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ABSTRACT:

We introduce a new unsupervised segmentation method adapted to describe façade shapes from a single calibrated street level image.
The image is first rectified thanks to its vanishing points to facilitate the extraction of façade main structures which are characterized
by a horizontal and vertical gradient accumulation which enhances the detection of repetitive structures. Our aim is to build a hierarchy
of rectangular regions bounded by the local maxima of the gradient accumulation. The algorithm recursively splits horizontally or
vertically the image into two parts by maximizing the total length of regular edges until the radiometric content of the region hypothesis
corresponds to a given model (planar and generalized cylinders). A regular edge is a segment of a main gradient direction that effectively
matches to a contour of the image. This segmentation could be an interesting tool for façade modelling and is in particular well suited
for façade texture compression.

1 INTRODUCTION

1.1 Context

Façade analysis (detection, understanding and reconstruction)
from street level imagery is currently a very active research do-
main in the photogrammetric computer vision field. Indeed, it
has many applications. Façade models can for instance be used
to increase the level of details of 3D city models generated from
aerial or satellite imagery. They are also useful for a compact
coding of façade image textures for streaming or for an embed-
ded system. The characterization of stable regions in façades is
also necessary for a robust indexation and image retrieval.

1.2 Related work

Existing façade extraction frameworks are frequently specialized
for a certain type of architectural style or a given texture appear-
ance. In a procedural way, operators often step in a pre-process
to split correctly the image in suitable regions. Studied images
indeed are assumed to be framed in such a way that they exactly
contain relevant information data such as windows on a clean wall
background.

Most building façade analysis techniques try to extract specific
shapes/objects from the façade: windows frame, etc. Most of
them are data driven, i.e. image features are first extracted and
then some models are matched with them to build object hypothe-
ses. Some other model-driven techniques try to find more com-
plex objects which are patterns or layouts of simple objects (e.g.
alignments in 1D or in 2D). Higher level techniques try to gener-
ate directly a hierarchy of complex objects composed of patterns
of simple objects usually with grammar-based approaches. Those
methods generally devote their strategy to a special architectural
style.

1.2.1 Single pattern detection Strategies to extract shape hy-
potheses abound in recent works. (C̆ech and S̆ára, 2007), for in-
stance, propose a segmentation based on a maximum a posteriori

labeling. They associate each image pixel with values linked with
some configuration rules. They extract a set of non-overlapping
windowpanes hypotheses, assumed to form axis-parallel rectan-
gles of relatively low variability in appearance. This restriction
does not take into account lighting variations. With a supervised
classification-based approach, (Ali et al., 2007) extracted win-
dows width an adaboost algorithm. In the same fashion, (Wenzel
and Förstner, 2008) minimize user interaction with a clustering
procedure based on appearance similarity.

Assuming the regularity of the façade, (Lee and Nevatia, 2004)
use a gradient profile projection to locate window edges coordi-
nates. They first locate valley between two extrema blocks of
each gradient accumulation profile and they roughly frame some
floors and windows columns. Edges are then adjusted on local
data information. Their results are relevant for façades whose
background does not contain any contours such as railings, bal-
conies or cornices.

1.2.2 1D or 2D grid structures detection (Korah and Ras-
mussen, 2007, Reznik and Mayer, 2007) use linear primitives to
generate rectangle hypotheses for windows. A Markov Random
Field (MRF) is then used to constrain the hypotheses on a 2D
regular grid. (Korah and Rasmussen, 2007) generate their rect-
angular hypotheses in a similar way as (Han and Zhu, 2005):
they project on image 3D planar rectangles. (Reznik and Mayer,
2007) learn windows outline from training data and use as hy-
potheses for window corners characteristic points.

1.2.3 Façade grammars A façade grammar describes the
spatial composition rules of complex objects (e.g. grid structure)
and/or simple objects to construct a façade. Approaches based
on grammars succeed in describing only façades corresponding
to the grammar. Nevertheless, to obtain a detailed description a
specific grammar is required per type of architecture (e.g. Haus-
manian in the case of Parisian architecture). The drawback is that
many grammars are necessary to describe the variety of building
architectures in a general framework.



