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1.1 Motivation (1)

Why River Monitoring? 

82% of world’s population live on previously flooded land (Diley et al. 2005) & 

87% have rivers as their closest water body (Kummu et. al. 2011) 

 Environmental, economic & societal role – food, water, nutrients, transport, 

potential energy, supporting biodiversity & freshwater resources etc. 

 World’s most dangerous natural hazards – banks erosion, flooding & 

droughts
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1.1 Motivation (2)

Why River Monitoring? 

Monitor river quantity and quality (water health)

 River characterization – River discharge, aquatic ecology (mapping 

species coverage and their distribution), banks erosion, sedimentary 

transfer process by identifying and assessing dry, wet, shallow, deep 

areas etc.

 River restoration & management – Identifying the deadly algae species 

and other harmful constituents

Why Aerial Imagery?

 Higher spatial and temporal resolution

 Cloud free acquisitions

 Easy setup and low operational costs

 Continuous information as opposed to point based survey technique

 Mobility - Access to rural streams & areas inaccessible or dangerous or 

under hazardous situations 
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1.2 River Corridor Introduction

5

[Tomsett & Leyland (2019)]
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1.3 Challenges

 Detecting the riverlines – irregular boundaries

 Occlusion by trees along the riverlines

 Vegetation shadowing in the river

 Depth of the riverbed – visibility of the bed

 Highly dynamic fluvial environment

 Detecting and classifying the biomass 

 Detecting and classifying the sediments underneath – overlap!

 Ground Control Points Deployment for validation
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1.4 Assumptions

 Photogrammetry & flight principles – consistency in imagery during the 

aerial flight days 

 Exposure 

 Time

 Aperture Lighting (sunlight)

 Wind conditions

 No obstruction along the flight path 

 No trees

 No riffles

 No emerging banks

 Same spectral homogenous distribution of the river throughout its corridor

 River bed is visible in the images – low depth and low turbidity
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2 Overview – Solution Strategy

8

River Monitoring 
using Aerial 

Imagery

River Detection Riverlines

River Assessment

Flow & Water 
Quality

Geomorphology

Vegetation

Roughness & Grain 
Size

River DEM

[Lee & Hsiao, 2012]

[Rathinam et al. 2007]

[Lejot et al., 2007]

[Westoby et al., 2012]

[Fonstad et al., 2013]

[Casado et al., 2015]

[Brunier et al., 2016]

Flener et al., 2013]

[Carbonneau et al.,  2004 ]

[Carbonneau & Bergeron, 2005]

[Carbonneau et al.,  2006]

[Casado et al.,  2015]

[Graham et al., 2005]

[Casado et al.,  2015]

[Woodget et al., 2017]

[Rapple et al., 2017

[Bolognesi et al., 2017]

[Lega et al., 2012]

[Larson et al., 2018]

1. 

2. 

3. 
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Methods

9
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Method 1

Automated grain size measurements for long 

river profiles

Carbonneau P E, Bergeron N, Lane S N (2005)

10
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3.1 Method 1  - Introduction (1)

Goal: Automated gravel size measurements in both dry & shallow wetted 

areas for long river lengths to understand sedimentary transfer process by 

mapping grain size variability along the river channel

 Using image processing and classification algorithms in MATLAB

 Previous approach

 Automated grain size measurements (Carbonneau et al., 2004)

▪ Limitation: Applicable only for dry areas

 Proposed approach

 Extension of previous work to wet areas as well

 Principle

 Delineate the individual particles using image processing techniques

𝐷 = 𝑎 ∗ 𝑆𝑉 + 𝑏
D is the median diameter (~mm) of surface particles, SV is dimensionless 

local semivariance, a & b constants are found by calibration
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Semivariograms (1) [ArcGIS Pro]

 Depicts the spatial autocorrelation of the measured sample points

 Semivariance - variance in brightness levels in pixels separated by a 

distance are a function of distance

 Fitting the data yields a model

 Three interesting parameters 

 Range – x value when the y value stops increasing

 Sill – y value at maximum x range

 Nugget – Initial y intercept when x is 0

 Range – points within range are correlated, outside are not

 Nugget effects happen due to measurement errors or spatial sources of 

variation

 Example: Checkerboard

12
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Semivariograms (2)

