
number of changed buildings that is missed or over-detected 
and not by the area covered by these buildings. As explained in 
the Section 4, these quality measures are also computed 
separately for each change class. 
 
 

3. CHANGE DETECTION APPROACHES 

The four methods tested in this study are concisely presented, 
ordered alphabetically according to the corresponding author. 
 
Champion, 2007: The input of the method is given by a DSM, 
CIR orthophotos and the outdated vector database. Optionally, 
the original multiple images can also be used. The outcome of 
the method is a modified version of the input vector database, in 
which demolished and unchanged buildings are labelled and 
vector objects assumed to be new are created. The method starts 
with the verification of the database, where geometric 
primitives extracted from the DSM (2D contours, i.e. height 
discontinuities) and, optionally, from multiple images (3D 
segments), are collected for each object of the existing database 
and matched with primitives derived from it. A similarity score 
is then computed for each object and used to achieve a final 
decision about acceptance (unchanged) and rejection (changed 
or demolished). The second processing stage, i.e. the detection 
of new buildings, is based on a Digital Terrain Model (DTM) 
automatically derived from the DSM (Champion and Boldo, 
2006), a normalised DSM (nDSM), defined as the difference 
between the DSM and the DTM, and an above-ground mask, 
processed from the nDSM by thresholding. Appropriate 
morphological tools are then used to compare this latter mask to 
the initial building mask derived from the vector database and a 
vegetation mask computed from CIR orthophotos and an image 
corresponding to the Normalised Difference Vegetation Index 
(NDVI), which results in the extraction of new buildings. 
 
Matikainen et al., 2007: The building detection method of the 
Finnish Geodetic Institute (FGI) was originally developed to 
use laser scanning data as primary data. In this study, it is 
directly applied to the input DSM and CIR orthophotos. A 
raster version of the database (for a part of the study area) is 
used for training. The method includes three main steps. It starts 
with segmentation and a two-step classification of input data 
into ground and above-ground, based on a point-based analyisis 
followed by an object-based analysis and using the Terrasolid1 
and Definiens2 software systems. This is followed by the 
definition of training segments for buildings and trees and the 
classification of the above-ground segments into buildings and 
trees. This classification is based on predefined attributes and a 
classification tree (Breiman et al., 1984). A large number of 

                                                                 
1 http://www.terrasolid.fi/. Last visited: 30 June 2009. 
2 http://www.definiens.com/. Last visited: 30 June 2009. 
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attributes can be used, e.g. mean values, standard deviations, 
texture and shape of the segments. The method automatically 
selects the most useful ones for classification. In the Marseille 
area, the criteria selected in the tree included only the NDVI. In 
the Lyngby area, NDVI and a shape attribute were selected. The 
third stage consists of a post-processing step that analyses the 
size and neighborhood of building segments and corrects their 
class accordingly. Building detection results in a building label 
image which is used for the comparison in our test. 
 
Olsen and Knudsen, 2005: The input of the method is given by 
a DSM, CIR orthophotos and a raster version of the outdated 
database. The method starts with the generation of a DTM, 
estimated from the DSM through appropriate morphological 
procedures, a nDSM and an Object Above Terrain (OAT) mask. 
This is followed by a two-step classification that aims at 
distinguishing building from no building objects. This 
classification is based on criteria that best characterise buildings 
(especially in terms of size and form) and results in the building 
label image that is used for the evaluation in this study. The last 
stage is the actual change detection step, in which the 
classification outcomes is compared to the initial database in 
order to extract a preliminary set of potential changes (on a per-
pixel basis) that is then post-processed in order to keep only the 
objects that are assumed to have changed. 
 
Rottensteiner, 2008: This method requires a DSM as the 
minimum input. Additionally it can use an NDVI image, height 
differences between the first and the last laser pulse, and the 
existing database, available either in raster or vector format. The 
workflow of the method starts with the generation of a coarse 
DTM by hierarchical morphological filtering, which is used to 
obtain a nDSM. Along with the other input data, the nDSM is 
used in a Dempster-Shafer fusion process carried out on a per-
pixel basis to distinguish four object classes: buildings, trees, 
grass land, and bare soil. Connected components of building 
pixels are then grouped to constitute initial building regions and 
a second Dempster-Shafer fusion process is performed on a per-
region basis to eliminate remaining trees. Finally, there is the 
actual change detection step, in which the detected buildings are 
compared to the existing map, which produces a change map 
that describes the change status of buildings, both on a per-pixel 
and a per-building level. Additionally, a label image 
corresponding to the new state of the data base is generated. In 
spite of the thematic accuracy of the change map produced by 
this method, it was decided to use this building label image for 
the evaluation in this test. 
 