For instance, to detect windows on simple buildings, (Han and
Zhu, 2005) integrates rules to produce patterns in image space. In
particular, this approach integrates a bottom-up detection of rect-
angles coupled with a top-down prediction hypotheses taken from
the grammar rules. A Bayesian framework validates the process.
(Alegre and Dellaert, 2004) look for rectangular regions with ho-
mogeneous aspect by computing radiometry variance. (Müller et
al., 2007) extract an irreducible region to summarize the façade
by periodicity in vertical and horizontal directions. Their results
are significant with façades that effectively contain regular win-
dow grid pattern or suitable perspective effects. (Ripperda, 2008)
fixes her grammar rules according to prior knowledge: she be-
forehand computes distribution of façade elements from a set of
façade images.

These approaches either use a too restrictive model dedicated to
simple façade layout, or are too specialized for a particular kind
of architecture. They thus would hardly deal with usual Parisian
façades such as Hausmanian buildings or other complex architec-
tures with balconies or decoration elements.

Our process works exclusively on a single calibrated street-level
image. Although we could have, we voluntarily did not introduce
additional information such as 3D imagery (point clouds, etc.)
because for some applications such as indexation, image retrieval
and localization, we could just have a single photo acquired by a
mobile phone.

2 OUR MODEL BASED SEGMENTATION STRATEGY

Most of the aforementioned approaches provide good results
for relatively simple single building. Only a few of them have
addressed very complex façade networks such as the ones en-
countered in European cities where the architectural diversity and
complexity is large. Our work is upstream from most of these
approaches: we do not try to extract semantic information but
we just propose a façade segmentation framework that could be
helpful for most of these approaches. This framework must firstly
separate a façade from its background and neighboring façades,
and then, identify intra-façade regions of specific elementary tex-
ture models. These regions must be robust to change in scale or
point of view.

Our strategy requires horizontal and vertical image contour align-
ments. We thus first need to rectify images in the façade plane:
vertical and horizontal directions in the real world respectively
become vertical and horizontal in the image. To do so, we ex-
tract vanishing points which provide an orthogonal basis in object
space useful to resample the image as required.

Regarding segmentation, the core of our approach relies on a re-
cursive split process and a model based analysis of each subdi-
vided regions. Indeed we do not intend to directly match a model
to the whole façade, but we build a tree of rectangular regions
by recursively confronting data with some basic models. If a re-
gion does not match with any of them, it is split again, and the
two sub-regions are analyzed as illustrated by the decision tree
on figure 1. Our models are based on simple radiometric criteria:
planes and generalized cylinders. Such objects are representative
of frequent façade elements like window panes, wall background
or cornices.

We start each process with the whole image region. We test if
its texture matches our planar model. If it does, then the process
stops: we have recognized a planar and radiometrically coherent
region in the image. Otherwise, we test if it matches our gen-
eralized cylinder model. In the same manner, the process stops
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Figure 1: Our algorithm recursively confronts data with models.
If region does not match with any proposed model, we split it.

on the cylinder model. Otherwise the region is not considered
as homogeneous (in the sense of our models) and it is split in
two sub-regions. The process recursively analyzes these two sub-
regions exactly as the same way as the large region. Thus, we
build a segmentation tree whose leaves are planar or generalized
cylinder models. The following sections explain each step of this
algorithm.

3 RECTIFICATION PROCESS

3.1 Extracting Vanishing Points

Our rectification process relies on vanishing point lines detected
by (Kalantari et al., 2008). They project relevant image segments
on the Gaussian sphere: each image segment is associated with
a point on the sphere. Their algorithm relies on the fact that
each circle of such a 3D-point distribution gathers points asso-
ciated with the same vanishing point in the image. Then they
estimate the best set of circles that contains the highest number
of points. The more representative circles are assumed to pro-
vide main façade directions: the vertical direction and several
horizontal ones. Figure 2 upper-right shows some detected edges
that support main vanishing points: segments associated with the
same direction are drawn in the same color.

3.2 Multi-planar Rectification Process

We rectify our image in each plane defined by a couple of one
of the horizontal vanishing points and the vertical one. We then
project the image onto the plane. Figure 2 bottom right shows a
rectification result. Figure 2 bottom left shows rectified edges on
the façade plane.

Calibration intrinsic parameters are supposed to be known. Rec-
tified image is resampled in grey levels, but such a restriction
already provides some interesting perspectives.
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Figure 2: The rectification process. upper left: original image
only; upper right: original image with segments that support main
vanishing points (green and blue ones are those for the main ver-
tical direction, yellow and white ones for the main horizontal di-
rection and red ones for an aberrant vanishing point); bottom left:
rectified image with rectified segments that support the two se-
lected directions; bottom right: rectified image only

4 MODEL MATCHING

Given a region of a rectified image, we try to match two geomet-
ric models with data in increasing complexity order: the planar
model M1, then the generalized cylinders one M2. This de-
cision tree indeed provides a good compromise between quality
and compression rate.