13

 Positive Autocorrelation (similar values next to each other)

 Clusters

 Negative Autocorrelation (dissimilar values next to each other)

 For points compared to increasingly distant points - the semivariance 

increases, for closer points, its smaller in value

[GIS Geography]

[GIS Geography]
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Semivariograms (3)

 Semivariograms in Grain size estimation

 Spatial autocorrelation of the measured brightness points

▪ Brightness of gravels in images

 Assumptions

▪ Gravels have light surface and dark boundaries, therefore 

difference in brightness of surface vs boundaries

▪ Gravels are of smilar size in the area of prediction as of model 

calibration

▪ Each gravel is covered in multiple pixels, and not, multiple gravels 

in pixels

 This is to avoid the averaging effect

 Example semivariogram

▪ Sill (y value) tells the grain size

 Fit a model to find the slope and intercept

14
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3.1 Method 1 - Approach (1) [Carbonneau et al., 2004]

Input

(3cm RGB Imagery)

Region classification –

dry, shallow wet, deep

Convert RGB to HSI 

Histogram 
partition in 
Hue band

1. Merging of dry, exposed & 
optically shallow wetted sediment

1.1 Intensity band – two modes (dry 
and shallow wet areas)

2. Vegetated area

3. Optically deep wetted areas

Image corrections 

- Histogram shift for 

saturated bright regions

HSI: Hue Saturation Intensity
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3.1 Method 1  - Approach (2) [Carbonneau et al., 2004]

Mapping Image Property – correlation between 

local image poperties & grain size in images 

Model calibration with 

ground truth – a and b 

constants for equation

Optimal window 

size selection

Calibration & Validation Results
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3.1 Method 1 – Approach (3) [Carbonneau et al., 2005]

 Extension of Semivariance mapping to wet areas

 Equation for dry area needs to be recalibrated for wet areas

 Averaging window needs to be reconsidered based on the grain size

 For dry-wet interface (each meter length)

▪ Calibration : 216 points from the combination of adjacent 1m2 of 

dry area and 1m2 of wet area

 Calculate Mean brightness values for each image 

 Assign zero pixels as the mean pixel values to minimize the edge contrast 

between the masked area and class-imaged area

 Semivariance mapping on images by windowed semivariogram equation

 Conversion of semivariance maps to grain size maps

Wet areas: 𝐷50 = 1.33𝑆𝑉 + 18.95Dry areas: 𝐷50 = 0.34𝑆𝑉 + 10.12



Singhal (2020) River monitoring using Aerial Imagery 

Method 2 

Estimate depth-color relationship using 

illumination corrections

Carbonneau P E, Lane S N, Bergeron N (2006)

18
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3.2 Method 2 – Introduction

Goal: Improve prediction quality using illumination variations corrections with 

feature based image processing in calibration process 

 Depth-color relationship for improved bathymetric maps

 Previous approaches - Image Processing based

 Reference histogram matching- Redistribute initial histogram bins to 

reshape into the shape of reference histogram

▪ Why not - Difficult to determine the universal reference histrogram

 Neighbouring histogram matching- Match each histogram to its 

neighbor histogram to smooth out local differences

▪ Why not – Errors add up over on a larger scale

 Proposed approach – Physics based

 Beer-Lambert Law – flow depth from brightness levels in imagery

𝐼𝑜𝑢𝑡 = 𝐼𝑖𝑛𝑒
−𝑐𝑥

where c is rate of absorption of medium – depends on properties of 

medium such as turbidity and frequency of the incident light
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3.2 Method 2 – Approach

 Identify wet/dry interface using image classification

 Image classification – into dry and wetted areas 

▪ Accuracy of 80% of pixels being correctly classified automatically

▪ Higher level of accuracy required – therefore semi automatic 

interface developed in MATLAB to allow for manual corrections by 

humans

 Use brightness levels of unsubmerged clasts as Iin

 Calibrate Rate of absorption (c) using Iin and Iout

 Assumed to be constant for the whole data set

 Red color sensitive to bed depth variations as single pixel values

 Bed material color variations are addressed by using averaging 

windows of different sizes; optimal is 66 by 66 pixels

Conventional: 𝐼𝑟𝑒𝑑 = 109.5𝑒−0.596𝐻

Illumination-corrected: 𝐼𝑟𝑒𝑑= 128𝑒−0.387𝐻
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Method 3 

Automated Identification of River 

Hydromorphological Features

Casado M R, Gonzalez R B, Kriechbaumer T, 

Veal A (2015)

21
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3.3 Method 3 – Introduction

Goal: Feature classification of high resolution RGB aerial imagery using 

Artificial Neural Networks (ANN)

 River hydromorphological features such as riffle, banks, grass, 

shadow, vegetation, trees etc.