 

4. EVALUATION AND DISCUSSION 

In our opinion, the effectiveness of a change detection system is 
related to its capacity to guide the operator’s attention only to 
objects that have changed so that unchanged buildings do not 
need to be investigated unnecessarily. These considerations 
result in the evaluation criteria used in this paper to analyze the 
change detection performance. On the one hand, to support the 
generation of a map that is really up-to-date, i.e. to be effective 
qualitatively, the completeness of the system for buildings 
classified as demolished and the correctness for unchanged 
buildings are required to be high. The completeness of new 
buildings also has to be high if the operator is assumed not to 
look for any new building except for those which are suggested 
by the system. (Note that this also holds true for modified 
buildings, a case not considered in this study because the 
simulated changes only consisted in new and demolished 

buildings). On the other hand, to reduce the amount of manual 
work required by the operator i.e. to be effective economically, 
the correctness of the changes highlighted by the system and the 
completeness of unchanged buildings must be high. However, if 
a low completeness of unchanged buildings implies that many 
buildings are checked uselessly, this is not necessarily critical 
for the application itself, because the updated database is still 
correct. Moreover, the economical efficiency that could then 
appear to be low has to be put into perspective according to the 
size of the building database to update. For instance, if a change 
detection system reports 60% of a national database as changed, 
we cannot necessarily conclude about the inefficiency of this 
system because it still means that 40% of the buildings need not 
be checked, which amounts to millions of buildings. 
 
4.1 Overall Analysis  

Figure 1 presents the evaluation of the results achieved by the 
methods that processed the Lingby test area (LIDAR context). 
Table 1 gives the per-building completeness and correctness, 
obtained for each test area and each approach. The Th parameter 
(cf. Section 2.) was set to 0.20 for the Marseille and Lyngby test 
areas and 0.26 for the Toulouse test area. In Table 1, the values 
in bold indicate for which methods the best results are achieved. 
The completeness of detected changes is high for all the 
methods, especially in the aerial (Marseille) and LIDAR 
(Lyngby) contexts. By contrast, the correctness observed in our 
experiments is relatively poor, which indicates that there are 
many FP changes reported by the systems. In this respect, only 
the results obtained in the Lyngby test area with (Rottensteiner, 
2008) seem to achieve a relatively acceptable standard. 
 
 

Approach Completeness Correctness  
Marseille (Imagery – Aerial context) 

(Champion, 2007) 94.1% 45.1% 
(Matikainen et al., 2007)  98.8% 54.3% 
(Rottensteiner, 2008) 95.1% 59.1% 

Toulouse (Imagery – Satellite context) 
(Champion, 2007)  78.9% 54.5% 
(Rottensteiner, 2008) 84.2% 47.1% 

Lyngby (LIDAR context) 
(Matikainen et al., 2007) 94.3% 48.8% 
(Olsen and Knudsen, 2005) 95.7% 53.6% 
(Rottensteiner, 2008)  91.4% 76.1% 

 

Table 1. Completeness and Correctness achieved by the four 
algorithms for the three datasets.   

 
 

To take the analysis further, we also determined the quality 
measures separately for unchanged, demolished and new 
buildings. They are presented in Tables 2 (Marseille), 3 
(Lyngby) and 4 (Toulouse), respectively. Focusing on the 
Marseille test area first, it can be seen in Table 2 that all 
algorithms are effective in detecting the actual changes. Thus, 
(Matikainen et al., 2007) and (Rottensteiner, 2008) achieve a 
completeness of 100% for demolished buildings. The 
correctness for unchanged buildings is also 100%. The few 
(11.1%) demolished buildings missed by (Champion, 2007) are 
caused by extracted primitives that are erroneously used in the 
verification procedure. All three methods also feature a high 
completeness for new buildings. Here, (Matikainen et al., 2007) 
performs best, with only 2.4% of the new buildings missed. The 
main limitation of this context appears to be the poor 
correctness rate achieved for demolished buildings, which  
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Figure 1. Evaluation of change detection in Lyngby, for (a), (b) and (c) Green: TP; red: FN; orange: FP; blue: TN. 
  