To match an image region with a model, we simply count local
radiometric differences as follows. Let Ik be the sub-image at
region Rk of a façade image I . Sub-image Ik is described by
model M when the deviation NM(Ik) is small enough and if
this model is the simplest one. Deviation NM(Ik) is defined by
the number of pixels whose radiometry differs too much from the
model. Radiometric medians provide some significative robust-
ness: the influence of parasite structures such as tree branches or
lighting posts, is significantly reduced. Figure 3 illustrates mod-
els we use.

4.1 Planar Model

A planar model is an image with an uniform radiometry. LetM1

be the planar model of a sub-image Ik. It is defined by equation 1.

Figure 3: Description of our radiometric 2D-models

An instance of a planar model is depicted on the lower-right cor-
ner of figure 3.

M1 : ∀p ∈ Rk, Ik(p) = median(Ik) + ε(p) (1)

where ε(p) is the difference between the image Ik and the model
M1 at the pixel p. If this difference is smaller than an arbi-
trary threshold, it is tolerated. It refers to the acquisition noise
or some texture defects. Otherwise, the deviation NM(Ik) is in-
cremented.

4.2 Generalized Cylinder Model

A generalized cylinder model is designed either in columns (Mc
2)

or in rows (Ml
2). The model in columns is composed of medi-

ans of columns and the cylinder model in rows is composed of
medians of rows. They are is defined by equation 2. Functions
medianx and mediany respectively return the median of the
column at x abscissa and the row at y ordinate. Figure 3 shows
an instance of each generalized cylinder model.

∀(x, y) ∈ Rk,
Mc

2 : Ik(x, y) = medianx(Ik(x, y)) + ε(x, y)
Ml

2 : Ik(x, y) = mediany(Ik(x, y)) + ε(x, y)
(2)

where ε(x, y) is the difference between the image Ik and the
model M2 at the pixel (x, y). In the same manner as planar
model, the deviation NM(Ik) is incremented when this differ-
ence is greater than an arbitrary threshold.

5 SPLIT PROCESS BY ENERGY MAXIMIZATION

Given a region of a rectified image that does not match with any
model, we try to split it by measuring the internal gradient distri-
bution energy.

5.1 Generating splitting hypotheses

We select split hypotheses with a technique close to (Lee and
Nevatia, 2004). We accumulate x-gradient absolute values by
column and y-gradient absolute values by row, where x-gradient
and y-gradients are related respectively to vertical and horizontal
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edges. We use convolution with a discrete first order derivative
operator. Local extrema of these accumulations are our split hy-
potheses. This reinforces low but repetitive contrasts. Figure 4
illustrates this process.

Figure 4: Upper right and bottom left images respectively are
x-gradient and y-gradient. Bottom right image presents accumu-
lation profiles: green profile for x-gradient and red one for y-
gradient. extrema of this profiles are our split hypotheses: red
lines in upper left image.

Such a rough set of hypotheses supplies initial interesting seg-
mentation. (Lee and Nevatia, 2004) base their window detection
on similar rough segmentation. They almost use the same pro-
cedure except that they do not accumulate gradients in the same
orientation: they respectively treat x-gradient and y-gradient hor-
izontally and vertically. Thus they locate valley between two
extrema blocks of each gradient accumulation profile and they
frame some floors and windows columns. Their results were rel-
evant in façades composed of a fair windows grid-pattern distri-
bution on a clean background.

Main buildings structure are detected. Each repetitive objects are
present in vertical or horizontal alignment as common edges gen-
erate local extrema in accumulation profiles. Local gradient ex-
tremum neighborhood is set a priori. In our case, this neighbor-
hood is set to 30 centimeters. However this last grid-pattern usu-
ally is not enough by itself to summarize façade texture: repeti-
tive elements of our images are not necessarily evenly distributed.
Thus our split strategy relies on breaks between two façades or
inside one façade.

5.2 Choosing the best splitting hypotheses

The best splitting hypothesis maximizes its pixels number of reg-
ular edges in each of the two sub-region. A regular edge is a
segment of a main gradient direction that effectively matches to
a contour of the image. The weight WH of the split hypoth-
esis H that provides the two regions R1 and R2 is given by
WH = f(R1) + f(R2), where the function f returns the pix-
els number of regular edges in a region. We select the hypothesis
H∗ = arg maxH WH .