 Previous Approach: All using computer vision based techniques

 Proposed approach: Using supervised learning

 ANN Architecture: 3 layered Multilayer Perceptron ANN with non-linear 

activation functions
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3.3 Method 3 – Approach

 Flight Planning

 Selection of flight area, direction 

of flight, GSD, imagery overlap, 

take off and landing points

 Computation of flight height, 

number of flights and location of 

waypoints

 Data Acquisition & photogrammerty

 Distibution of Ground Control 

Points & Cross Points (with RTK 

GPS location information)

 Visual identification of features

 Selection of key images

 Generation of segmatic products

 Estimate photogrammetric 

accuracy [Casado et al.,  2015]
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3.3 Method 3 – Approach

 Image Classification

 Delineate the river channel

 RGB image selection based on 

key feature presence

 Conversion of the selected 

proportion from RGB to L*a*b

▪ L (lightness), a (green to red 

scale), b (blue to yellow scale)

▪ Helps to discriminate between 

green canopy cover from ground

 Cluster analysis of the L*a*b 

output

 Supervised selection of clusters 

 ANN Model training

[Casado et al.,  2015]
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3.3 Method 3 – Approach

 Image Classification

 Application of ANN to the 

orthorectified image

 Quantification & Georeference of 

the area corresponding to each 

feature

 Validate results

 Ground truth data - ADCP 

measurements

 Visual classification

[Casado et al.,  2015]
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Data

26
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4.1 Data - Method 1

 High resolution (3cm) aerial imagery (collected in August 2002)

 80km of the Sainte-Marguerite River, Quebec, Canada

 Dry: 19%, Shallow Water: 67%, Deep water: 14%

 Flying height – 155m, 60% overlap – 2092/4184 images used in study

 Field Data for Calibration and Validation

 ~600 artificial targets placed along river for Georeferencing using 

ArcMap by ESRI 

 Manually sensed to prepare ground truth data 

 39 georeferenced manual samples of the surface grain size in the 

wetted perimeter (estimated error: ±29.7cm)

▪ For each site, 10 clasts and water depth measurements in the 1m 

squared area

 Davey and Lapointe, unpublished report in 2004 is used as additional 

validation data – field based serdimentary links characterization by 

bulk sampling of the river bed material, inclusive of sand particles to 

boulder rapids
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4.2 Data - Method 2 

 High resolution aerial imagery (collected in August 2002)

 80km of the Sainte-Marguerite River, Quebec, Canada

 60% overlap – 2092/4184 images used in study

 Flying height – 155m, Ground resolution - 3cm

 Field Data for Calibration and Validation

 50 measurements (every 5m in 250m) to define the water surface 

elevation, beacuse no tributaries bring major input of sediment 

 1500 GPS measurements for water depth– 1000 for calibration, 500 

for validation

 250m study site covered in 4 images with 24 Grount Control Points
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4.3 Data - Method 3

 High resolution aerial imagery (collected in April 2015)

 1.4km of the River Dee, Wales, United Kingdom

 60% along track & 80% cross track overlap – 394/746 images used

 Flying height – 100m, Resolution – 2.5cm

 Field Data for Calibration and Validation

 60 Grount Control Points (1m by 1m) distributed uniformly for external 

orientation with GPS (positioning accuracy of 1.2cm)

 Additional 25 Yellow and white check points for image coregistration 

model errors

 River velocity and depth measurements and their variability by 

Acoustic Doppler Current Profiler (ADCP) on a boat in a zig zag 

pattern

 Key to success of ANN: Adequate selection of small proportion of imagery 

used for training and calibration process. 