 
 

 Unchanged Demolished New 

(Champion, 2007) 

Completeness [%] 93.5 88.9 95.2 
Correctness [%] 99.8 18.4 63.5 
(Matikainen et al., 2007) 
Completeness [%] 94.7 100 97.6 
Correctness [%] 100 23.7 75.6 
(Rottensteiner, 2008)  
Completeness [%] 94.1 100 94.0 
Correctness [%] 100 22.0 96.3 

 

Table 2. Completeness and correctness for the Marseille test 
area, depending on the update status. 

 

 Unchanged Demolished New 
(Matikainen et al., 2007) 
Completeness [%] 81.7 100 91.8 
Correctness [%] 100 22.6 100 
(Olsen and Knudsen, 2005) 
Completeness [%] 87.8 100 93.9 
Correctness [%] 100 30.4 82.1 
(Rottensteiner, 2008)  
Completeness [%] 95.9 100 87.8 
Correctness [%] 100 56.8 91.8 

 

Table 3. Completeness and correctness for the Lyngby test 
area, depending on the update status. 

 

 Unchanged Demolished New 
(Champion, 2007)  
Completeness [%] 82.8 100 75.0 
Correctness [%] 100 42.9 65.2 
(Rottensteiner, 2008) 
Completeness [%] 80.2 86.7 82.6 
Correctness [%] 97.9 36.1 59.4 

 

Table 4. Completeness and correctness for the Toulouse test 
area, depending on the update status. 

 
ranges from 18.4% with (Champion, 2007) to 23.7% with 
(Matikainen et al., 2007). The situation is a bit better for new 
buildings, with a correctness rate larger than 63% for all the 
methods and even rising to 96.8% with (Rottensteiner, 2008). In 
spite of such limitations, all the methods presented here are very 
efficient in classifying unchanged buildings, for which the 
completeness rates are higher than 93%, which indicates that a 
considerable amount of manual work is saved and also 

demonstrates the economical efficiency of these approaches in 
the context of aerial imagery. 
 
Analyzing Table 3 leads to similar conclusions for the LIDAR 
context. The correctness rate for the reported demolished 
buildings are again poor and only (Rottensteiner, 2008) 
achieves less than 50% false positives. However, the methods 
are very effective in detecting demolished buildings and achieve 
a completeness rate of 100% for this class. Compared to the 
outcomes obtained in Marseille, the main difference concerns 
the new buildings, which appear to be more difficult to extract. 
Thus, between 6.1% (Olsen and Knudsen, 2006) and 12.2% 
(Rottensteiner, 2008) of the new buildings are missed. If these 
percentages of missed new buildings can be tolerated, our tests 
indicate that LIDAR offers a high economical effectiveness and 
thus may be a viable basis for a future application. If these error 
rates for new buildings are unacceptable, manual post-process is 
required to find the missed buildings, at the expense of a lower 
economical efficiency.  
 
The situation is not quite as good with the satellite context 
(Table 4). The method by (Champion, 2007) is very effective in 
detecting demolished buildings (100%), but this is achieved at 
the expense of a low correctness rate (42.9%). The same 
analysis can be carried out with (Rottensteiner, 2008), but this 
method even misses quite a few demolished buildings. It has to 
be noted that, even though the completeness rates for 
unchanged buildings achieved by both methods are relatively 
low compared to those obtained in the Marseille and Lyngby 
test areas, they also indicate that even under challenging 
circumstances, 80% of unchanged buildings need not be 
investigated by an operator. The main limitation appears to be 
the detection of new buildings. As illustrated for an example in 
Figures 3e and 3f, 17.4% and 25% of new buildings are missed 
with (Rottensteiner, 2008) and (Champion, 2007) respectively, 
which is clearly not sufficient to provide a full update of the 
database and requires a manual intervention in order to find the 
remaining new buildings.   
 