If we try for instance to split image at x0 location, we reaccumu-
late y-gradients in left region and in right region separately. Local
extrema are detected in each of those y-profiles (cf figure 5).

Previous vertical split hypotheses and those new horizontal split
hypotheses constitute two new grid patterns for local split hy-
potheses. Each edge of these grid patterns is either regular or

Figure 5: y-gradient profiles are separately accumulated in left
region (yellow profile) and in right region (red profile).

fictive. Regular edges are located on significant gradient where a
significant gradient keeps its orientation uniform. A fictive edge
does not match with any significant gradient. Such a distinction
is illustrated in figure 6.

Regular edge

Fictive edge

Figure 6: Regular edges are located on significant gradient where
a significant gradient keeps its orientation uniform. A fictive edge
doesn’t match with any significant gradient.

The weight of each split hypothesis is the sum of regular edge
lengths. Figure 7 illustrates best split selection.

Figure 7: Regular edges are drawn in red. Split hypotheses are
drawn in yellow. Right image presents the best split hypothesis
whose weight is 8400 regular edge pixels. Left image presents a
bad split hypothesis: only 7700 regular edge pixels.

If the given region does not contain any gradient extremum, the
process stops. Figure 3 shows a region that do not fit with any
model and that is not split.

6 RESULTS

We illustrate our segmentation on a typical instance of our is-
sue: two building façades in the background. We have set maxi-
mum model deviation at 15% of each region area. On our images,
the depth in the hierarchy of the segmentation tree is represented
by the thickness of split lines. First the process detects vertical
structure discontinuities (figure 8). The two façades are sepa-
rated. Then on each of these two new sub-images, background
is separated from the foreground (figure 9). At this step we have
obtained four images: two façade images and two images of fore-
ground cars. Then the process recursively keeps analyzing these
images as shown in figure 10. Figure 11 shows the global seg-
mentation: a tree of about 2000 elementary models.
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Figure 8: The two façades are separated because of the significa-
tive break between their radiometric structure.

Figure 9: Background is separated from the foreground on each
of the two façade images.

Figure 10: The process recursively segments each of the four sub-
images. It splits the two façades and the foreground cars.

Figure 11: The segmentation result is a tree of 2000 elementary
models.

In: Stilla U, Rottensteiner F, Paparoditis N (Eds) CMRT09. IAPRS, Vol. XXXVIII, Part 3/W4  ---  Paris, France, 3-4 September, 2009
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

227



The strength of this process is its ability to localize accurate
global structure breaks: it separates façades and foreground. On
the one hand, split results at the foreground are not really inter-
esting because the related region is not in the rectified plane: they
are based on chaotic gradient distribution. In such a case, the
process stops or it oversegments. This phenomenon typically oc-
curs on the cars of figure 11. On the other hand, splits inside
façade texture provides some significative information. On fig-
ure 10, the left façade is first split between the second and the
third floor, whereas the first windows column is extracted from
the right façade. This different strategy certainly must be ex-
plained by the fact that the process is exclusively based on edges
alignment. An other criterion like contour uniformity may direct
the split decision toward a more significant separation: favoring
floor separation rather than window columns.

Figure 3 shows the region models, the leaves of the segmentation
tree. One can see that the synthetic image reconstructed from the
2D-models is very close to the initial image although the rep-
resentation is very compact. This shows that our modelling is
particularly well adapted for image compression.

Figure 12: Upper: Rectified façade image. Bottom: Synthetic
image reconstructed from 1000 elementary 2D-models.

7 CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a new unsupervised model-based
segmentation approach that provides interesting result. It is able
to separate a façade from its surroundings but also to organize
façade itself in a hierarchy. Still these are first results, thus there
are many improvements that could be made. The dictionary of

models is currently being extended to periodic textures to man-
age for instance balconies, building floors or brick texture. Some
other objects or specializations of objects could be added such
as symmetry computation of (Van Gool et al., 2007). A merger
process at each step of the process could also be useful to correct
oversegmentations. Besides we could add color information to
directly detect difference between two façades ore between two
floors in certain cases. We could also use a point cloud to com-
pute an ortho image: displacements due to perspective effects
would be avoided.

Such an unsupervised segmentation will provide of course rele-
vant clues to classify the façade architectural style or to detect
objects backward or in front of it. It is also intended to give geo-
metrical information that represents relevant indexation features
e.g. windows gab length or floor delineation.
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