 The features were present for more than 50% of the selected area

 Images with shadows or confusing features were not selected
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Results & Discussion

30



Singhal (2020) River monitoring using Aerial Imagery 31

5.1 Results & Discussion – Method 1(1)

 Median diameter as a function of local semivariance of region 

Only for dry areas: 𝐷50 = 0.34𝑆𝑉 + 10.12 (Precision: ±11mm)

Only for wet areas: 𝐷50 = 1.33𝑆𝑉 + 18.95 (Precison: ±29mm)

 85% level of explanation in the wetted region relationship

Calibration model for grain size estimation in submerged areas
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5.1 Results & Discussion – Method 1(1)

Validation results for grain size estimation in submerged areas



Singhal (2020) River monitoring using Aerial Imagery 33

5.1 Results & Discussion – Method 1(2)

 Sources of error

 Effect of water depth – poorer grain size estimates at deeper parts

▪ For flows < 50cm from water surface: Accuracy (8mm), Precision 

(±13mm)

▪ For flows > 50cm: Accuracy (10mm), Precision (±15mm)

 Effect of particle size relative to the average window used in calibration

 Effect of substrate composition

▪ Different rock types

▪ Presence of algae on rocks



Singhal (2020) River monitoring using Aerial Imagery 34

5.2 Results & Discussion – Method 2(1)

Conventional: 𝐼𝑟𝑒𝑑 = 109.5𝑒−0.596𝐻 Illumination − corrected: 𝐼𝑟𝑒𝑑 = 128𝑒−0.387𝐻
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5.2 Results & Discussion – Method 2(2)

 Sources of error

 Resolution differences in bathymetric map data (highly localized and 

spatial depth variability) and GPS validation data (cm precision)

 Assumed constant rate of absorption (c), fails for white water rapids

 Bank shading – falsely implies deeper regions
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5.3 Results & Discussion – Method 3(1) 

• 81% ANN 

Classification 

accuracy 

(10662/13085 points 

correctly classifed)

• True Positive Ratios 

> 85% for majority of 

classes 

• ANN reached 

solution in less than 

60 iterations
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5.3 Results & Discussion – Method 3(2) 
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5.3 Results & Discussion – Method 3(3) 

Sources of error

 Georeferencing error ~ 0.2% of error in classification

 Erosion – eroded banks were vertical cliffs, limited 2D planar aerial view

 Shallow water – dark brown color due to shadow in areas with mossy 

submerged vegetation or sedimentation

 Vegetated banks – confused with erosion or shadows
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5.4 Conclusion

 Datasets used – Generated by the authors based on area of interest

 Method 1 and 2 – Same dataset

 Method 3 – Different than above

 Datasets generated with well prepared flights - sufficient image overlap, 

validation points using Ground Control Points and GPS data for geo-

referencing manual measurements

Comparison between three methods – Difficult!

Motivation Method 1 Method 2 Method 3

River Characterization

(Morphological fetaures)

Yes Yes Yes

River restoration & management 

(Algae & plant species)

No No Yes
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Personal Opinion

40
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6 Personal Opinion(1)

 Remote sensing plays an important role in getting valuable data for large 

water bodies remotely 

 Aerial imagery being the fine compromise between imagery resolution 

to fulfill the motivation and large scale analysis

 Benefit - Solves the problem of river monitoring using aerial images 

with Physics-based Image Processing & ANN

 Limitations

▪ Limited by flying platform (eg. UAV)  performance to collect data

▪ Impractical to assume similar water flow properties along the entire 

river channel – therefore difficult in generating long river analysis 

using same methods

▪ Not applicable for sand, silts and clays – too coarse for river scale 

feature analysis

 Good datasets available, but only for specific rivers
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6 Personal Opinion(2)

 Future

 Multiple sensor payloads on UAV without the weight factor 

compromising the flight time endurance

 Multisensor integration and high-accuracy attitudinal 

information

 Swarm technology for UAVs – Smarter surveying deployments 

- for scalable, efficient and robust, rapid acquisition of data –

limited due to physical and legal constraints

 Autonomous under water vehicle, Unmanned Surface Vehicle 

for bank morphology and vegetation

 Real-time analysis and monitoring with combined datasets & 

Internet of Things such as prediction of flood events in real-time
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Personal Opinion(3) - River Corridor Monitoring

43

Choosing a technique is site and parameter of interest dependent!

[Tomsett & Leyland (2019)]
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