In order to obtain deeper insights into the reasons for failure, in 
the subsequent sections we will focus our analysis on some 
factors that affect the change detection performance. 
 
4.2 Impact of the Size of a Change  

To analyse the performance of change detection as a function of 
the change size, we compute the completeness and correctness 
rates depending on this factor. For that purpose, new and 
demolished buildings are placed into bins representing classes  

 
(a) Matikainen et al. (2007) 

 
(b) Rottensteiner (2008) 

 
(c) Olsen and Knudsen (2005) 
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Figure 2. Completeness (diamonds) and correctness (squares) of the detection results as a function of the building size [m²]. 
 

of 20 m² in width. Note that the buildings from all the test areas 
for which results were submitted are combined in order to have 
a significant number of changes for each bin. The graphs for 
(Champion, 2007) and (Rottensteiner, 2008) also contain the 
results from the Toulouse area. The completeness and 
correctness rates, computed independently for each bin, are 
presented in Figure 2 and demonstrate the close relation 
between the quality of change detection and the change size. 
This is true for the completeness with (Champion, 2007) and 
(Rottensteiner, 2008), but it is even more obvious for the 
correctness in all three graphs. Correctness is particularly poor 
for buildings smaller than 100 m². Looking at these graphs it 
becomes obvious that the two major problems observed in 
Section 4.1, namely the potentially critical rate of missed new 
buildings, which limits the qualitative effectiveness of change 
detection, and the poor correctness for demolished buildings are 
caused by the same underlying phenomenon i.e. the fact that 
small objects cannot be detected reliably by an automated 
procedure. Attentive readers may also notice that a very low 
correctness occurs with (Matikainen et al., 2007) with buildings 
covering about 235m². It is caused by large ground areas in the 
Marseille test area that were mistakenly classified as above-
ground objects and then wrongly alerted as new buildings.  
 
4.3 Impact of the Quality of the Input Data  

Our experiments show that many FP cases are related to the 
quality of the input DSM. The correlation DSMs used in the 
imagery context contain a lot of erroneous height values, 
especially in shadow areas (where stereo-matching algorithms 
are known to have problems) that are almost systematically 
alerted as new buildings, as depicted in Figures 3a, 3b, 3c, and 
3d. These errors contribute to lower the correctness rate, 
especially for new buildings, which drops to 63.5% with 
(Champion, 2007) in Marseille. The high rate of 96.3% 
obtained here with (Rottensteiner, 2008) may be related to the 
use of the initial description of the database as a priori 
information for producing and improving the building label 
image. In Toulouse, FP new buildings were also related to DSM 
errors, caused by repeating patterns. Another problem concerns 
the quantisation effects i.e. the fact that the numerical resolution 
of height values in the correlation DSM is restricted to the 
GSD, which for instance prevents the use of surface roughness 
as an input parameter for the Dempster-Shafer fusion process in 
(Rottensteiner, 2008) and ultimately contributes to lower the 
correctness rate for demolished buildings.  
 
Regarding the Lyngby test area, it was a problem that the 
original data were not available. Single points inside water areas 
were not eliminated from the data, but used in an interpolation 
process based on a triangulation of the LIDAR points, 
producing essentially meaningless data in these water areas that 
for example caused FP new cases with (Olsen and Knudsen, 

2005). The other problem was that first pulse (rather than last 
pulse) data were provided, which caused FPs in areas with 
dense vegetation, e.g. along rivers with (Rottensteiner, 2008). 
Combined with a relatively low resolution (1 m), these 
problems contribute to lower the correctness of the systems.  
 
4.4 Impact of Other Topographic Objects in the Scene  

In our experiments, some confusion occurs between buildings 
and other above-ground objects that are present in the scene and 
wrongly alerted as new buildings. Again, this contributes to 
lower the correctness achieved for new buildings. The methods 
deal with this problem, but currently they only focus on one 
class of above-ground objects that is to be separated from 
buildings, namely trees. In general, these trees are identified 
with indicators based on the NDVI and then eliminated, as 
shown in Section 3. Even though this strategy appears to be 
efficient, our experiments show that such confusions are not 
limited to vegetation but concern other objects that not 
considered in the approaches presented in this study. For 
instance, bridges or elevated roads are highlighted as FP new 
buildings in the Lyngby test area by (Rottensteiner, 2008) and 
(Olsen and Knudsen, 2005), as shown in Figures 3g and 3h. To 
limit the impact of these problems, two strategies could be 
considered in the future. The first one consists in developing 
more sophisticated methods that are capable of simultaneously 
extracting multiple object classes such as buildings, roads, and 
vegetation. Such methods would need to incorporate complex 
scene models that also consider the mutual interactions of the 
object classes in a scene. They could make use of recent 
developments in the field of Computer Vision that are related to 
the modelling context in image classification (Kumar and 
Hebert, 2006). The second strategy consists in using additional 
information on other objects, e.g. by incorporating an existing 
road database in the building change detection procedure. 
 
Additional Remark: Beyond the statistical aspects, our 
experiments show that the errors generated by the change 
detection approaches are often identical. Thus, the FP cases that 
occur in the Marseille test area because of the DSM 
inaccuracies (Section 4.3) are both present in the outcomes of 
(Matikainen et al., 2007) and (Champion, 2007), as illustrated 
in Figures 3a and 3b respectively. Some of other errors shared 
at least by two approaches are also illustrated in Figure 3. 
 
 

5. CONCLUSION 

Four building change detection approaches have been tested in 
three different contexts. If the satellite context appears to be the 
most challenging for the current state-of-the-art, the aerial 
context and the LIDAR context appear to be a viable basis for 
building an operative system in the future. Thus, the high  

 
(a) Champion, 2007 

 
(b) Matikainen et al., 2007 

 
(c) Rottensteiner, 2008 
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Figure 3. Evaluation Details (same colour code as Figure 1). FP new cases related to DSM errors (shadow areas), in Marseille 
streets (a)-(b) and Toulouse (c)-(d); (e)-(f) FN new cases (small changes); (g)-(h) FP new buildings related to bridges. 

 
completeness rates for demolished buildings and the high 
correctness for unchanged buildings that could be achieved in 
these contexts highlight the effectiveness of the presented 
approaches in verifying the existing objects in the databases. 
The main limitation in terms of qualitative efficiency concerns 
the relatively high number of FN new buildings – up to 12.1% 
in the Marseille test area with (Rottensteiner, 2008) – that are 
mostly related to the object change size. The economical 
efficiency of the presented approaches seems to be promising, 
with 80-90% of the existing buildings requiring no further 
attention by the operator. These buildings are reported to be 
unchanged, which saves a considerable amount of manual 
work. In terms of the economical efficiency, the main limitation 
is a high number of FP demolished buildings that have to be 
inspected unnecessarily. Again, this is mainly caused by 
problems in detecting small changes. 
 
Areas of improvement should concern input data and 
methodologies. Thus, the resolution of LIDAR data 
(1 point / m²) used in this test appeared to be critical for the 
change detection performance: using higher density LIDAR 
data (e.g. 5-10 points / m²) should improve the situation. As far 
as methodology is concerned, new primitives should be used in 
the algorithms, in particular 3D primitives (representing e.g. the 
3D roof planes or building outlines) that can now be reliably 
reconstructed with the 3D acquisition capabilities, offered by 
recent airborne/spaceborne sensors. Another concern should be 
the improvement of the scene models used in object detection 
such that they can deal with different object classes and their 
mutual interactions. By incorporating different object classes 
and considering context in the extraction process, several object 
classes could be detected simultaneously, and the extraction 
accuracy of all interacting objects could be improved.  
 
In this project, we learned how difficult it is to compare 
approaches of very different designs. To carry out a fair test, we 
chose to use the building label images and to limit the type of 
changes to demolished and new buildings. In addition, we chose 
to compare the building label images to the initial vector 
database, basing on a coverage rate featured by the parameter 
Th. Further investigations are necessary to study the actual 
impact of this parameter on the completeness and correctness 
rates. However, if we are aware of these drawbacks, we think 
that this scheme was sufficient to bring out some interesting 
findings. We also hope that our results – in conjunction with 

those of e.g. the ARMURS3 project – will be helpful to create a 
nucleus of interested people, both in academia and private 
sector, and to speed up the progress in the vector change 
detection field.  
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